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Abstract. A t-spanner of a graph G is a spanning subgraph S in which
the distance between every pair of vertices is at most t times their dis-
tance in G. If S is required to be a tree then S is called a tree t-spanner
of G. In 1998, Fekete and Kremer showed that on unweighted planar
graphs the tree t-spanner problem (the problem to decide whether G
admits a tree t-spanner) is polynomial time solvable for t ≤ 3 and is
NP-complete as long as t is part of the input. They also left as an open
problem whether the tree t-spanner problem is polynomial time solvable
for every fixed t ≥ 4. In this work we resolve this open problem and
extend the solution in several directions. We show that for every fixed t,
it is possible in polynomial time not only to decide if a planar graph G
has a tree t-spanner, but also to decide if G has a t-spanner of bounded
treewidth. Moreover, for every fixed values of t and k, the problem, for a
given planar graph G to decide if G has a t-spanner of treewidth at most
k, is not only polynomial time solvable, but is fixed parameter tractable
(with k and t being the parameters). In particular, the running time of
our algorithm is linear with respect to the size of G. We extend this
result from planar to a much more general class of sparse graphs con-
taining graphs of bounded genus. An apex graph is a graph obtained
from a planar graph G by adding a vertex and making it adjacent to
some vertices of G. We show that the problem of finding a t-spanner of
treewidth k is fixed parameter tractable on graphs that do not contain
some fixed apex graph as a minor, i.e. on apex-minor-free graphs. Graphs
of bounded treewidth are sparse graphs and our technique can be used
to settle the complexity of the parameterized version of the sparse t-
spanner problem, where for given t and m one asks if a given n-vertex
graph has a t-spanner with at most n − 1 + m edges. Our results imply
that the sparse t-spanner problem is fixed parameter tractable on apex-
minor-free graphs with t and m being the parameters. Finally we show
that the tractability border of the t-spanner problem cannot be extended
beyond the class of apex-minor-free graphs. In particular, we prove that
for every t ≥ 4, the problem of finding a tree t-spanner is NP-complete
on K6-minor-free graphs. Thus our results are tight, in a sense that the
restriction of input graph being apex-minor-free cannot be replaced by
H-minor-free for some non-apex fixed graph H .
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1 Introduction

One of the basic questions in the design of routing schemes for communication
networks is to construct a spanning network which has two (often conflicting)
properties: it should have simple structure and nicely approximate distances
of the network. This problem fits in a larger framework of combinatorial and
algorithmic problems that are concerned with distances in a finite metric space
induced by a graph. An arbitrary metric space (in particular a finite metric
defined by a graph) might not have enough structure to exploit algorithmically.
A powerful technique that has been successfully used recently in this context
is to embed the given metric space in a simpler metric space such that the
distances are approximately preserved in the embedding. New and improved
algorithms have resulted from this idea for several important problems (see,
e.g., [2,7,25]). Tree metrics are a very natural class of simple metric spaces since
many algorithmic problems become tractable on them.

Peleg and Ullman [30] suggested the following parameter to measure the qual-
ity of a spanner. The spanner S of a graph G has the stretch factor t if the
distance in S between any two vertices is at most t times the distance between
these vertices in G. A tree t-spanner of a graph G is a spanning tree with a
stretch factor t. If we approximate the graph by a tree t-spanner, we can solve
the problem on the tree and the solution interpret on the original graph. Un-
fortunately, not many graph families admit good tree spanners. This motivates
the study of sparse spanners, i.e. spanners with a small amount of edges. There
are many applications of spanners in various areas; especially, in distributed sys-
tems and communication networks. In [30], close relationships were established
between the quality of spanners (in terms of stretch factor and the number of
spanner edges), and the time and communication complexities of any synchro-
nizer for the network based on this spanner. Another example is the usage of
tree t-spanners in the analysis of arrow distributed queuing protocols [14,24].
Sparse spanners are very useful in message routing in communication networks;
in order to maintain succinct routing tables, efficient routing schemes can use
only the edges of a sparse spanner [31]. We refer to the survey paper of Peleg
[27] for an overview on spanners.

In this work we study t-spanners of bounded treewidth (we postpone the
definition of treewidth till the next section). Specifically,

PROBLEM: k-Treewidth t-spanner

INSTANCE: A connected graph G and integers k and t.
QUESTION: Is there a t-spanner S of G of treewidth at most k?

Many algorithmic problems are tractable on graphs of bounded treewidth, and
a spanner of small treewidth can be used to obtain an approximate solution to a
problem on G. Since every connected graph with n vertices and at most n−1+m
edges is of treewidth at most m + 1, we can see this problem as a generalization
of tree t-spanner and sparse t-spanner problems.

Related work. Substantial work has been done on the tree t-spanner problem,
also known as the minimum stretch spanning tree problem. Cai and Corneil
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[6] have shown that, for a given graph G, the problem to decide whether G
has a tree t-spanner is NP-complete for any fixed t ≥ 4 and is linear time
solvable for t = 1, 2 (the status of the case t = 3 is open for general graphs).
An O(log n)-approximation algorithm for the minimum value of t for the tree
t-spanner problem is due to Emek and Peleg [21]. See the survey of Peleg [27]
on more details on this problem and its variants.

The tree t-spanner problem on planar graphs was studied intensively. Fekete
and Kremer [22] proved that the tree t-spanner problem on planar graphs is NP-
complete (when t is part of the input). They also show that it can be decided in
polynomial time whether a given planar graph has a tree 3-spanner. They gave
also a polynomial time algorithm for any fixed t that decides for planar graphs
with bounded face length whether there is a tree t-spanner. For fixed t ≥ 4, the
complexity of the tree t-spanner problem on planar graphs was left as an open
problem [22].

There are several works investigating the complexity of the problem on sub-
classes of planar graphs. Peleg and Tendler [29] showed that the problem can be
solved in polynomial time on outerplanar graphs, and also in the special case of
1-face depth graphs in which no interior vertex has degree 2. Boksberger et al.
[4] investigated the problem on grids and subgrids. They presented polynomial
time algorithm on grids and O(OPT 4)-approximation for subgrids.

Sparse t-spanners were introduced in [28] and [30] and since that time studied
extensively. We refer the reader to [18,19,20] for some inapproximability and
approximability results for the sparse spanner problem on general graphs. On
planar (unweighted) graphs, the problem of determining, for a given n-vertex
graph G and integers m and t, if G has a t-spanner with at most n+m−1 edges
is NP -complete for every fixed t ≥ 5. (The case 2 ≤ t ≤ 4 is open.) [5]. A PTAS
for the minimum number of edges for a special case of 2-spanners of 4-connected
planar triangulations was obtained in [17].

Recently, a lot of work has been done on parameterized algorithms on planar
graphs and more general classes of graphs (we refer e.g. to book [15] for more
information on parameterized complexity and algorithms). Alber et al. [1] initi-
ated the study of subexponential parameterized algorithms for the dominating
set problem and its different variations. Demaine et al. [12,13] gave a general
framework called bidimensionality to design parameterized algorithms for many
problems on planar graphs and showed how by making use of this framework to
extend results from planar graphs to much more general graph classes including
H-minor-free graphs. However, this framework cannot be used directly to solve
the k-Treewidth t-spanner problem because the theory of Demaine et al. is
strongly based on the assumption that the parameterized problem should be mi-
nor or edge contraction closed, which is not the case for spanners. In particular,
it is easy to construct an example when by contracting of an edge in a graph
G with a t-spanner of treewidth k, one can obtain a graph which does not have
such a spanner.

Our results. In this paper we resolve the problem left open in [22] and ex-
tend the solution in several directions. Our general technique is combinatorial
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in nature and is based on the following observation. Let G be a class of graphs
such that for every fixed t and every G ∈ G, the treewidth of every t-spanner
of G is Ω(treewidth(G)). Then as an almost direct corollary of Bodlaender’s
Algorithm and Courcelle’s Theorem (see Section 5 for details), we have that the
k-Treewidth t-spanner problem is fixed parameter tractable on G. Our main
combinatorial result is the proof that the class of apex-minor-free graphs, which
contains planar and bounded genus graphs, is in G.

After preliminary Section 2, we start (Section 3) by proving the combinatorial
properties of t-spanners in planar graphs. Our main result here is the proof that
every t-spanner of a planar graph of treewidth k has treewidth Ω(k/t). The proof
idea is based on the Robertson et al. theorem [33] on planar graphs excluding
a grid as a minor. A technical complication of a direct usage of this theorem is
that non-existence of a k-treewidth t-spanner in a minor or a contraction of a
graph G does not imply non-existence of a k-treewidth t-spanner in G. This is
why we have to work here with walls and topological minors.

It is possible to extend the combinatorial result on t-spanners in planar graphs
to apex-minor-free graphs (Section 4). This extension is quite technical and is
based on a number of new insights on the structure of apex-minor-free graphs.
The main tools here are the structural theorem of Robertson and Seymour char-
acterizing graphs excluding a graph as a minor and the theorem of Demaine and
Hajiaghayi on grid-minors in such graphs. We find the study of the k-treewidth
t-spanner problem on apex-minor-free graphs worth of efforts because of the fol-
lowing reason. Apex-minor-free graphs form a natural barrier for extension of
many parameter/treewidth combinatorial bounds which hold for planar graphs
[11]. However, for almost every such a parameter, the class of apex-minor-free
graphs is not an algorithmic obstacle, in a sense, that very often it is possible
to construct parameterized algorithms for H-minor-free graphs, where H is not
necessary an apex graph, see, e.g. [12]. Surprisingly, this is not the case for the
t-spanner problem. We show that the result on tractability of the problem on
the class of apex-minor-free graphs is tight and cannot be extended further: the
problem becomes intractable on H-minor-free graphs, when H is not an apex
graph. In particular, for every t ≥ 4, the problem of finding a tree t-spanner is
NP-complete even on K6-minor-free graphs.

Due the space restrictions some proofs are omitted here but they are given in
the technical report [16].

2 Preliminaries

Let G = (V, E) be an undirected graph with the vertex set V and edge set E.
(We often will use notations V (G) = V and E(G) = E.) The distance distG(u, v)
between vertices u and v of a connected graph G is the length (the number of
edges) of a shortest (u, v)-path in G.

Let t be a positive integer. A subgraph S of G, such that V (S) = V (G), is
called a (multiplicative) t-spanner, if distS(u, v) ≤ t ·distG(u, v) for every pair of
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vertices u and v. The parameter t is called the stretch factor of S. It is easy to
see that the t-spanners can equivalently be defined as follows.

Proposition 1. Let G be a connected graph, and t be a positive integer. A span-
ning subgraph S of G is a t-spanner of G if and only if for every edge (x, y) of
G, distS(x, y) ≤ t.

Given an edge e = (x, y) of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y
and remove all loops and replace all multiple edges by simple edges. A graph
H obtained by a sequence of edge-contractions is said to be a contraction of
G. H is a minor of G if H is a subgraph of a contraction of G. We say that
a graph G is H-minor-free when it does not contain H as a minor. We also
say that a graph class G is H-minor-free (or, excludes H as a minor) when all
its members are H-minor-free. For example, the class of planar graphs is a K5-
minor-free graph class. An apex graph is a graph obtained from a planar graph G
by adding a vertex and making it adjacent to some vertices of G. A graph class
G is apex-minor-free if G excludes a fixed apex graph H as a minor. If an edge of
a graph G is replaced by the path between it’s ends then it is said that this edge
is subdivided. A graph H is a topological minor of a graph G, if G contains a
subgraph which is isomorphic to a graph obtained from H by subdividing some
of its edges.

The (r, s)-grid is the Cartesian product of two paths of lengths r−1 and s−1.
The (r, s)-wall is a graph Wrs with the vertex set {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ s}
such that two vertices (i, j) and (i′, j′) are adjacent if and only if either i = i′

and j′ ∈ {j − 1, j + 1}, or j = j′ and i′ = i + (−1)i+j .
Let Wrs be a wall. By P h

i we denote the shortest path connecting vertices
(i, 1) and (i, s), and by P v

j is denoted the shortest path connecting vertices (1, j)
and (r, j) with assumption that, for j > 1, P v

j contains only vertices (x, y) with
x = j − 1, j. We call by the southern part of Wrs the path P h

r , and by the
northern part of Wrs the path P h

1 . Similar, the eastern and the western parts
are the paths P v

s and P v
2 , correspondingly.

If W is obtained by subdivision of edges of Wrs, with slightly abusing the
notation, we also will be using these terms for the paths obtained by subdivisions
from the corresponding paths of Wrs.

It is easy to check that if a graph G contains the (r, r)-grid as a minor, then
it contains Wrr as a topological minor. Also if G contains Wrr as a topological
minor, then it contains (r, �r/2�)-grid as a minor.

A tree decomposition of a graph G is a pair (X, U) where U is a tree whose
vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection of subsets
of V (G) such that i)

⋃
i∈V (U) Xi = V (G), ii)for each edge (v, w) ∈ E(G), there

is an i ∈ V (U) such that v, w ∈ Xi, and iii)for each v ∈ V (G) the set of
nodes {i | v ∈ Xi} forms a subtree of U . The width of a tree decomposition
({Xi | i ∈ V (U)}, U) equals maxi∈V (U) {|Xi|− 1}. The treewidth of a graph G is
the minimum width over all tree decompositions of G. We use notation tw(G) to
denote the treewidth of a graph G. A tree decomposition with U being a path,
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is called a path decomposition and the pathwidth of G is the minimum width
over all path decompositions of G.

We will need the following result which is due to Robertson, Seymour &
Thomas [33].

Proposition 2 ([33]). Every planar graph with no (r, r)-grid as a minor has
treewidth ≤ 6r − 5.

A surface Σ is a compact 2-manifold without boundary (we always consider
connected surfaces). A line in Σ is a subset homeomorphic to [0, 1] and a (closed)
disc Δ ⊆ Σ is a subset homeomorphic to {(x, y) : x2 + y2 ≤ 1}. An O-arc is
a subset of Σ homeomorphic to a circle. Whenever we refer to a Σ-embedded
graph G we consider a 2-cell embedding of G in Σ. To simplify notations, we do
not distinguish between a vertex of G and the point of Σ used in the drawing
to represent the vertex or between an edge and the line representing it. We also
consider a graph G embedded in Σ as the union of the points corresponding to
its vertices and edges. That way, a subgraph H of G can be seen as a graph H
where H ⊆ G.

3 Planar Graphs

In this section we prove that for every fixed t, a planar graph of large treewidth
cannot have a t-spanner of small treewidth.

Theorem 1. Let G be a planar graph of treewidth k and let S be a t-spanner of
G. Then the treewidth of S is Ω(k/t).

Proof. We need the following technical claim (the proof can be seen in [16]).
Let G be a planar graph embedded in the plane and containing the wall Wrs

as a topological minor. Let W be a subgraph of G isomorphic to a subdivision
of Wrs. Let Δ be the disc in the plane which is bordered by the union of the
southern, western, northern and eastern parts of W (with exclusion of pendant
vertices) and containing W .

Claim 1. For every t ≤ min{s/4, r/2} − 1, every t-spanner S of G contains a
path connecting the southern and the northern parts of W , and a path connecting
the eastern and the western parts of W . Moreover, both these paths are in Δ.

Proof. Let us prove the claim for the eastern and the western parts of W . Sup-
pose that for some t-spanner S of G there is no path completely inside of Δ
connecting the eastern and the western parts of W . Consider the path P h

�r/2�
in the wall. We find the first edge (x, y) in this path (starting from the western
part) with the following property: there is a path in S∩Δ connecting the eastern
part of W and x but there are no such paths for y. Clearly, such an edge has to
exist. Let P be a shortest path in S connecting x and y. By the choice of x and
y, path P is not entirely in Δ. So it can be divided into three subpaths: the first
path P1 connects x with some vertex u on the border of Δ, the second part P2
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connects u with some vertex v, which also lies on the border of Δ, the third path
P3 connects v and y, and P1 ∪ P3 ⊂ Δ. Note that vertex u cannot belong to the
eastern part, and vertex v cannot belong to the western part. The length of P is
at least northern or the southern part, then distS(x, u) ≥ r/2−1 ≥ t. If v is in the
northern or the southern part. then distS(y, v) ≥ r/2− 1 ≥ t. If u is in the west-
ern part and v is in the eastern part, then distS(x, u)+distS(y, v) ≥ s/2−1 ≥ t.
Hence, in all cases, the length of P is at least t + 1, and S is not a t-spanner.
The claim for the northern and southern parts is proved by similar arguments.
We have only to consider path P v

�s/2�+1 instead of P h
�r/2�. Note also that here

we need the requirement t ≤ s/4 − 1. ��
Set now r = �k+4

6 � and let S be a t-spanner of G. By Proposition 2, G has
an (r, r)-grid as a minor. Thus G has an (r, r)-wall Wrr as a topological minor.
Wall Wrr contains � r

4t+1� disjoint (4t + 1, r)-walls. Let W be a subgraph of G
isomorphic to a subdivision of Wrr. By applying Claim 1 to each (4t + 1, r)-wall,
we have that there are � r

4t+1� vertex disjoint paths in S connecting eastern and
western parts of W . By similar arguments, S also contains � r

4t+1� vertex disjoint
paths connecting southern and northern parts of W . The union of these paths
contains (� r

4t+1�, � r
4t+1�)-grid as a minor. So, S contains this grid as a minor,

too, and the treewidth of S is at least � r
4t+1� = � �(k+4)/6�

4t+1 � = Ω(k/t). ��

4 Apex-Minor-Free Graphs

In this section, we extended the results of Theorem 1 to graphs with bounded
genus and to apex-minor-free graphs.

4.1 Bounded Genus

The Euler genus eg(Σ) of a nonorientable surface Σ is equal to the nonori-
entable genus g̃(Σ) (or the crosscap number). The Euler genus eg(Σ) of an
orientable surface Σ is 2g(Σ), where g(Σ) is the orientable genus of Σ. The fol-
lowing extension of Proposition 2 on graphs of bounded genus is due to Demaine
et al. [12].

Proposition 3 ([12]). If G is a graph with treewidth more than 6r(eg(G) + 1)
which is embeddable on a surface with Euler genus eg(G), then G has the (r, r)-
grid as a minor.

We also need a result roughly stating that if a graph G with a big wall as a
topological minor is embedded on a surface Σ of small genus, then there is a
disc in Σ containing a big part of the wall of G. This result is implicit in the work
of Robertson and Seymour and there are simpler alternative proofs by Mohar
and Thomassen [26,35]. We use the variant of this result from Geelen et al. [23].
Combining this result and Proposition 3, and using the same arguments as in
the planar case, we have the following theorem, which proof can be seen in [16].

Theorem 2. Let G be a graph of treewidth k and Euler genus g, and let S be a
t-spanner of G. Then the treewidth of S is Ω( k

t·g3/2 ).
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4.2 Excluding Apex as a Minor

This extension of Theorems 1 and 2 to apex-minor-free graphs is based on a
structural theorem of Robertson and Seymour [32]. Before describing this theo-
rem we need some definitions.

Definition 1 (Clique-Sums). Let G1 = (V1, E1) and G2 = (V2, E2) be two
disjoint graphs, and k ≥ 0 an integer. For i = 1, 2, let Wi ⊂ Vi, form a clique
of size h and let G′

i be the graph obtained from Gi by removing a set of edges
(possibly empty) from the clique Gi[Wi]. Let F : W1 → W2 be a bijection between
W1 and W2. We define the h-clique-sum of G1 and G2, denoted by G1 ⊕h,F G2,
or simply G1 ⊕ G2 if there is no confusion, as the graph obtained by taking the
union of G′

1 and G′
2 by identifying w ∈ W1 with F (w) ∈ W2, and by removing

all the multiple edges. The image of the vertices of W1 and W2 in G1 ⊕ G2 is
called the join of the sum.

Note that some edges of G1 and G2 are not edges of G, because it is possible
that they were added by clique-sum operation. Such edges are called virtual.

We remark that ⊕ is not well defined; different choices of G′
i and the bijection

F could give different clique-sums. A sequence of h-clique-sums, not necessarily
unique, which result in a graph G, is called a clique-sum decomposition of G.

Definition 2 (h-nearly embeddable graphs). Let Σ be a surface with bound-
ary cycles C1, . . . , Ch, i.e. each cycle Ci is the border of a disc in Σ. A graph G is
h-nearly embeddable in Σ, if G has a subset X of size at most h, called apices,
such that there are (possibly empty) subgraphs G0, . . . , Gh of G \ X such that
i)G \ X = G0 ∪ · · · ∪ Gh, ii)G0 is embeddable in Σ, we fix an embedding of G0,
graphs G1, . . . , Gh (called vortices) are pairwise disjoint, iii)for 1 ≤ · · · ≤ h, let
Ui := {ui1 , . . . , uimi

} = V (G0)∩ V (Gi), Gi has a path decomposition (Bij), 1 ≤
j ≤ mi, of width at most h such that a)for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we
have uj ∈ Bij, b)for 1 ≤ i ≤ h, we have V (G0) ∩ Ci = {ui1 , . . . , uimi

} and the
points ui1 , . . . , uimi

appear on Ci in this order (either if we walk clockwise or
anti-clockwise).

The following proposition is known as the Excluded Minor Theorem [32] and is
the cornerstone of Robertson and Seymour’s Graph Minors theory.

Proposition 4 ([32]). For every graph H there exists an integer h, depending
only on the size of H, such that every graph excluding H as a minor can be
obtained by h-clique-sums from graphs that can be h-nearly embedded in a surface
Σ in which H cannot be embedded.

We also need the following result of Demaine and Hajiaghayi [13].

Proposition 5 ([13]). If G is an H-minor-free graph with treewidth more than
k, then G has the (Ω(k), Ω(k))-grid as a minor (the hidden constants in the Ω
notation depend only on the size of H).
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Theorem 3. Let H be a fixed apex graph. For every t-spanner S of an H-minor-
free graph G, the treewidth of S is Ω(tw(G)). (The hidden constants in the Ω
notation depend only on the size of H and t).

Proof. Due to space restrictions only the sketch of the proof is given here (see [16]
for the complete proof). Let G be an H-minor-free graph of treewidth k. It is well
known, that for any pair of graphs G1, G2, tw(G1⊕G2) ≤ max{tw(G1), tw(G2)}.
Thus, by decomposing G as a clique sum described in Proposition 4, we conclude
that there is a summand G′ in this clique sum such that a) G′ is h-almost em-
beddable in a surface Σ of genus h; b) the treewidth of G′ is at least k. The fur-
ther proof is performed in two steps. First we prove that Σ contains a closed disc
Δ′ ⊂ Σ such that i) G′ ∩Δ′ contains an (Ω(k), Ω(k))-wall as a topological minor
and ii) no vertex of G′ ∩ Δ′ is adjacent to an apex vertex and to a vertex from
a vortex. The proof is based on Proposition 5. In the second step, by extending
the arguments used for planar graphs on the wall inside Δ′, we prove that every
t-spanner of G has a large grid as a minor, and thus has treewidth Ω(k). ��

5 Algorithmic Consequences

This section discusses algorithmic consequences of the combinatorial results ob-
tained above. The proof of the following generic algorithmic observation is a
combination of known results.

Theorem 4. Let G be a class of graphs such that, for every G ∈ G and every
t-spanner S of G, the treewidth of S is at least tw(G) · fG(t), where fG is the
function only of t. Then for every fixed k and t, the existence of a t-spanner of
treewidth at most k in G ∈ G can be decided in linear time.

Proof. Let G ∈ G be a graph on n vertices and m edges. For given integers k
and t, we use Bodlaender’s Algorithm [3] to decide in time O(n+m) if tw(G) ≤
k/fG(t) (the hidden constants in the big-O depend only on k and fG(t)). If
Bodlaender’s Algorithm reports that tw(G) > k/fG(t), then we conclude that
G does not have a t-spanner of treewidth at most k. Otherwise (when tw(G) ≤
k/fG(t)), Bodlaender’s Algorithm computes a tree decomposition of G of width
at most k/fG(t). Now we want to apply Courcelle’s Theorem [8,9], namely that
every problem expressible in monadic second order logic (MSOL) can be solved
in linear time on graphs of constant treewidth. To apply Courcelle’s Theorem
(and to finish the proof of our Theorem), we have to show that, for every fixed
positive integers k and t, the property that a graph S is a t-spanner of treewidth
at most k is expressible in MSOL. It is known that the property that a subgraph
S has the treewidth at most k is expressible in MSOL for every fixed k (see, for
example, [10]). Since any path is a sequence of adjacent edges, we have that the
condition “for every edge (x, y) of G, distS(x, y) ≤ t” can be written as an MSOL
formula for every fixed t. By Proposition 1, this yields that “S is a t-spanner of
treewidth at most k” is expressible in MSOL. ��
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Theorems 3 and 4 imply the following result, which is the main algorithmic result
of this paper. (Let us note that for k = 1, Corollary 1 provides the answer to
the question of Fekete and Kremer [22].)

Corollary 1. Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G can be decided
in linear time.

It is easy to see that the treewidth of a connected n-vertex graph with n+m−1
edges is at most m+1. Since for a fixed m, the property of that a S is a spanning
subgraph of G with n + m − 1 edges is in MSOL, we have (as in the proof of
Theorem 4) that the combination of Theorem 3 with Bodlaender’s Algorithm
and Courcelle’s Theorem implies the following corollary

Corollary 2. Let H be a fixed apex graph. For every fixed m and t, the existence
of a t-spanner with at most n − 1 + m edges in an n-vertex H-minor-free graph
G can be decided in linear time.

It is easy to show that it is not possible to extend Theorem 3 to the class of
H-minor free graphs, where H is not necessary an apex graph. For i ≥ 1, let Hi

be a graph obtained by adding to the (i, i)-grid a vertex v and making it adjacent
to all vertices of the grid. Each of the graphs Hi, i ≥ 1, does not contain the
complete graph on six vertices K6 as a minor. The treewidth of Hi is i, but it
has a 2-spanner of treewidth one, which is the star with center in v. Thus, Theo-
rem 4 cannot be used on graphs excluding a non-apex graph as a minor. Similar
“apex-minor-free barrier” for using combinatorial bounds for parameterized al-
gorithms was observed for other problems (e.g., parameterized dominating set
[11]). However, for many of those problems, there are parameterized algorithms
for H-minor-free graphs, which are based on dynamic programming over clique-
sums of apex-minor-free graphs by making use of Robertson-Seymour structural
theorem (Proposition 4), see, e.g. [12]. So, for many parameterized problems,
combinatorial “apex-minor-free barrier” can be overcame. Surprisingly, this is
not the case for the t-spanner problem. In particular, the tree 4-spanner prob-
lem is NP-complete on apex graphs, and since each apex graph is K6-minor-free,
it is NP-complete, for example, for K6-minor-free graphs.

Note also that for apex graphs the claim of Theorem 3 is not correct. For
i ≥ 1, let Hi be a graph obtained by adding to the (i, i)-grid a vertex v and
making it adjacent to all vertices of the grid. The graphs Hi, i ≥ 1, do not
contain the complete graph on six vertices K6 as a minor. The treewidth of Hi

is i, but it has a 2-spanner of treewidth one, which is the star with center in v.

Theorem 5. For every fixed t ≥ 4, deciding if an apex graph G has a tree
t-spanner is NP-complete.

Proof. The proof of this result is based on a modification of the reduction of Cai
and Corneil [6] adapted for our purposes, and is given in [16]. ��
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6 Conclusion

We have shown that for fixed k and t, one can decide in linear time if an apex-
minor-free graph G has a t-spanner of treewidth at most k. The results we used in
our proof, Bodlaender’s Algorithm and Courcelle’s Theorem, have huge hidden
constants in the running time, and thus Corollary 1 is of theoretical interest
mainly. Since for K6-minor-free graphs and t = 4 the problem is NP complete,
we doubt that it is possible to design fast practical algorithms solving t-spanner
problem on apex-minor-free graphs. However, it is likely that on planar graphs
and for small values of t, our ideas can be used to design practical algorithms.
First of all, instead of using Bodlaender’s algorithm, one can use Ratcatcher
algorithm of Seymour-Thomas [34] to find exact branchwidth of a planar graph.
The running time of the algorithm is cubic, but there is no hidden constants.
The second bottleneck of our approach for practical applications is the usage of
Courcelle’s Theorem. Instead of that, for small values of t, it is more reasonable to
construct dynamic programming algorithms that use the properties of planarity
and of the problem.
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