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A graph G = (V , E) is δ-hyperbolic if for any four vertices u, v, w, x, the two larger of 
the three distance sums d(u, v) + d(w, x), d(u, w) + d(v, x), d(u, x) + d(v, w) differ by at 
most 2δ ≥ 0. This paper describes the eccentricity terrain of a δ-hyperbolic graph. The 
eccentricity function eG (v) = max{d(v, u) : u ∈ V } partitions vertices of G into eccentricity 
layers Ck(G) = {v ∈ V : eG (v) = rad(G) + k}, k ∈ N , where rad(G) = min{eG (v) : v ∈ V }
is the radius of G . The paper studies the eccentricity layers of vertices along shortest 
paths, identifying such terrain features as hills, plains, valleys, terraces, and plateaus. It 
introduces the notion of β-pseudoconvexity, which implies Gromov’s ε-quasiconvexity, and 
illustrates the abundance of pseudoconvex sets in δ-hyperbolic graphs. It shows that all sets 
C≤k(G) = {v ∈ V : eG (v) ≤ rad(G) + k}, k ∈ N , are (2δ − 1)-pseudoconvex. Several bounds 
on the eccentricity of a vertex are obtained which yield a few approaches to efficiently 
approximating all eccentricities.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The eccentricity eG(v) of a vertex v is the maximum distance from v to any other vertex in G = (V , E), i.e., eG(v) =
maxu∈V d(u, v). The diameter diam(G) (radius rad(G)) denotes the maximum (minimum) eccentricity of a vertex in G . 
The eccentricity function partitions the vertex set of G into eccentricity layers, wherein each layer is defined as Ck(G) =
{v ∈ V : eG(v) = rad(G) + k} for an integer k ∈ [0, diam(G) − rad(G)]. As the eccentricities of two neighboring vertices u
and v can differ by at most one, if vertex u belongs to layer Ck(G), then any vertex v adjacent to u belongs to either 
Ck−1(G), Ck(G), or Ck+1(G). The first layer C0(G) is exactly the center C(G) (all vertices of G with minimum eccentricity). 
The last layer C p(G), where p = diam(G) − rad(G), consists of all diametral vertices v , i.e., with eG(v) = diam(G). Also of 
interest are the sets defined as C≤k(G) = {v ∈ V : eG(v) ≤ rad(G) + k}, that is, the union of all eccentricity layers from 
C0(G) to Ck(G). The locality of a vertex v /∈ C(G) is the minimum distance from v to a vertex with smaller eccentricity: 
loc(v) = min{d(v, x) : x ∈ V , eG(x) < eG(v)}; by definition, the locality of a central vertex is 0.

The eccentricity terrain illustrates the behavior of the eccentricity function along any shortest path: if a traveler begins at 
vertex y and ends at vertex x moving along P (y, x), he may describe his journey as a combination of walking up-hill (to 
a vertex of higher eccentricity), down-hill (to a vertex of lower eccentricity), or along a plain (no change in eccentricity). 
We identify such terrain features as hills, plains, valleys, terraces, and plateaus. Understanding the eccentricity terrain and 
being able to efficiently estimate the diameter, radius, and all vertex eccentricities is of great importance. For example, 
in the analysis of social networks (e.g., citation networks or recommendation networks), biological systems (e.g., protein 
interaction networks), computer networks (e.g., the Internet or peer-to-peer networks), transportation networks (e.g., public 
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transportation or road networks), etc., the eccentricity eG(v) of a vertex v is used to measure the importance of v in the 
network: the eccentricity centrality index of v [23] is defined as 1

eG (v)
.

This paper further investigates the eccentricity function in δ-hyperbolic graphs from the eccentricity terrain prospec-
tive and greatly advances the line of research taken in [14,15,17,25] for such special graph classes as chordal graphs, 
(α1, �)-metric graphs and distance-hereditary graphs and in [5,10,11,16] for general δ-hyperbolic graphs and their relatives. 
Gromov [21] defines δ-hyperbolic graphs via a simple 4-point condition: for any four vertices u, v, w, x, the two larger of 
the three distance sums d(u, v) +d(w, x), d(u, w) +d(v, x), and d(u, x) +d(v, w) differ by at most 2δ ≥ 0. Such graphs have 
become of recent interest due to the empirically established presence of a small hyperbolicity in many real-world networks, 
such as biological networks, social networks, Internet application networks, and collaboration networks, to name a few (see, 
e.g., [2,3,6,22,24,27]). Notice that any graph is δ-hyperbolic for some hyperbolicity δ ≤ diam(G)/2.

1.1. Our contribution

First, we define in Section 3 a β-pseudoconvexity which implies the quasiconvexity found by Gromov in hyperbolic 
graphs, but additionally, is closed under intersection. Interestingly, all disks and all sets C≤k(G), for any integer k ≥ 0, are 
(2δ − 1)-pseudoconvex in δ-hyperbolic graphs.

In Section 4, we show that the height of any up-hill as well as the width of any plain on a shortest path to a central 
vertex is small and depends (linearly) only on the hyperbolicity of G . Moreover, the cumulative height and width of all up-
hills and plains on any shortest path to a vertex with minimal eccentricity is no more than 4δ. On any given shortest path 
P from an arbitrary vertex to a closest central vertex, the number of vertices with locality more than 1 does not exceed 
max{0, 4δ − 1}. Furthermore, only at most 2δ of them are located outside C≤δ(G) and only at most 2δ + 1 of them are at 
distance > 2δ from C(G). On the negative side, we give an example which illustrates that up-hills can occur anywhere on 
any shortest path from a vertex to a closest central vertex.

In Section 5, we give upper and lower bounds on the eccentricity of a vertex v based on several situations: if v is on a 
shortest path P (x, c) from a vertex x to a closest central vertex c; if v is on a shortest (x, y)-path where y is a most distant 
vertex from x; if v is on a shortest (x, y)-path where x and y are mutually distant vertices; and if v is a furthest vertex 
from some arbitrary vertex c ∈ V . Such results also give lower bounds on diam(G) and upper bounds on rad(G) which are 
consistent with those found in literature [10,16]. More importantly, they are very useful in approximating all eccentricities 
in G .

Finally, we present three approximation algorithms for all eccentricities: an O (δ|E|) time eccentricity approximation 
ê(v) based on the distances from any vertex to two mutually distant vertices which satisfies eG (v) − 2δ ≤ ê(v) ≤ eG(v), 
for all v ∈ V , and two spanning trees T , one constructible in O (δ|E|) time and the other in O (|E|) time, which satisfy 
eG(v) ≤ eT (v) ≤ eG(v) + 4δ + 1 and eG (v) ≤ eT (v) ≤ 6δ, respectively. Thus, the eccentricity terrain of a tree gives a good 
approximation (up-to an additive error O (δ)) of the eccentricity terrain of a δ-hyperbolic graph. Furthermore, we obtain an 
approximation for the distance from an arbitrary vertex v to C(G) or C≤2δ(G) based on the eccentricity of v .

1.2. Related works

The eccentricity function/terrain has been studied extensively in Helly graphs, chordal graphs, (α1, �)-metric graphs, and 
distance-hereditary graphs [11,13–15,17,25], among others. In [13], it is shown that the eccentricity function in Helly graphs 
exhibits unimodality: every vertex v /∈ C(G) has loc(v) = 1. In other words, any non-central vertex v has a shortest path P
to a closest central vertex wherein any vertex on P appears in a strictly lower eccentricity layer than the previous vertex 
until C(G) is reached. Thus, any local minimum of the eccentricity function eG (v) coincides with the global minimum on 
Helly graphs [13]. It is shown [13] that in such cases for any vertex v ∈ V , eG(v) = d(v, C(G)) + rad(G) holds. Additionally, 
(α1, �)-metric graphs, which include chordal graphs and the underlying graphs of 7-systolic complexes, have a similar but 
slightly weaker property. In [17], it is shown that every vertex v /∈ C(G) of a (α1, �)-metric graph G either has loc(v) = 1 or 
eG(v) = rad(G) + 1, diam(G) = 2rad(G), and d(v, C(G)) = 2. So, any non-central vertex v has a shortest path P to a closest 
central vertex upon which the eccentricity of each vertex u ∈ P monotonically decreases until C1(G) and, furthermore, 
|P ∩ C1(G)| ≤ 2. The same behavior of the eccentricity function has recently been shown to exist in distance-hereditary 
graphs as well [15]. This leads to a linear time additive 2-approximation for all eccentricities in chordal graphs via careful 
construction of a spanning tree [14,17] and a linear time additive 1-approximation for all eccentricities in a distance-
hereditary graph via distances from a sufficient subset of central vertices [15].

As chordal graphs and distance-hereditary graphs are 1-hyperbolic, we question if the descending behavior of the ec-
centricity function persists in any δ-hyperbolic graph. Similar locality results have been established [5]: any vertex v in 
a δ-hyperbolic graph has either loc(v) ≤ 2δ + 1 or C(G) belongs to the set of vertices that are at most 4δ + 1 from v . A 
pioneering work [10] first showed that, in a δ-hyperbolic graph, diam(G) and 2rad(G) are within 4δ + 1 from each other 
and that the diameter of C(G) in G is at most 4δ + 1. It gave also fast approximation algorithms for computing the diameter 
and the radius of G and showed that there is a vertex c in G , computable in linear time, such that each central vertex of 
G is within distance at most 5δ + 1 from c. Later in [16], a better approximation algorithm for the radius was presented 
and a bound on the diameter of set C≤2δ(G) was obtained, namely, diam(C≤2δ(G)) ≤ 8δ + 1. Recently, similar results were 
obtained in [11] for a related class of graphs, so called graphs with τ -thin geodesic triangles (see Section 2 for a definition). 
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Fig. 1. Illustration to the definitions of δ: realization of the 4-point condition in the rectilinear plane (left), and a geodesic triangle �(x, y, z), the points 
mx, my , mz , and the tripod T (x, y, z) (right).

Additionally to approximating the diameter and the radius, [11] gave efficient algorithms for approximating all eccentric-
ities in such graphs via careful construction of a spanning tree. We will mention the relevant results from [10,11,16] in 
appropriate places later and compare them with our new results.

Note also that, under plausible assumptions, even distinguishing the radius [1] or the diameter [26] between exact values 
2 or 3 cannot be accomplished in subquadratic time for sparse graphs. Since the graphs constructed in the reductions [1,
26] are 1-hyperbolic, the same result holds for 1-hyperbolic graphs. Therefore, we are interested in fast approximation 
algorithms with additive errors depending linearly only on the hyperbolicity.

2. Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, and undirected. The length of a path from a vertex u
to a vertex v is the number of edges in the path. The distance dG(u, v) between two vertices u and v is the length of 
a shortest path connecting them in G . We define the distance from a vertex v to a set M ⊆ V of vertices as d(v, M) =
min{d(v, u) : u ∈ M}. The eccentricity eG(u) of a vertex u is the maximum distance from u to any other vertex in G , i.e., 
eG(u) = maxv∈V dG (u, v). We omit the subindex when G is known by context. A graph’s radius rad(G) is the minimum 
eccentricity of all vertices, and a graph’s diameter diam(G) is the maximum eccentricity. The interval between two vertices 
x, y ∈ V is defined as the set of all vertices from any shortest (x, y)-path, that is, I(x, y) = {v ∈ V : d(x, v) +d(v, y) = d(x, y)}. 
An interval slice Sk(x, y) is the set of vertices {v ∈ I(x, y) : d(v, x) = k}. A disk of radius k centered at a set S (or a vertex) is 
the set of vertices of distance at most k from S , that is, D(S, k) = {u ∈ V : d(u, S) ≤ k}. We denote the set of furthest vertices 
from v as F (v) = {u ∈ V : d(u, v) = e(v)}. A pair {x, y} of vertices is called a mutually distant pair if x ∈ F (y) and y ∈ F (x). 
The diameter of a set S ⊆ V of a graph G is diam(S) = maxx,y∈S dG(x, y). The Gromov product of two vertices x, y ∈ V with 
respect to a third vertex z ∈ V is defined as (x|y)z = 1

2 (d(x, z) + d(y, z) − d(x, y)). A list of these notations can be found in 
Appendix.

Let S be a set and let function f̂ : S → R be an approximation of function f : S → R. We say that f̂ is an left-sided 
additive ε-approximation of f if, for all x ∈ S , f (x) − ε ≤ f̂ (x) ≤ f (x). We say that f̂ is an right-sided additive ε-approximation
of f if, for all x ∈ S , f (x) ≤ f̂ (x) ≤ f (x) + ε . The value ε is called left-sided (right-sided, respectively) additive error. In a 
graph G , a left-sided error appears when a vertex is returned by an algorithm whose eccentricity is an approximation of the 
diameter of G (as its eccentricity cannot exceed diam(G)), whereas a right-sided error appears when a vertex is returned by 
an algorithm whose eccentricity is an approximation of the radius of G (as its eccentricity cannot be smaller than rad(G)).

For metric spaces (X, d), there are several equivalent definitions of δ-hyperbolicity with different but comparable values 
of δ [4,7,20,21]. In this paper, we will use Gromov’s 4-point condition: for any four points u, v, w, x from X the two larger 
of the three distance sums d(u, v) + d(w, x), d(u, x) + d(v, w), and d(u, w) + d(v, x) differ by at most 2δ ≥ 0. A connected 
graph equipped with the standard graph metric dG is δ-hyperbolic if the metric space (V , dG) is δ-hyperbolic. The smallest 
value δ for which G is δ-hyperbolic is called the hyperbolicity of G and is denoted by δ(G). Note that δ(G) is an integer or 
a half-integer. Every 4-point metric d has a canonical representation in the rectilinear plane. In Fig. 1, the three distance 
sums are ordered from large to small, implying that α ≤ β . Then β is half the difference of the largest minus the smallest 
sum, while α is half the difference of the largest minus the medium sum. Hence, a metric space (X, d) is δ-hyperbolic if 
α ≤ δ for any four points u, v, w, x ∈ X . At times we will compare our results to those known from literature, including 
those known for graphs defined by thin geodesic triangles as follows.

Let (X, d) be a metric space. An (x, y)-geodesic is a (continuous) map γ from the segment [a, b] of R1 to X such that 
γ (a) = x, γ (b) = y, and d(γ (s), γ (t)) = |s − t| for all s, t ∈ [a, b]. A metric space (X, d) is geodesic if every pair of points 
in X can be joined by a geodesic. A geodesic triangle �(x, y, z) with x, y, z ∈ X is defined on a geodesic metric space as 
the union [x, y] ∪ [x, z] ∪ [y, z] of three geodesic segments connecting x, y, z. Let mx be the point of the geodesic segment 
[y, z] located at distance αy = (x|z)y from y. Then, mx is located at distance αz = (x|y)z from z because αy + αz = d(y, z). 
Analogously, define the points my ∈ [x, z] and mz ∈ [x, y] both located at distance αx = (y|z)x from x; see Fig. 1 for an 
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illustration. There is a unique isometry ϕ which maps �(x, y, z) to a tripod T (x, y, z) consisting of three solid segments 
[x, m], [y, m], and [z, m] of lengths αx , αy , and αz , respectively. This function maps the vertices x, y, z of �(x, y, z) to the 
respective leaves of T (x, y, z) and the points mx , my , and mz to the center m of T (x, y, z). Any other point of T (x, y, z) is the 
image of exactly two points of �(x, y, z). A geodesic triangle is called δ-thin if for all points u, v ∈ �(x, y, z), ϕ(u) = ϕ(v)

implies d(u, v) ≤ δ. A graph G is δ-thin if all geodesic triangles in G are δ-thin. The smallest value δ for which G is δ-thin 
is called the thinness of G and is denoted by τ (G).

The thinness and hyperbolicity of a graph are comparable as follows (similar inequalities are known for general geodesic 
metric spaces).

Proposition 1. [4,7,20,21] For a graph G, δ(G) ≤ τ (G) ≤ 4δ(G), and the inequalities are sharp.

We will often use the following lemma.

Lemma 1. Let G be a δ-hyperbolic graph. For any x, y, v ∈ V and any vertex c ∈ I(x, y) the following holds.

(i) If d(x, c) ≤ (v|y)x, then d(c, v) ≤ d(x, v) − d(x, c) + 2δ and d(c, v) ≤ d(x, v) + δ. Moreover, e(c) ≤ e(x) − d(x, c) + 2δ and 
e(c) ≤ e(x) + δ, when v ∈ F (c).

(ii) If d(y, c) ≤ (v|x)y , i.e., d(x, c) ≥ (v|y)x, then d(c, v) ≤ d(y, v) − d(y, c) + 2δ and d(c, v) ≤ d(y, v) + δ. Moreover, e(c) ≤
e(y) − d(y, c) + 2δ and e(c) ≤ e(y) + δ, when v ∈ F (c).

Proof. Consider the three distance sums d(x, y) + d(c, v), d(x, v) + d(c, y), and d(x, c) + d(v, y). Since c ∈ I(x, y), d(x, y) =
d(x, c) +d(c, y). By the triangle inequality, d(x, v) +d(c, y) ≤ d(x, c) +d(c, v) +d(c, y) and d(x, c) +d(v, y) ≤ d(x, c) +d(v, c) +
d(c, y). Thus, d(x, y) + d(c, v) ≥ max{d(x, v) + d(c, y), d(x, c) + d(v, y)}.

Suppose d(x, c) ≤ (v|y)x = 1
2 (d(v, x) + d(y, x) − d(v, y)). We have 2d(x, c) + 2d(v, y) ≤ (d(v, x) + d(y, x) − d(v, y)) +

2d(v, y) = d(v, x) + d(y, x) + d(v, y) = d(v, x) + d(x, c) + d(c, y) + d(v, y). Subtracting d(x, c) + d(v, y) from this inequality, 
one obtains d(x, c) +d(v, y) ≤ d(v, x) +d(c, y). Since G is δ-hyperbolic, 2δ ≥ (d(x, y) +d(c, v)) − (d(v, x) +d(c, y)) = d(x, c) +
d(c, v) − d(v, x). Therefore, d(c, v) ≤ d(v, x) − d(x, c) + 2δ. By adding the triangle inequality d(c, v) ≤ d(v, x) + d(x, c) to this, 
we obtain d(c, v) ≤ d(v, x) + δ. Applying both inequalities to the case in which v is furthest from c, we get e(c) = d(c, v) ≤
d(v, x) − d(x, c) + 2δ ≤ e(x) − d(x, c) + 2δ and e(c) = d(c, v) ≤ d(v, x) + δ ≤ e(x) + δ. Thus, (i) is true.

Suppose now that d(x, c) ≥ (v|y)x = 1
2 (d(v, x) +d(y, x) −d(v, y)). First, we claim that this is equivalent to d(c, y) ≤ (v|x)y . 

By assumption, d(x, y) = d(x, c) + d(c, y) ≥ 1
2 (d(v, x) + d(y, x) − d(v, y)) + d(c, y). Therefore, d(c, y) ≤ d(x, y) − 1

2 (d(v, x) +
d(y, x) −d(v, y)) = 1

2 (d(x, y) −d(v, x) +d(v, y)) = (v|x)y , establishing the claim. Now, (ii) is true by symmetry with (i). �
Lemma 1 has a few important corollaries.

Corollary 1. Let G be a δ-hyperbolic graph. Any x, y, v ∈ V and c ∈ I(x, y) satisfies d(c, v) ≤ max{d(x, v), d(y, v)} − min{d(x, c),
d(y, c)} + 2δ.

We next combine both cases of Lemma 1 to form an upper bound on all distances from vertex c on a shortest (x, y)-
path, including e(c), as well as improvements to this bound when c is sufficiently far from the endpoints x and y. By these 
we generalize greatly some known results from [5].

Corollary 2. Let G be a δ-hyperbolic graph. Any vertices x, y, v ∈ V and c ∈ I(x, y) satisfy d(c, v) ≤ max{d(x, v), d(y, v)} + δ. Fur-
thermore, if d(x, y) ≥ 4δ, then any vertex c∗ ∈ I(x, y) with d(x, c∗) ≥ 2δ and d(y, c∗) ≥ 2δ satisfies d(c∗, v) ≤ max{d(x, v), d(y, v)}. 
If d(x, y) > 4δ + 1 then any vertex c∗ ∈ I(x, y) with d(x, c∗) > 2δ and d(y, c∗) > 2δ satisfies d(c∗, v) < max{d(x, v), d(y, v)} [5].

Proof. By Lemma 1, d(c, v) ≤ d(x, v) + δ or d(c, v) ≤ d(y, v) + δ. Therefore, d(c, v) ≤ max{d(x, v), d(y, v)} + δ. If d(x, y) ≥ 4δ

then, by Corollary 1, any vertex c∗ ∈ I(x, y) with d(x, c∗) ≥ 2δ and d(c∗, y) ≥ 2δ satisfies e(c∗) ≤ max{d(x, v), d(y, v)} −
min{d(x, c∗), d(y, c∗)} + 2δ ≤ max{d(x, v), d(y, v)}. If d(x, y) > 4δ + 1, i.e., d(x, y) ≥ 4δ + 2 then, by Corollary 1, any ver-
tex c∗ ∈ I(x, y) with d(x, c∗) > 2δ and d(c∗, y) > 2δ satisfies e(c∗) ≤ max{d(x, v), d(y, v)} − min{d(x, c∗), d(y, c∗)} + 2δ <

max{d(x, v), d(y, v)}. �
Corollary 3. Let G be a δ-hyperbolic graph. Any vertices x, y ∈ V and c ∈ I(x, y) satisfy e(c) ≤ max{e(x), e(y)} + δ. Furthermore, if 
d(x, y) ≥ 4δ, then any vertex c∗ ∈ I(x, y) with d(x, c∗) ≥ 2δ and d(y, c∗) ≥ 2δ satisfies e(c∗) ≤ max{e(x), e(y)}. If d(x, y) > 4δ + 1
then any vertex c∗ ∈ I(x, y) with d(x, c∗) > 2δ and d(y, c∗) > 2δ satisfies e(c∗) < max{e(x), e(y)} [5].

Proof. By Lemma 1, e(c) ≤ e(x) + δ or e(c) ≤ e(y) + δ. Therefore, e(c) ≤ max{e(x), e(y)} + δ. Suppose that d(x, y) ≥ 4δ and 
consider any vertex c∗ ∈ I(x, y) satisfying d(x, c∗) ≥ 2δ and d(c∗, y) ≥ 2δ. By Lemma 1, e(c∗) ≤ e(x) − d(x, c∗) + 2δ ≤ e(x) or 
e(c∗) ≤ e(y) − d(y, c∗) + 2δ ≤ e(y). Hence, e(c∗) ≤ max{e(x), e(y)}.
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Suppose now that d(x, y) > 4δ + 1, i.e., d(x, y) ≥ 4δ + 2. Consider any vertex c∗ ∈ I(x, y) satisfying d(x, c∗) > 2δ and 
d(c∗, y) > 2δ. By Lemma 1, e(c∗) ≤ e(x) − d(x, c∗) + 2δ < e(x) or e(c∗) ≤ e(y) − d(y, c∗) + 2δ < e(y). Hence, e(c∗) <
max{e(x), e(y)}. �
Corollary 4. Let G be a δ-hyperbolic graph where x, y ∈ V , d(x, y) ≥ 2δ + 1, and c ∈ S2δ+1(x, y). If e(c) ≥ max{e(x), e(y)} then 
d(x, y) ≤ 4δ + 1.

Proof. By contradiction assume that e(c) ≥ max{e(x), e(y)} and d(x, y) > 4δ + 1, i.e., d(x, y) ≥ 4δ + 2. By Corollary 3, 
e(c) < max{e(x), e(y)} must hold, giving a contradiction. �
3. Pseudoconvexity of the sets C≤k(G) and their diameters

A subset S of a geodesic metric space or a graph is convex if for all x, y ∈ S the metric interval I(x, y) is contained in S . 
This notion was extended by Gromov [21] as follows: for ε ≥ 0, a subset S of a geodesic metric space or a graph is called 
ε-quasiconvex if for all x, y ∈ S the metric interval I(x, y) is contained in the disk D(S, ε). S is said to be quasiconvex if 
there is a constant ε ≥ 0 such that S is ε-quasiconvex. Quasiconvexity plays an important role in the study of hyperbolic 
and cubical groups, and hyperbolic graphs contain an abundance of quasiconvex sets [12]. Unfortunately, ε-quasiconvexity 
is not closed under intersection. Consider a path P = (v0, . . . , v2k) of length 2k. Let S1 = {v0, v2k} ∪ {vi : i is odd} and 
S2 = {v0, v2k} ∪ {vi : i is even}. Both S1 and S2 are 1-quasiconvex, however, their intersection is only k-quasiconvex.

In this section, we introduce β-pseudoconvexity which satisfies this important intersection axiom of convexity and we 
illustrate the presence of pseudoconvex sets in hyperbolic graphs. For β ≥ 0, we define a set S ⊆ V to be β-pseudoconvex
if, for any vertices x, y ∈ S , any vertex z ∈ I(x, y) \ S satisfies min{d(z, x), d(z, y)} ≤ β . Note that when β = 0 the definitions 
of convex sets and β-pseudoconvex sets coincide. Moreover, β-pseudoconvexity implies β-quasiconvexity. Consider a β-
pseudoconvex set S and its arbitrary two vertices x and y. As any vertex z ∈ I(x, y) \ S satisfies min{d(z, x), d(z, y)} ≤ β , 
necessarily, z belongs to disk D(S, β). Since the empty set and V are β-pseudoconvex, the following lemma establishes that 
β-pseudoconvex sets form a convexity.

Lemma 2. If sets S1 ⊆ V and S2 ⊆ V are β-pseudoconvex, then S1 ∩ S2 is β-pseudoconvex.

Proof. Consider any two vertices x, y ∈ S1 ∩ S2. If there is a vertex z ∈ I(x, y) which does not belong to S1 ∩ S2, then, z /∈ S1
or z /∈ S2. Without loss of generality, assume z /∈ S1. Then, min{d(z, x), d(z, y)} ≤ β because S1 is β-pseudoconvex. �

It is easy to see that in 0-hyperbolic graphs (which are block graphs, i.e., graphs in which every 2-connected component 
is a complete graph) all disks are convex. We next show that all disks are (2δ − 1)-pseudoconvex in δ-hyperbolic graphs 
with δ > 0.

Lemma 3. Let G be a δ-hyperbolic graph. Any disk of G is (2δ − 1)-pseudoconvex, when δ > 0, and is convex, when 0 ≤ δ ≤ 1/2.

Proof. Consider a disk D(v, r) centered at a vertex v ∈ V and with radius r. Let x, y ∈ D(v, r) and let z ∈ I(x, y) be a 
vertex which is not contained in D(v, r). By contradiction, assume that d(z, x) ≥ 2δ and d(z, y) ≥ 2δ. Since z /∈ D(v, r), 
d(v, z) > max{d(v, y), d(v, x)}. By Corollary 2 applied to vertices x, y, v and vertex z ∈ I(x, y), necessarily, d(z, v) ≤
max{d(x, v), d(y, v)}, a contradiction. �

It is known that in chordal graphs (including 0-hyperbolic graphs) all sets C≤k(G), k ∈ N , are convex (see, e.g., [9,17]). 
We next show that all such sets are (2δ − 1)-pseudoconvex in δ-hyperbolic graphs with δ > 0.

Lemma 4. Let G be a δ-hyperbolic graph and k ≥ 0 be an arbitrary integer. Any set C≤k(G) of G is (2δ −1)-pseudoconvex, when δ > 0, 
and is convex, when 0 ≤ δ ≤ 1/2.

Proof. Let S be the intersection of disks D(v, rad(G) +k) centered at each vertex v ∈ V . By Lemma 3, each disk is (2δ − 1)-
pseudoconvex. By Lemma 2, S is also (2δ − 1)-pseudoconvex. It remains only to show that S = C≤k(G). Recall that C≤k(G) =
{v ∈ V : e(v) ≤ rad(G) + k}. If x ∈ S , then d(x, v) ≤ rad(G) + k for all v ∈ V . Therefore, e(x) ≤ rad(G) + k and so x ∈ C≤k(G). 
On the other hand, if x /∈ S , then d(x, v) > rad(G) +k for some v ∈ V . Therefore, e(x) > rad(G) +k and so x /∈ C≤k(G). Hence, 
S = C≤k(G). �

As a consequence of Lemma 4, we obtain several interesting features of any shortest path between vertices of C≤k(G).

Corollary 5. Let G be a δ-hyperbolic graph, and let x, y ∈ C≤k(G) for an integer k ≥ 0. If there is a vertex c ∈ I(x, y) where c /∈ C≤k(G), 
then d(y, c) < 2δ or d(x, c) < 2δ.
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Corollary 6. Let G be a δ-hyperbolic graph with δ > 0, and let x, y ∈ C≤k(G) for an integer k ≥ 0. If there is a shortest path P (x, y)

where P (x, y) ∩ C≤k(G) = {x, y}, then d(x, y) ≤ 4δ − 1.

Proof. Assume d(x, y) ≥ 4δ for some x, y ∈ C≤k(G) and let P (x, y) be a shortest path such that P (x, y) ∩ C≤k(G) = {x, y}. 
Consider vertex c ∈ P (x, y) with d(x, c) = 2δ. Since d(x, c) > 2δ − 1, by Lemma 4, necessarily d(y, c) ≤ 2δ − 1. Thus, d(x, y) =
d(x, c) + d(c, y) ≤ 2δ + 2δ − 1 = 4δ − 1, a contradiction. �

Note that for 0-hyperbolic graphs any shortest path P (x, y) with x, y ∈ C≤k(G) is contained in C≤k(G) due to convexity 
of C≤k(G).

We next obtain a bound on the diameter of set C≤k(G). It is known [11] that if G is τ -thin, then diam(C≤k(G)) ≤
2k + 2τ + 1. Applying the inequality τ ≤ 4δ from Proposition 1 yields diam(C≤k(G)) ≤ 2k + 8δ + 1, which can be improved 
working directly with δ, hereby generalizing also a result from [10,16].

Lemma 5. Any δ-hyperbolic graph G has diam(C≤k(G)) ≤ 2k + 4δ + 1 for every k ∈N . In particular, diam(C≤2δ(G)) ≤ 8δ + 1 [16], 
diam(C(G)) ≤ 4δ + 1 and diam(G) ≥ 2rad(G) − 4δ − 1 [10,16].

Proof. Let x, y ∈ C≤k(G) realize the diameter of C≤k(G). We have e(x) ≤ rad(G) + k and e(y) ≤ rad(G) + k. Consider a 
(middle) vertex c ∈ I(x, y) so that min{d(x, c), d(y, c)} = �d(x, y)/2�. Let v ∈ F (c) be a vertex furthest from c. Hence, 
d(c, v) ≥ rad(G). By Corollary 1, �d(x, y)/2� = min{d(x, c), d(y, c)} ≤ max{d(v, x), d(v, y)} − d(c, v) + 2δ ≤ rad(G) + k −
rad(G) + 2δ = k + 2δ. Thus, diam(C≤k(G)) = d(x, y) = d(x, c) + d(c, y) ≤ 2�d(x, y)/2� + 1 ≤ 2k + 4δ + 1. In particular, when 
k = diam(G) − rad(G), we get diam(G) ≥ 2rad(G) − 4δ − 1 as C≤diam(G)−rad(G)(G) = V . �

Thus, combining this with the result from [11], we get diam(C≤k(G)) ≤ 2k + 2 min{τ (G), 2δ(G)} + 1 for any graph G and 
any k ∈N .

Summarizing the results of this section, we have.

Theorem 1. Every disk and every set C≤k(G), k ≥ 0, of a δ-hyperbolic graph G is (2δ − 1)-pseudoconvex, when δ > 0, and is convex, 
when 0 ≤ δ ≤ 1/2. Furthermore, diam(C≤k(G)) ≤ 2k + 4δ + 1.

For a δ-hyperbolic graph G , although its center C(G) has a bounded diameter in G , the graph 〈C(G)〉 induced by C(G)

may not be connected. This is the case even for distance-hereditary graphs (see, e.g., [15]) which are 1-hyperbolic. The 
following simple construction shows that even if the center of G induces a connected subgraph, it may induce an arbitrary 
connected graph. Thus, even if G has a bounded hyperbolicity, its center graph 〈C(G)〉 may have an arbitrarily large hyper-
bolicity. Consider any connected graph H with sufficiently large δ(H), and construct a new graph G from H by adding four 
new vertices x, y, x∗, y∗ to H , making x and y adjacent to each vertex of G , and making x∗ and y∗ adjacent only to x and 
y, respectively. It is easy to see that G is 1-hyperbolic and 〈C(G)〉 is isomorphic to H . However, H has a large hyperbolicity.

4. Terrain shapes

We consider the shape of a shortest path P (y, x) as it travels from a vertex y to a vertex x through the eccentricity 
layers of G . We define an ordered pair of vertices (u, v), where (u, v) ∈ E , as an up-edge if e(u) < e(v), as a horizontal-
edge if e(u) = e(v), and as a down-edge if e(u) > e(v). Thus, any path P (y, x) = (y = v0, v1, ..., vk = x) from vertex y to 
vertex x can be described by a series of k consecutive ordered pairs (vi, vi+1) which can be classified as either up-edges, 
down-edges, or horizontal-edges. We define an m-segment (m stands for monotonic) as a series of consecutive ordered 
pairs (vi, vi+1, ..., vi+
−1, vi+
) along a shortest path P (y, x) in which each edge (v j, v j+1) has the same classification. An 
up-hill (down-hill) on P (y, x) is a maximal by inclusion m-segment (vi, . . . , vi+
) of P (y, x) where (v j, v j+1) is an up-edge 
(down-edge) for each j ∈ {i, i + 1, ..., i + 
 − 1}. The value 
 is called the height of the hill. A plain on P (y, x) is a maximal 
by inclusion m-segment (vi, . . . , vi+
) of P (y, x) where (v j, v j+1) is a horizontal-edge for each j ∈ {i, i + 1, ..., i + 
 − 1}. 
The value 
 is called the width of the plain. A plain (vi, . . . , vi+
) of P (y, x) with i > 0 and i + 
 < k is called a plateau
if e(vi−1) < e(vi) and e(vi+
+1) < e(vi+
), is called a valley if e(vi−1) > e(vi) and e(vi+
+1) > e(vi+
), is called a terrace if 
e(vi−1) < e(vi) and e(vi+
+1) > e(vi+
) or e(vi−1) > e(vi) and e(vi+
+1) < e(vi+
) (see Fig. 2 and Fig. 3).

In this section, we find a limit on the number of up-edges and horizontal-edges which can occur on a shortest path 
P (y, x) from a vertex y to a vertex x. Moreover, we discover that the length of any up-hill or the width of any plain of 
P (y, x) is small and depends only on the hyperbolicity of G . As a consequence, we get that on any given shortest path 
P from an arbitrary vertex to a closest central vertex, the number of vertices with locality more than 1 does not exceed 
max{0, 4δ − 1}. Furthermore, only at most 2δ of them are located outside C≤δ(G) and only at most 2δ + 1 of them are at 
distance > 2δ from C(G).

First, for a shortest path P (y, x) from y to x in an arbitrary graph, we establish a relation between the number of up-
edges, down-edges, and the eccentricities of x and y. Let U(P (y, x)), H(P (y, x)), and D(P (y, x)) denote respectively the 
number of up-edges, horizontal-edges, and down-edges along shortest path P (y, x) when walking from y to x. Since each 
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Fig. 2. A 5/2-hyperbolic graph G with rad(G) = 6 is shown with its eccentricity layers. Shortest path P (x0, x13) from x0 to x13 consists of down-hill 
(x0, x1, x2, x3), valley (x3, x18), up-hill (x18, x17, x16, x15), and plain (x15, x14, x13). Shortest path P (x16, x11) from x16 to x11 consists of up-hill (x16, x15), 
plateau (x15, x12), down-hill (x12, x11).

edge is classified as exactly one of the three categories, any shortest path P (y, x) has d(y, x) = U(P (y, x)) + H(P (y, x)) +
D(P (y, x)).

Lemma 6. Let G be an arbitrary graph. For any shortest path P (y, x) of G from a vertex y to a vertex x the following holds: 
D(P (y, x)) −U(P (y, x)) = e(y) − e(x), that is, e(x) +D(P (y, x)) = U(P (y, x)) + e(y).

Proof. We use an induction on d(y, v) for any vertex v ∈ P (y, x). First assume that v is adjacent to y. If (y, v) is an 
up-edge, then e(y) − e(v) = −1 and D(P (y, v)) − U(P (y, v)) = −1. If (y, v) is a horizontal-edge, then e(y) − e(v) = 0
and D(P (y, v)) − U(P (y, v)) = 0. If (y, v) is a down-edge, then e(y) − e(v) = 1 and D(P (y, v)) − U(P (y, v)) = 1. Now 
consider an arbitrary vertex v ∈ P (y, x) and assume, by induction, that e(y) − e(v) = D(P (y, v)) − U(P (y, v)). Let vertex 
u ∈ P (y, x) be adjacent to v with d(y, u) = d(y, v) + 1. By definition, D(P (y, u)) =D(P (y, v)) +D((v, u)) and U(P (y, u)) =
U(P (y, v)) +U((v, u)). We consider three cases based on the classification of edge (v, u).

If (v, u) is an up-edge, then e(u) = e(v) +1, U((v, u)) = 1, and D((v, u)) = 0 = U((v, u)) −1. By the inductive hypothesis, 
D(P (y, u)) =D(P (y, v)) +D((v, u)) = U(P (y, v)) +e(y) −e(v) +U((v, u)) −1 = U(P (y, u)) +e(y) −e(v) −1 = U(P (y, u)) +
e(y) − e(u).

If (v, u) is a horizontal-edge, then e(u) = e(v), U((v, u)) = 0 = D((v, u)). By the inductive hypothesis, D(P (y, u)) =
D(P (y, v)) +D((v, u)) = U(P (y, v)) + e(y) − e(v) +U((v, u)) = U(P (y, u)) + e(y) − e(v) = U(P (y, u)) + e(y) − e(u).

If (v, u) is a down-edge, then e(u) = e(v) − 1, U((v, u)) = 0, and D((v, u)) = U((v, u)) + 1. By the inductive hypothesis, 
D(P (y, u)) =D(P (y, v)) +D((v, u)) = U(P (y, v)) +e(y) −e(v) +U((v, u)) +1 = U(P (y, u)) +e(y) −e(v) +1 = U(P (y, u)) +
e(y) − e(u). �
Lemma 7. Let G be an arbitrary graph. For any shortest path P (y, x) of G from a vertex y to a vertex x the following holds: 
2U(P (y, x)) +H(P (y, x)) = d(y, x) − (e(y) − e(x)).

Proof. By Lemma 6, we have D(P (y, x)) = U(P (y, x)) + e(y) − e(x). Therefore, U(P (y, x)) + H(P (y, x)) + (U(P (y, x)) +
e(y) − e(x)) = U(P (y, x)) +H(P (y, x)) +D(P (y, x)) = d(y, x). Thus, 2U(P (y, x)) +H(P (y, x)) = d(y, x) − (e(y) − e(x)). �

In what follows, we focus on δ-hyperbolic graphs. First, we consider any shortest path between two arbitrary vertices 
and show that any plain on it has width at most 4δ + 1. If a plain is elevated and/or is far enough from the end-vertices of 
the shortest path, then its width is even smaller.

Theorem 2. Let G be a δ-hyperbolic graph and let P (y, x) be a shortest path between any vertex y ∈ V and any vertex x ∈ V .

(i) Any plain (u, ..., v) of P (y, x) has width d(u, v) ≤ 4δ+1. Terraces are absent, if δ = 0, and have width at most 4δ−1, otherwise. 
Plateaus are absent, if δ ≤ 1

2 , and have width at most 4δ − 3, otherwise.
(ii) Any plain (u, ..., v) of P (y, x) with e(u) > min{e(x), e(y)} + δ has width d(u, v) ≤ 2δ, and, if (u, ..., v) is a plateau, it has width 

at most 2δ − 2.
In particular, if δ = 1, then plateaus in any shortest path P (y, x) are absent in eccentricity layers Ck(G) for all k >
min{e(x), e(y)} + 1 − rad(G). Moreover, plateaus are completely absent if δ = 1 and every vertex c in P (y, x), c �= x, has 
e(c) > e(x).

(iii) If there are two vertices u, v ∈ P (y, x) with e(u) = e(v) ≥ min{e(x), e(y)}, d(x, {u, v}) > 2δ and d(y, {u, v}) > 2δ, then 
d(u, v) ≤ 2δ.

Proof. (i) By definition of a plain, terrace, and plateau (u, ..., v), the eccentricity of each vertex z ∈ (u, ..., v) satisfies e(z) =
e(u). In the case of terraces and plateaus, denote by y′ (x′) a vertex of P (y, x) adjacent to u (to v , respectively) but not in 
(u, ..., v). Suppose, by contradiction, that d(u, v) > 4δ + 1. By Corollary 3 applied to u and v , any vertex c ∈ I(u, v) with 
d(u, c) > 2δ and d(c, v) > 2δ has eccentricity e(c) < max{e(u), e(v)} = e(u). The latter contradicts with e(z) = e(u).
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Let (u, ..., v) be a terrace of P (y, x) and, without loss of generality, let e(x′) = e(u) − 1. Suppose, by contradiction, that 
d(u, v) > 4δ, i.e., d(u, x′) > 4δ + 1. By Corollary 3 applied to u and x′ , we again obtain a contradiction with e(z) = e(u). 
Hence, terraces have width at most 4δ. If additionally δ > 0, by contradiction, suppose that d(u, v) = 4δ. Let c ∈ (u, ..., v) be 
a vertex at distance 2δ − 1 from v , i.e., d(c, x′) = 2δ and d(u, c) = 2δ + 1. We apply Lemma 1 to a (u, x′)-subpath of P (y, x)
and to a vertex w ∈ F (c). If d(x′, c) ≤ (w|u)x′ , then e(c) ≤ e(x′) −d(x′, c) + 2δ = e(c) − 1, a contradiction. If d(x′, c) ≥ (w|u)x′ , 
then e(c) ≤ e(u) − d(u, c) + 2δ = e(c) − 1, a contradiction.

Let now (u, ..., v) be a plateau of P (y, x). By maximality of m-segment (u, ..., v) and the definition of a plateau, 
x′, y′ ∈ Ce(u)−1(G). As (y′, u, ..., v, x′) ∩ C≤e(u)−1(G) = {x′, y′}, by Corollary 6, d(x′, y′) ≤ 4δ − 1, implying d(u, v) ≤ 4δ − 3. 
As C≤e(u)−1(G) is convex when δ ≤ 1

2 , plateaus can occur only if δ ≥ 1.
(ii) Without loss of generality, assume that e(x) ≤ e(y), i.e., e(u) > e(x) + δ. By definition of a plain, the eccentricity of 

each vertex z ∈ (u, ..., v) satisfies e(z) = e(u). By contradiction, assume that d(u, v) > 2δ. Let c ∈ (u, ..., v) be a vertex at 
distance 2δ + 1 from u. We apply Lemma 1 to a (u, x)-subpath of P (y, x) containing (u, ..., v) and to a vertex w ∈ F (c). 
If d(x, c) ≤ (w|u)x , then e(u) = e(c) ≤ e(x) + δ, a contradiction. On the other hand, if d(x, c) ≥ (w|u)x , then e(u) = e(c) ≤
e(u) − d(u, c) + 2δ = e(u) − 1, a contradiction.

Let now (u, ..., v) be a plateau of P (y, x). By (i), δ ≥ 1. By contradiction, assume that d(u, v) > 2δ − 2. Apply Lemma 1 to 
a (y′, x)-subpath of P (y, x) containing (u, ..., v) and to a vertex w ∈ F (v). If d(x, v) ≤ (w|y′)x , then e(u) = e(v) ≤ e(x) + δ, a 
contradiction. On the other hand, if d(x, v) ≥ (w|y′)x , then e(v) ≤ e(y′) − d(y′, v) + 2δ = e(v) − 1 − d(u, v) − 1 + 2δ < e(v), 
a contradiction. Consider now the case when δ = 1. By the previous claim, any plateau can occur only at eccentricity layer 
Ck(G) for k ≤ min{e(x), e(y)} + δ − rad(G) = e(x) + 1 − rad(G). Finally, suppose that every vertex c in P (y, x), c �= x, has 
e(c) > e(x) and there is a plateau (u, ..., v) at eccentricity layer Ck(G). By maximality of m-segment (u, ..., v) and the 
definition of a plateau, e(y′) = k − 1 + rad(G) ≤ e(x), a contradiction with e(x) < e(z) for all z ∈ P (y, x).

(iii) Assume d(x, {u, v}) > 2δ and d(y, {u, v}) > 2δ for vertices u, v ∈ P (y, x) with e(u) = e(v). Without loss of generality, 
let d(x, v) ≤ d(x, u) and e(x) ≤ e(y). Consider an arbitrary z ∈ F (v). If d(x, v) ≤ (z|y)x then, by Lemma 1, e(v) ≤ e(x) −
d(x, v) + 2δ < e(x), and a contradiction with e(x) ≤ e(v) arises. Thus, d(x, v) > (z|y)x and, by Lemma 1, d(y, u) ≤ d(y, v) ≤
(z|x)y and e(v) ≤ e(y) −d(y, v) +2δ = e(y) − (d(y, u) +d(u, v)) +2δ. By the triangle inequality, e(v) = e(u) ≥ e(y) −d(y, u). 
Combining the previous two inequalities, we have e(y) − d(y, u) ≤ e(v) ≤ e(y) − d(y, u) − d(u, v) + 2δ. Therefore, d(u, v) ≤
2δ. �

We define a shortest path P (y, x) from a vertex y ∈ V to a vertex x ∈ V to be end-minimal if e(x) is minimal among 
all vertices of P (y, x), that is, all v ∈ P (y, x) satisfy e(x) ≤ e(v). P (y, x) is referred to as strict end-minimal if all v ∈ P (y, x)
with v �= x satisfy e(x) < e(v). Notice that any shortest path from an arbitrary vertex to a closest central vertex is strict 
end-minimal. We turn our focus now to end-minimal shortest paths because any shortest path can be decomposed into 
two end-minimal subpaths. Let v ∈ P (y, x) be a vertex closest to x of minimal eccentricity on shortest path P (y, x). Then 
P (y, x) is represented by end-minimal shortest path P (y, v) joined with (strict) end-minimal shortest path P (x, v).

The following theorem shows that, in an end-minimal shortest path P (y, x) from y to x, all up-hills have bounded 
height, each vertex that is far from x cannot have eccentricity higher than e(y) + δ, and for each vertex c that is far from 
the extremities of P (y, x), all vertices z of P (y, x) which are between y and c and with d(c, z) ≥ 2δ + 1 have eccentricity 
larger than e(c).

Theorem 3. Let G be a δ-hyperbolic graph and let P (y, x) = (y = v0, v1, ..., v p = x) be an end-minimal shortest path from y to x.

(i) Any up-hill (u, ..., v) of P (y, x) has height d(u, v) ≤ δ.
(ii) Any c ∈ P (y, x) with d(c, x) > 2δ satisfies e(c) ≤ e(y) + δ and e(c) ≤ e(y) − d(c, y) + 2δ.
(iii) If d(y, x) > 4δ + 1, then all vertices vi ∈ P (y, x) with i ∈ [2δ + 1, p − 2δ − 1] have e(vi) < min{e(vk) : k ∈ [0, i − 2δ − 1]} (a 

kind of pseudodescending).

Proof. (i) Let (u, ..., v) be an m-segment on P (y, x) which forms an up-hill. By definition of an up-hill, eccentricity increases 
by one along each edge. Therefore, e(v) = e(u) + d(u, v). By Corollary 3 applied to a (u, x)-subpath of P (y, x), and because 
e(x) is minimal on P (y, x), we have e(u) + d(u, v) = e(v) ≤ max{e(u), e(x)} + δ = e(u) + δ. Thus, d(u, v) ≤ δ.

(ii) Let v be an arbitrary vertex from F (c). Assume d(x, c) ≤ (v|y)x . By Lemma 1, e(c) ≤ e(x) − d(x, c) + 2δ < e(x), a 
contradiction with e(c) ≥ e(x). Let now d(x, c) > (v|y)x . Then, by Lemma 1, e(c) ≤ e(y) + δ and e(c) ≤ e(y) − d(c, y) + 2δ.

(iii) By contradiction assume that a vertex vi ∈ P (y, x) with i ∈ [2δ + 1, p − 2δ − 1] has e(vi) ≥ e(vk) for some k ∈
[0, i − 2δ − 1]. Then, d(vk, vi) ≥ 2δ + 1 and d(vi, x) ≥ 2δ + 1, and therefore d(vk, x) ≥ 4δ + 2. By Corollary 3 applied to a 
subpath P (vk, x) of P (y, x), vertex vi ∈ P (vk, x) with d(vk, vi) > 2δ and d(vi, x) > 2δ satisfies e(vi) < max{e(vk), e(x)}. As 
e(x) is minimal on P (vk, x), e(vi) < e(vk), a contradiction. �

Theorem 3 in part (iii) greatly generalizes a result from [5] where it was shown that any vertex v has loc(v) ≤ 2δ + 1
or C(G) ⊆ D(v, 4δ + 1). In particular, we have the following corollary.

Corollary 7. Let G be a δ-hyperbolic graph and P (v, c) be a shortest path from an arbitrary vertex v to an arbitrary central vertex 
c ∈ C(G). Then, either the length of P (v, c) is at most 4δ + 1 or the vertex u of P (v, c) at distance 2δ + 1 from v satisfies e(u) < e(v).
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Fig. 3. End-minimal shortest path P (y, x) is depicted as it travels through the eccentricity layers of G . By Theorem 2 and Theorem 3, any up-hill on P (y, x)
has height at most δ and any plain (including plateau, valley, or terrace) that is above the layer Ce(x)+δ(G) has width at most 2δ. Moreover, by Theorem 2, 
two vertices u, v with the same eccentricity have distance at most 2δ provided they are far (at least 2δ + 1) from both end-vertices y and x.

An illustration of several results for an end-minimal shortest path P (y, x) is shown in Fig. 3.
We next show that any end-minimal shortest path P (y, x) from y to x has no more than 4δ+1 up-edges and horizontal-

edges combined. Moreover, our result implies that, on any strict end-minimal shortest path P (y, x) from an arbitrary 
vertex y to a vertex x, the number of vertices with locality more than 1 does not exceed 4δ. We give also two simple 
conditions which limit this number to 2δ.

Lemma 8. Let G be a δ-hyperbolic graph and P (y, x) be a shortest path from y to x. Then, the following holds:

d(x, y) ≤ e(y) − e(x) +
{

max{0,4δ − 1}, if P (y, x) is strict end-minimal,

4δ + 1, if P (y, x) is end-minimal.

Moreover, for a vertex x′ of P (y, x), d(y, x′) ≤ e(y) − e(x′) + 2δ if e(x′) > e(x) + δ or P (y, x) is end-minimal and d(x, x′) > 2δ.

Proof. Let e(x) ≤ e(c) for all c ∈ P (y, x). By contradiction, assume d(x, y) ≥ e(y) − e(x) + 4δ + 2. As e(y) − e(x) ≥ 0, d(x, y) ≥
4δ + 2. Pick a vertex c ∈ P (x, y) at distance 2δ + 1 from x. Let v be an arbitrary vertex from F (c). If d(x, c) ≤ (v|y)x

then, by Lemma 1, e(c) ≤ e(x) − d(x, c) + 2δ = e(x) − 1, a contradiction with e(c) ≥ e(x). Hence, d(x, c) > (v|y)x and, by 
Lemma 1, e(c) ≤ e(y) − d(y, c) + 2δ. Therefore, d(y, c) ≤ e(y) − e(c) + 2δ ≤ e(y) − e(x) + 2δ. Since c ∈ I(x, y), we obtain 
d(x, y) = d(x, c) + d(c, y) ≤ 2δ + 1 + e(y) − e(x) + 2δ = e(y) − e(x) + 4δ + 1, a contradiction.

In the remaining case, when P (y, x) is strict end-minimal, we apply similar arguments as above but with vertex c at 
distance 
 from x, where 
 = 1 when δ = 0 and 
 = 2δ when δ ≥ 1/2. We have e(y) > e(x) and e(c) > e(x). By contradiction, 
assume d(x, y) ≥ e(y) − e(x) + 4δ. That is, d(x, y) ≥ 4δ + 1. If d(x, c) ≤ (v|y)x then, by Lemma 1, e(c) ≤ e(x) − d(x, c) +
2δ ≤ e(x), a contradiction with e(c) > e(x). If d(x, c) > (v|y)x then, by Lemma 1, e(c) ≤ e(y) − d(y, c) + 2δ. Therefore, 
d(y, c) ≤ e(y) − e(c) + 2δ ≤ e(y) − e(x) − 1 + 2δ. Hence, d(x, y) = d(x, c) + d(c, y) ≤ d(x, c) + e(y) − e(x) + 2δ − 1. That is, 
d(x, y) ≤ e(y) − e(x) + 4δ − 1 when δ > 0 (contradicting our assumption), and d(x, y) ≤ e(y) − e(x) = e(y) − e(x) + 4δ when 
δ = 0.

Let now x′ be a vertex of P (y, x) with e(x′) > e(x) + δ or d(x, x′) > 2δ and P (y, x) is end-minimal. By Lemma 1, either 
e(x′) ≤ e(x) +δ and e(x′) ≤ e(x) −d(x, x′) +2δ holds or e(x′) ≤ e(y) −d(y, x′) +2δ holds. If the former case is true, necessarily, 
P (y, x) is end-minimal, d(x, x′) > 2δ and e(x′) ≤ e(x) − d(x, x′) + 2δ < e(x), contradicting with P (y, x) being end-minimal. In 
the latter case, d(y, x′) ≤ e(y) − e(x′) + 2δ. �
Theorem 4. If G is δ-hyperbolic, then for any shortest path P (y, x) from y to x the following holds:

2U(P (y, x)) +H(P (y, x)) ≤
{

max{0,4δ − 1}, if P (y, x) is strict end-minimal,

4δ + 1, if P (y, x) is end-minimal.

Moreover, for a vertex x′ of P (y, x), 2U(P (y, x′)) +H(P (y, x′)) ≤ 2δ if e(x′) > e(x) + δ or P (y, x) is end-minimal and d(x, x′) > 2δ.

Proof. The proof follows directly from Lemma 7 and Lemma 8. �
Corollary 8. Let G be a δ-hyperbolic graph. Then, on any strict end-minimal shortest path P (y, x) from a vertex y to a vertex x, the 
number of vertices with locality more than 1 does not exceed 4δ. If additionally x ∈ C(G), then the number of vertices with locality 
more than 1 does not exceed max{0, 4δ − 1}.
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Proof. As we go from y to x along P (y, x), every vertex u of P (y, x), except x, is the beginning of an edge (u, v) on P (y, x). 
If an ordered pair (u, v) forms a down-edge, then the vertex u has locality 1 in G . Only when an ordered pair (u, v) forms 
an up-edge or a horizontal-edge on P (y, x), then the vertex u may have locality more than 1 in G . If δ > 0, then any strict 
end-minimal shortest path P (y, x) has no more than 4δ − 1 up-edges and horizontal-edges combined. Hence, together with 
x, there are at most 4δ vertices on P (y, x) with locality more than 1. If δ = 0, then G is a block (and hence, a Helly) graph 
and each of its non-central vertices has locality 1 [13]. Recall that, by definition, the locality of a central vertex is 0. �
Corollary 9. Let G be a δ-hyperbolic graph. Then, on any shortest path P (y, x) between a vertex y and a vertex x, the number of 
vertices with locality more than 1 does not exceed 8δ + 1. If P (y, x) is end-minimal, then the number of vertices with locality more 
than 1 does not exceed 4δ + 2.

Proof. Let P (y, x) be an end-minimal shortest path from y to x. Using Theorem 4 and same arguments as in the proof of 
Corollary 8, we get that at most 4δ + 1 vertices of P (y, x) \ {x} have locality more than 1. Hence, together with x, there are 
at most 4δ + 2 vertices on P (y, x) with locality more than 1.

Let now P (y, x) be an arbitrary shortest path between y and x. Let also v be a vertex from P (y, x) with minimal 
eccentricity closest to x. Then, subpath P (x, v) of P (x, y) is strict end-minimal and subpath P (y, v) of P (y, x) is end-
minimal. There are at most 4δ vertices with locality more than 1 in P (x, v) and there are at most 4δ + 1 vertices with 
locality more than 1 in P (y, v) \ {v}. Thus, P (y, x) has at most 8δ + 1 such vertices. �

These corollaries can be refined in the following way.

Corollary 10. Let P (y, x) be a shortest path from any vertex y to any vertex x. Then, a (prefix) subpath P (y, x′) of P (y, x) has at most 
k vertices with locality more than 1, where

k =
{

2δ, if e(x′) > e(x) + δ,

2δ + 1, if P (y, x) is end-minimal and d(x, x′) > 2δ.

Proof. As, by Theorem 4, 2U(P (y, x′)) + H(P (y, x′)) ≤ 2δ, we can use same arguments as in the proof of Corollary 8 to 
show that in P (y, x′) \ {x′} there are at most 2δ vertices with locality more than 1. It remains only to show that the entire 
P (y, x′) has at most 2δ vertices with locality more than 1 when e(x′) > e(x) + δ. Without loss of generality, we can pick a 
vertex x′ ∈ P (y, x), with e(x′) > e(x) + δ, that is furthest from y. By the choice of x′ , the neighbor x′′ of x′ on P (y, x) that is 
closer to x satisfies e(x′′) = e(x) + δ = e(x′) − 1. Hence, loc(x′) = 1. �

Thus, on any shortest path from an arbitrary vertex to a closest central vertex, there are at most max{0, 4δ − 1} vertices 
with locality more than 1, and only at most 2δ of them are located outside C≤δ(G) and only at most 2δ + 1 of them are at 
distance > 2δ from C(G).

In certain graph classes up-hills and plains are restricted in their location along a shortest path P (y, x) connecting a 
vertex y to a closest central vertex x ∈ C(G). Helly graphs contain no such non-descending shapes, whereas chordal graphs 
and distance-hereditary graphs have no up-hills but plains of width at most 1 may occur [13,15,17]. Furthermore, for every 
vertex y, there is a shortest path P (y, x) from y to any closest central vertex x such that it has at most one plain of width 1, 
and if a plain exists then it is located in layer C1(G). We observe that in hyperbolic graphs even up-hills can occur anywhere 
on any shortest path - it can be close or far from a central vertex or endpoints of the path.

Consider a 2-hyperbolic graph G = (V , E) depicted in Fig. 4. It has two paths (x, u1, u2, ..., u2k+1, y) and (x, v1, v2, ...,
v2k+1, y) of length 2k + 2, a path (w2, w3, ..., w2k) of length 2k − 2, and edges (ui, wi) ∈ E and (wi, vi) ∈ E for each i ∈
[2, 2k]. It has also two paths each of length 
 connecting vertex uk+2 to vertex u as well as vertex vk+2 to vertex v , and two 
paths each of length p > 0 connecting x to x∗ as well as y to y∗ . If 
 = k + p, then diam(G) = 2
 + 2 = d(u, v) = d(x∗, y∗), 
rad(G) = 
 + 2, and C(G) = {uk+2, wk+1, vk+2}. Observe that e(x) = d(x, u) = 
 + k + 2 whereas e(u1) = d(u1, v) = 
 + k + 3
and e(v1) = d(v1, u) = 
 + k + 3. Any shortest (x∗, z)-path where z ∈ C(G) or z ∈ F (x∗) contains either the up-hill (x, u1)

or the up-hill (x, v1). However, both up-hills are arbitrarily far from the center C(G) and far from any furthest vertex in 
F (x∗). Both up-hills also occur arbitrarily far from the starting vertex x∗ of the path. Up-hills also occur on all shortest paths 
between the diametral pair (x∗, y∗).

5. Bounds on the eccentricity of a vertex

In this section, we show that the auxiliary lemmas stated earlier yield several known from [10,16] results on finding a 
vertex with small or large eccentricity, as well as intermediate results regarding the relationship between diameter and ra-
dius. We obtain also new efficient algorithms for approximating all vertex eccentricities in δ-hyperbolic graphs and compare 
them with known results on graphs with τ -thin triangles [11]. We present the following algorithms for approximating all ec-
centricities: a O (δ|E|) time left-sided additive 2δ-approximation, a O (δ|E|) time right-sided additive (4δ+1)-approximation, 
and a O (|E|) time right-sided additive 6δ-approximation.
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Fig. 4. An illustration that in a 2-hyperbolic graph up-hills on each shortest path to the center or to a furthest vertex can occur very far from the center 
and from the endpoints of the path.

But first, we establish some lower and upper bounds on the eccentricity of any vertex based on its distance to either 
C(G) or C≤2δ(G), and vice versa.

5.1. Relationship between eccentricity of a vertex and its distance to C(G) or C≤2δ(G)

In this subsection, we show that the eccentricity of a vertex is closely related to its distance to both C(G) and C≤2δ(G), 
analogous up to O (δ) to that of Helly graphs. Recall that an interval slice Sk(x, y) is the set of vertices {v ∈ I(x, y) : d(v, x) =
k}.

We will need the following lemma which is a consequence of Lemma 1.

Lemma 9. Let G be a δ-hyperbolic graph and let x ∈ V , y ∈ F (x). Any vertex c ∈ Srad(G)+k(y, x), 0 ≤ k ≤ d(x, y) − rad(G), has 
e(c) ≤ rad(G) + 2δ + k. In particular, c ∈ Srad(G)(y, x) has e(c) ≤ rad(G) + 2δ [10,16].

Proof. Let v be any vertex from F (c). If d(x, c) ≤ (v|y)x then, by Lemma 1 and the fact that d(v, x) ≤ d(x, y), we have e(c) =
d(c, v) ≤ d(x, v) −d(x, c) +2δ ≤ d(x, y) − (d(x, y) −d(y, c)) +2δ = rad(G) +2δ +k. On the other hand, if d(x, c) ≥ (v|y)x then, 
by Lemma 1 and the fact that 2rad(G) ≥ d(v, y), we have e(c) = d(c, v) ≤ d(y, v) −d(y, c) +2δ ≤ 2rad(G) −rad(G) −k +2δ =
rad(G) + 2δ − k. �
Theorem 5. Let G be a δ-hyperbolic graph. Any vertex x of G satisfies the following inequalities:

d(x, C≤2δ(G)) + rad(G) + 2δ ≥ e(x) ≥ d(x, C≤2δ(G)) + rad(G).

d(x, C(G)) + rad(G) − 4δ ≤ e(x) ≤ d(x, C(G)) + rad(G).

Proof. Let y ∈ F (x) be a furthest vertex from x, c (c′) be a vertex closest to x in C(G) (C≤2δ(G), respectively). On one 
hand, by the triangle inequality, e(x) = d(x, y) ≤ d(x, c) + d(c, y) ≤ d(x, c) + e(c) = d(x, C(G)) + rad(G) and e(x) = d(x, y) ≤
d(x, c′) + d(c′, y) ≤ d(x, c′) + e(c′) = d(v, C≤2δ(G)) + rad(G) + 2δ. On the other hand, by Lemma 8, d(x, c) ≤ e(x) − e(c) + 4δ. 
Thus, e(x) ≥ d(x, c) + e(c) − 4δ = d(x, C(G)) + rad(G) − 4δ. Furthermore, by Lemma 9, any vertex c∗ ∈ Srad(G)(y, x) satisfies 
e(c∗) ≤ rad(G) + 2δ. Hence, e(x) = d(x, c∗) + d(c∗, y) ≥ d(x, C≤2δ(G)) + rad(G). �

It is known [11] that if G is a τ -thin graph, then for any vertex x ∈ V , d(x, C(G)) + rad(G) − 4τ − 2 ≤ e(x). Applying the 
inequality τ ≤ 4δ from Proposition 1 yields d(x, C(G)) + rad(G) − 16δ − 2 ≤ e(x). Working directly with δ, in Theorem 5, we 
obtained a significantly better bound with δ, which, as δ ≤ τ , also improves the bound known with τ .
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Corollary 11. Let G be a τ -thin graph. Any vertex x satisfies the following inequality:

d(x, C(G)) + rad(G) − 4τ ≤ e(x) ≤ d(x, C(G)) + rad(G).

Let x be an arbitrary vertex with eccentricity e(x) = rad(G) + k for some integer k ≥ 0. By Theorem 5, we have:

k ≥ d(x, C≤2δ(G)) ≥ k − 2δ (1)

k ≤ d(x, C(G)) ≤ k + 4δ (2)

Hence, one obtains a relationship also between the distance from x to C(G) and to C≤2δ(G).

Corollary 12. Let G be a δ-hyperbolic graph and let x ∈ V with e(x) = rad(G) + k. Then, d(x, C≤2δ(G)) ≤ k ≤ d(x, C(G)). Moreover, 
d(x, C≤2δ(G)) = 
 implies d(x, C(G)) ≤ 
 + 6δ.

Proof. Combining equations (1) and (2) yields d(x, C≤2δ(G)) ≤ k ≤ d(x, C(G)). Assume now that d(x, C≤2δ(G)) = 
. By equa-
tion (1), 
 ≥ k − 2δ. By equation (2), d(x, C(G)) ≤ k + 4δ ≤ 
 + 6δ. �

Now, we turn our focus from end-minimal shortest paths to shortest (x, y)-paths wherein y ∈ F (x) and x ∈ F (z) for some 
vertex z ∈ V or when {x, y} is a mutually distant pair.

5.2. Finding a vertex with small or large eccentricity and left-sided additive approximation of all vertex eccentricities

Let {x, y} be a pair of vertices such that y ∈ F (x) and x ∈ F (z) for some vertex z ∈ V . In Lemma 9, we established that 
the eccentricity of vertex cr on any shortest (x, y)-path at distance rad(G) from y has small eccentricity (within 2δ of 
radius). Of more algorithmic convenience, we show here that even a middle vertex cm of any shortest (x, y)-path has small 
eccentricity (within 3δ of radius), and its eccentricity is even smaller (within 2δ of radius) if x ∈ F (y) as well, i.e., when 
{x, y} is a mutually distant pair.

We will need the following lemma from [16].

Lemma 10. [16] Let G be a δ-hyperbolic graph. For every quadruple c, v, x, y ∈ V , d(x, v) − d(x, y) ≥ d(c, v) − d(y, c) − 2δ or 
d(y, v) − d(x, y) ≥ d(c, v) − d(x, c) − 2δ holds.

Interestingly, the distances from any vertex c to two mutually distant vertices give a very good estimation on the eccen-
tricity of c.

Theorem 6. Let G be a δ-hyperbolic graph, and let {x, y} be a mutually distant pair of vertices. Any vertex c ∈ V has max{d(x, c),
d(y, c)} ≤ e(c) ≤ max{d(x, c), d(y, c)} + 2δ. Moreover, any vertex c∗ ∈ S�d(x,y)/2�(x, y) ∪ S�d(x,y)/2�(y, x) has e(c∗) ≤ �d(x, y)/2� +
2δ ≤ rad(G) + 2δ [16]. In particular, diam(G) ≥ d(x, y) ≥ 2rad(G) − 4δ − 1 [10].

Proof. The inequality e(c) ≥ max{d(x, c), d(y, c)} holds for any three vertices by definition of eccentricity. To prove the 
upper bound on e(c) for any c ∈ V , consider a furthest vertex v ∈ F (c). Note that, as x and y are mutually distant, d(x, y) ≥
max{d(x, v), d(y, v)}. By Lemma 10, for every x, y, v, c ∈ V either d(x, v) − d(x, y) ≥ d(c, v) − d(y, c) − 2δ or d(y, v) −
d(x, y) ≥ d(c, v) − d(x, c) − 2δ holds. If the former is true, then d(c, v) ≤ d(x, v) − d(x, y) + d(y, c) + 2δ ≤ d(y, c) + 2δ. If the 
latter is true, then d(c, v) ≤ d(y, v) − d(x, y) + d(x, c) + 2δ ≤ d(x, c) + 2δ. Thus, e(c) ≤ max{d(x, c), d(y, c)} + 2δ.

Moreover, if c∗ is a middle vertex of I(x, y), i.e., c∗ ∈ S�d(x,y)/2�(x, y) ∪ S�d(x,y)/2�(y, x), then e(c∗) ≤ max{d(x, c∗), d(y, c∗)}
+ 2δ = �d(x, y)/2� + 2δ ≤ �2rad(G)/2� + 2δ = rad(G) + 2δ. In particular, since �d(x, y)/2� ≥ e(c∗) − 2δ ≥ rad(G) − 2δ, 
diam(G) ≥ d(x, y) ≥ 2rad(G) − 4δ − 1. �

Furthermore, the eccentricity of a vertex, that is most distant from some other vertex, is close to the distance between 
any two mutually distant vertices.

Lemma 11. Let G be a δ-hyperbolic graph. For any x, y, c ∈ V , and any furthest vertex v ∈ F (c), d(x, y) ≤ e(v) + 2δ. In particular, 
e(v) ≥ diam(G) − 2δ [10,16].

Proof. From the choice of v , necessarily d(c, v) ≥ max{d(y, c), d(x, c}. By Lemma 10, either d(x, v) − d(x, y) ≥ d(c, v) −
d(y, c) − 2δ or d(y, v) − d(x, y) ≥ d(c, v) − d(x, c) − 2δ holds. If the former is true, then d(x, y) ≤ d(x, v) + d(y, c) − d(c, v) +
2δ ≤ d(x, v) + 2δ. If the latter is true, then d(x, y) ≤ d(y, v) + d(x, c) − d(c, v) + 2δ ≤ d(y, v) + 2δ. In either case d(x, y) ≤
max{d(x, v), d(y, v)} + 2δ ≤ e(v) + 2δ, establishing the result. In particular, when d(x, y) = diam(G), then e(v) ≥ diam(G) −
2δ. �
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With Theorem 6 and Lemma 11, one obtains the following corollary known from [10,16].

Corollary 13. [10,16] Let G be a δ-hyperbolic graph. For any vertex x ∈ V , every vertex y ∈ F (x) has e(y) ≥ diam(G) −2δ ≥ 2rad(G) −
6δ − 1.

Of a great algorithmic interest is also the following result.

Corollary 14. Let G be a δ-hyperbolic graph, where z ∈ V , x ∈ F (z), and y ∈ F (x). Any vertex c ∈ S�d(x,y)/2�(x, y) has e(c) ≤ rad(G) +
3δ [10,16]. Moreover, e(c) ≤ �d(x, y)/2� + 4δ.

Proof. Let v ∈ F (c) be a furthest vertex from c. Since y ∈ F (x), d(x, v) ≤ d(x, y). We also have d(x, y) ≤ 2rad(G). If d(x, c) ≤
(v|y)x then, by Lemma 1, e(c) = d(c, v) ≤ d(x, v) − d(x, c) + 2δ ≤ d(x, y) − d(x, c) + 2δ = �d(x, y)/2� + 2δ ≤ rad(G) + 2δ.

On the other hand, if d(x, c) ≥ (v|y)x then, by Lemma 1, e(c) = d(c, v) ≤ d(y, v) − d(y, c) + 2δ. By Corollary 13, 
d(y, c) = �d(x, y)/2� = �e(x)/2� ≥ �(diam(G) −2δ)/2� = �diam(G)/2� −δ. Therefore, e(c) ≤ d(y, v) −d(y, c) +2δ ≤ diam(G) −
�diam(G)/2� + 3δ ≤ rad(G) + 3δ. Thus, e(c) ≤ rad(G) + 3δ. Moreover, by Corollary 13, diam(G) ≤ d(x, y) + 2δ. Hence, 
e(c) ≤ d(y, v) − d(y, c) + 2δ ≤ diam(G) − d(y, c) + 2δ ≤ d(x, y) − d(y, c) + 4δ ≤ �d(x, y)/2� + 4δ ≤ �d(x, y)/2� + 4δ. �

In Section 3, we saw that the diameter in G of any set C≤k(G), k ∈ N , is bounded by 2k + 4δ + 1. In particular, 
diam(C(G)) ≤ 4δ + 1 holds [10]. Note that, in [10], it was additionally shown that all central vertices are close to a mid-
dle vertex c of a shortest (x, y)-path, provided that x is furthest from some vertex and that y is furthest from x. Namely, 
D(c, 5δ + 1) ⊇ C(G) holds. Here, we provide such a result with respect to C≤k(G) for all k ∈N .

Lemma 12. Let G be a δ-hyperbolic graph, and let z ∈ V , x ∈ F (z), and y ∈ F (x). Any middle vertex c ∈ S�d(x,y)/2�(x, y) ∪
S�d(x,y)/2�(y, x) satisfies D(c, 5δ + 1 + k) ⊇ C≤k(G). In particular, D(c, 5δ + 1) ⊇ C(G) [10].

Proof. Consider an arbitrary vertex u ∈ C≤k(G). By Corollary 1, d(c, u) ≤ max{d(x, u), d(y, u)} − min{d(x, c), d(y, c)} +
2δ. As e(u) ≤ rad(G) + k, max{d(x, u), d(y, u)} ≤ rad(G) + k holds. As c is a middle vertex of a shortest (x, y)-path, 
min{d(x, c), d(y, c)} = �d(x, y)/2�. Since x ∈ F (z), by Corollary 13, e(x) = d(x, y) ≥ 2rad(G) − 6δ − 1. Hence, d(c, u) ≤
rad(G) + k − �(2rad(G) − 6δ − 1)/2� + 2δ ≤ 5δ + 1 + k. �

In [11], it was proven that if G is a τ -thin graph, then any middle vertex c of any shortest path P (x, y) between two 
mutually distant vertices x and y satisfies D(c, k + 2τ + 1) ⊇ C≤k(G). Applying the inequality τ ≤ 4δ from Proposition 1 to 
this result, one obtains D(c, k + 8δ + 1) ⊇ C≤k(G). The latter result can be improved working directly with δ.

Lemma 13. Let G be a δ-hyperbolic graph, and let {x, y} be a mutually distant pair. Any middle vertex c ∈ S�d(x,y)/2�(x, y) ∪
S�d(x,y)/2�(y, x) satisfies D(c, 4δ + 1 + k) ⊇ C≤k(G). In particular, D(c, 4δ + 1) ⊇ C(G).

Proof. The proof is analogous to that of Lemma 12. However, since x, y are mutually distant, by Theorem 6, d(x, y) ≥
2rad(G) − 4δ − 1. Hence, for any u ∈ C≤k(G), d(c, u) ≤ rad(G) + k − �(2rad(G) − 4δ − 1)/2� + 2δ ≤ 4δ + 1 + k. �

Thus, combining this with the result from [11], we get D(c, min{4δ(G), 2τ (G)} + 1 + k) ⊇ C≤k(G) for any graph G .
There are several algorithmic implications of the results of this subsection. For an arbitrary connected graph G = (V , E)

and a given vertex z ∈ V , a most distant from z vertex x ∈ F (z) can be found in linear (O (|E|)) time by a breadth-first-search
B F S(z) started at z. A pair of mutually distant vertices of a δ-hyperbolic graph G = (V , E) can be computed in O (δ|E|) total 
time as follows. By Lemma 11, if x is a most distant vertex from an arbitrary vertex z and y is a most distant vertex from 
x, then d(x, y) ≥ diam(G) − 2δ. Hence, using at most O (δ) breadth-first-searches, one can generate a sequence of vertices 
x := v1, y := v2, v3, . . . vk with k ≤ 2δ + 2 such that each vi is most distant from vi−1 (with v0 = z) and vk , vk−1 are 
mutually distant vertices (the initial value d(x, y) ≥ diam(G) − 2δ can be improved at most 2δ times).

Thus, by Theorem 6, Lemma 11, Corollary 14, Lemma 12, and Lemma 13, we get the following additive approximations 
for the radius and the diameter of a δ-hyperbolic graph G .

Corollary 15. Let G = (V , E) be a δ-hyperbolic graph.

(i) [10,16] There is a linear (O (|E|)) time algorithm which finds in G a vertex c with eccentricity at most rad(G) + 3δ and a vertex v
with eccentricity at least diam(G) − 2δ. Furthermore, C(G) ⊆ D(c, 5δ + 1) holds.

(ii) There is an almost linear (O (δ|E|)) time algorithm which finds in G a vertex c with eccentricity at most rad(G) + 2δ [16]. 
Furthermore, C(G) ⊆ D(c, 4δ + 1) holds.
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In a graph G where vertex degrees and the hyperbolicity δ(G) are bounded by constants, the entire center C(G) can 
be found in linear time by running a breadth-first-search from each vertex of D(c, 5δ + 1) and selecting among them the 
vertices with smallest eccentricity. In this case, D(c, 5δ + 1) contains only a constant number of vertices.

Corollary 16. Let G be a δ-hyperbolic graph with maximum vertex degree �(G). A vertex c with C(G) ⊆ D(c, 5δ + 1) can be found in 
O (|E|) time and the center C(G) can be computed in O (�(G)5δ+1|E|) time [10]. A vertex c with C(G) ⊆ D(c, 4δ + 1) can be found in 
O (δ|E|) time and the center C(G) can be computed in O (�(G)4δ+1|E|) time. If the degrees of vertices and the hyperbolicity of G are 
uniformly bounded by a constant, then C(G) can be found in total linear time [10,16].

By Theorem 6, we get also the following left-sided additive approximations of all vertex eccentricities. Let {x, y} be a 
mutually distant pair of vertices of G . For every vertex v ∈ V , set ê(v) := max{d(x, v), d(y, v)}.

Corollary 17. Let G = (V , E) be a δ-hyperbolic graph. There is an algorithm which in total almost linear (O (δ|E|)) time outputs for 
every vertex v ∈ V an estimate ê(v) of its eccentricity eG(v) such that eG(v) − 2δ ≤ ê(v) ≤ eG(v).

If the hyperbolicity δ(G) of G is known in advance, we can transform ê into a right-sided additive 2δ-approximation 
by setting ê(v) := max{d(x, v), d(y, v)} + 2δ. This approach generalizes a recently discovered eccentricity approximation for 
distance-hereditary graphs [15] (the hyperbolicity of any distance-hereditary graph is at most 1). Unfortunately, if δ(G)

is not known in advance, the best to date algorithm for computing δ(G) has complexity O (n3.69) and relies on some 
(rather impractical) matrix multiplication results [19] (see also [8] for some recent approximation algorithms). In the next 
subsection, we will give some right-sided additive approximations of all vertex eccentricities which do not assume any 
knowledge of δ(G).

5.3. Right-sided additive approximations of all vertex eccentricities

In what follows, we illustrate two right-sided additive eccentricity approximations for all vertices using a notion of 
eccentricity approximating spanning tree introduced in [25] and investigated in [11,14,17,18]. We get a O (|E|) time right-
sided additive (6δ)-approximations and a O (δ|E|) time right-sided additive (4δ + 1)-approximations.

A spanning tree T of a graph G is called an eccentricity k-approximating spanning tree if for every vertex v of G eT (v) ≤
eG(v) +k holds [25]. All (α1, �)-metric graphs (including chordal graphs and the underlying graphs of 7-systolic complexes) 
admit eccentricity 2-approximating spanning trees [17]. An eccentricity 2-approximating spanning tree of a chordal graph 
can be computed in linear time [14]. An eccentricity k-approximating spanning tree with minimum k can be found in 
O (|V ||E|) time for any graph G [18]. It is also known [11] that if G is a τ -thin graph, then G admits an eccentricity 
(2τ )-approximating spanning tree constructible in O (τ |E|) time and an eccentricity (6τ + 1)-approximating spanning tree 
constructible in O (|E|) time. Applying the inequality τ ≤ 4δ from Proposition 1, we get that every δ-hyperbolic graph admits 
an eccentricity 8δ-approximating spanning tree constructible in O (δ|E|) time and an eccentricity (24δ + 1)-approximating 
spanning tree constructible in O (|E|) time. Both these results can be significantly improved working directly with δ.

Theorem 7. Let G be a δ-hyperbolic graph. If c is a middle vertex of any shortest (x, y)-path between a pair {x, y} of mutually distant 
vertices of G and T is a B F S(c)-tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤ eG(v) + 4δ + 1. That is, G admits an 
eccentricity (4δ + 1)-approximating spanning tree constructible in O (δ|E|) time.

Proof. The eccentricity in T of any vertex v can only increase compared to its eccentricity in G . Hence, eG(v) ≤ eT (v). 
By the triangle inequality and the fact that all distances from vertex c are preserved in T , eT (v) ≤ dT (v, c) + eT (c) =
dG(v, c) + eG(c). We know that eG(v) ≥ max{dG(y, v), dG(x, v)}. By Corollary 1, also dG (v, c) − max{dG (y, v), dG(x, v)} ≤
2δ − min{dG(y, c), dG(x, c)} holds. Since c is a middle vertex of a shortest (x, y)-path, necessarily min{dG(y, c), dG(x, c)} ≥
�dG(x, y)/2� and, by Theorem 6, eG(c) ≤ �dG (x, y)/2� + 2δ. Combining all these, we get

eT (v) − eG(v) ≤ dG(v, c) + eG(c) − eG(v)

≤ dG(v, c) − max{dG(y, v),dG(x, v)} + eG(c)

≤ 2δ − min{dG(y, c), dG(x, c)} + eG(c)

≤ 2δ − �dG(x, y)/2� + eG(c)

≤ 2δ − �dG(x, y)/2� + �dG(x, y)/2� + 2δ

≤ 4δ + 1. �
We next give a O (|E|) time right-sided additive eccentricity (6δ + 1 − k)-approximation for any constant integer k, 

0 ≤ k ≤ 2δ.
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Theorem 8. Let G be a δ-hyperbolic graph and k be an integer from [0, 2δ]. Let u0, u1, . . . , uk+2 be a sequence of vertices of G such 
that u0 is an arbitrary start vertex and each ui+1 is a vertex furthest from ui (0 ≤ i ≤ k + 1). If c is a middle vertex of any shortest 
(uk+1, uk+2)-path and T is a B F S(c)-tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤ eG(v) + 6δ + 1 − k. That is, G admits 
an eccentricity (6δ + 1 − k)-approximating spanning tree constructible in O (k|E|) time.

Proof. Recall that if {uk+1, uk+2} or an earlier pair {ui+1, ui+2} (i < k) is a mutually distant pair then, by Theorem 7, 
T is an eccentricity (4δ + 1)-approximating spanning tree. Therefore, in what remains, we assume that dG (ui+1, ui+2) ≥
dG(ui, ui+1) + 1 for all i ≤ k. Hence, by Corollary 13, dG(uk+1, uk+2) ≥ dG(u1, u2) + k ≥ diam(G) − 2δ + k.

We first claim that a middle vertex c of any shortest (uk+1, uk+2)-path satisfies eG (c) ≤ �dG (uk+1, uk+2)/2� + 4δ − k. 
Let t ∈ F (c), i.e., eG(c) = dG(c, t). By Lemma 1, either dG(c, t) ≤ dG (uk+1, t) − dG(uk+1, c) + 2δ or dG(c, t) ≤ dG (uk+2, t) −
dG(uk+2, c) + 2δ. If the former is true then, since dG (uk+1, t) ≤ dG(uk+1, uk+2), we have eG(c) ≤ dG(uk+1, t) − dG(uk+1, c) +
2δ ≤ dG (uk+1, uk+2) − d(uk+1, c) + 2δ ≤ �dG (uk+1, uk+2)/2� + 2δ. If the latter is true then, since dG (uk+1, uk+2) ≥ diam(G) −
2δ + k ≥ dG(uk+2, t) − 2δ + k, we get eG(c) ≤ dG (uk+2, t) − dG(uk+2, c) + 2δ ≤ dG(uk+1, uk+2) + 2δ − k − dG(uk+2, c) + 2δ ≤
�dG(uk+1, uk+2)/2� + 4δ − k. As k ≤ 2δ, in either case, eG(c) ≤ �dG (uk+1, uk+2)/2� + 4δ − k, establishing the claim.

Set now x := uk+1 and y := uk+2. The remainder of the proof follows the proof of Theorem 7 with one adjust-
ment: replace the application of Theorem 6 which yields eG(c) ≤ �dG (x, y)/2� + 2δ with our claim which yields eG (c) ≤
�dG(x, y)/2� + 4δ − k. Hence, eT (v) − eG(v) ≤ 2δ − �dG(x, y)/2� + �dG (x, y)/2� + 4δ − k ≤ 6δ + 1 − k. �

Theorem 8 generalizes Theorem 7 (when k = 2δ, we obtain Theorem 7). Also, when k = 1, we get an eccentricity (6δ)-
approximating spanning tree constructible in O (|E|) time.

Note that the eccentricities of all vertices in any tree T = (V , U ) can be computed in O (|V |) total time. It is a folklore 
by now that for trees the following facts are true: (1) The center C(T ) of any tree T consists of one vertex or two adjacent 
vertices; (2) The center C(T ) and the radius rad(T ) of any tree T can be found in linear time; (3) For every vertex v ∈ V , 
eT (v) = dT (v, C(T )) + rad(T ). Hence, using B F S(C(T )) on T one can compute dT (v, C(T )) for all v ∈ V in total O (|V |) time. 
Adding now rad(T ) to dT (v, C(T )), one gets eT (v) for all v ∈ V . Consequently, by Theorem 7 and Theorem 8, we get the 
following additive approximations for the vertex eccentricities in δ-hyperbolic graphs.

Corollary 18. Let G = (V , E) be a δ-hyperbolic graph.

(i) There is an algorithm which in total linear (O (|E|)) time outputs for every vertex v ∈ V an estimate ê(v) of its eccentricity eG(v)

such that eG(v) ≤ ê(v) ≤ eG(v) + 6δ.
(ii) There is an algorithm which in total almost linear (O (δ|E|)) time outputs for every vertex v ∈ V an estimate ̂e(v) of its eccentricity 

eG(v) such that eG(v) ≤ ê(v) ≤ eG(v) + 4δ + 1.

As δ(G) ≤ τ (G) for any graph G , Corollary 18(i) improves the corresponding result from [11]. Also, combining Corol-
lary 18(ii) with the corresponding result from [11], we get that, for any graph G , there is an algorithm which in 
total almost linear (O (δ|E|)) time outputs for every vertex v ∈ V an estimate ê(v) of its eccentricity eG(v) such that 
eG(v) ≤ ê(v) ≤ eG(v) + min{4δ(G) + 1, 2τ (G)}.
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Appendix. List of notations

G = (V , E) a graph
〈S〉 subgraph induced by S ⊆ V

d(u, v) distance from u to v
d(u, S) smallest distance from u to a vertex of set S

e(v) eccentricity of v
I(u, v) interval (set of vertices on a shortest path between u and v)

Sk(u, v) interval slice (set of vertices on I(u, v) that are at distance k from vertex u)
D(S, r) disk (set of vertices with distance at most r to S)

F (v) set of vertices furthest from v
(x|y)z Gromov product of x, y with respect to z
rad(G) radius

diam(G) diameter
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δ(G) hyperbolicity
τ (G) thinness
�(G) maximum vertex degree
C(G) center

C≤k(G) set of vertices with eccentricity at most rad(G) + k
Ck(G) set of vertices with eccentricity equal to rad(G) + k
P (y, x) shortest path from y to x

U(P (y, x)) number of up-edges on P (y, x)
H(P (y, x)) number of horizontal-edges on P (y, x)
D(P (y, x)) number of down-edges on P (y, x)
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