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Routing in networks
• A routing scheme is a mechanism to deliver a package/message 

from one node to another node in the network
• Each node knows some information about the network, stored 

locally. 
• Package has a head with information about the destination (its 

address, some other useful information) 
• A node having a package needs to decide if the package reached 

the destination and, if not, to which neighbor to forward the package. 
• To make this decision the current node uses own information stored 

locally, information from head of the package, and perhaps local
information stored at neighbors.  

• The purpose of routing is to let message generated by the source
node reach the destination node. 
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This is the message head.
This message is generated by s.

Its destination is t.
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Parameters of a Routing Scheme 
• What information and how much is stored locally at each 

node. 
• What information and how much is stored in the head of 

a message. 
• How current node decides to choose a neighbor to 

forward the message towards the destination
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• Each routing scheme generates a routing path for a 
given source and a given destination.  
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Stretch factors of a Routing Scheme 
• Each routing scheme generates a routing path R(x,y) for 

a given source x and a given destination y.  
• The goodness of a routing scheme is measured by how 

much routing paths differ from shortest paths. 

1. Additive max stretch factor:

2. Additive average  stretch factor:
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3. Multiplicative max stretch factor:

4. Multiplicative average  stretch 
factor:
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Know in wireless networks Greedy Routing and
Routing with Guaranteed Delivery

• Nodes know their Euclidean coordinates

• Two typical greedy routing schemes:
– geographic routing

• a neighbor which is geographically 
closest to destination is chosen.

– Compass routing
• a neighbor v such that angle vut is 

smallest is chosen. 
– Both strategies do not guarantee delivery

• Routing that guarantees delivery
– Planar connection graph is constructed
– Face routing is by traversing faces towards destination
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Our basic idea
• Greedy routing with the aid of a spanning tree information.
• Assign pseudo-coordinates to nodes using a spanning tree. 
• Possible information obtained from a spanning tree and 

stored locally at a vertex:
– Distance Labels (O(log n) digits) or
– Ancestry information, i.e., DFS-intervals (2 digits)

According to [Peleg’99], to each vertex of a  n-
vertex tree can be assigned O(log n) digits such 
that the distance in tree  between any two vertices 
x and y can be computed in constant time by 
merely inspecting the digits assigned to x and y. 
Each digit has at most log n bits. These digits will 
become local information stored at each vertex as 
well as the address of each vertex put in the head 
of a message.
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Why we use a spanning tree?
• Easy to construct and maintain.
• There exist distributed, self-stabilized algorithms for 

constructing spanning trees.
• Not hard to calculate the tree distance between two 

vertices 
– in constant time using only O(log n) digits per vertex [Peleg’99]

• Easy to tell the ancestry relationship between any two  
vertices.
– In constant time using only DFS-intervals

Given a graph, 
– build a spanning tree, 
– root the tree at a  node,
– find DFS-intervals in that tree
– assign to each node of graph  

its DFS-interval obtained
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TDGR strategy (previous results)

Additive r-
carcass:

Each vertex knows its neighbors and O(logn) digits from 
the tree
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IGR strategy (new)

Each vertex knows its neighbors and 2 digits from the 
tree

Additive r-frame:
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Carcass vs Frame

A chordal graph with an additive 
0-frame having no 0-carcass.

O(logO(log n) digits stored per vertexn) digits stored per vertex 2 digits stored per vertex2 digits stored per vertex

The column-wise Hamiltonian 
path for the rectilinear grid is a 
0-carcass but not a 0-frame.

Different criteria to moveDifferent criteria to move
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k-Localized strategies
• Now, we assume that each vertex can gather information from 
vertices at distance at most k in G. 
• k=1 is the previous case.
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Our Results
• We proved that greedy routing with the aid of a spanning 

tree can produce near optimal paths in some special 
graph families, such as:

– Rectilinear Grids
– Graphs admitting locally-connected spanning trees (i.e., dually 

chordal graphs, strongly chordal graphs, interval graphs)
– k-chordal graphs 
– chordal bipartite graphs 
– AT-free graphs
– Tree-length λ graphs
– δ-hyperbolic graphs

• In the following we highlight some interesting results.
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Graphs admitting locally connected 
spanning trees

Definition: We say that a spanning tree T of G is 
locally connected if the closed neighborhood 
NG[v] of any vertex v of G induces a subtree in T
(i.e., T ∩ NG[v] is a connected subgraph of T.)

Theorem: If T is a locally connected spanning tree 
of a graph G, then T is an additive 0-carcass and 
an additive 0-frame of G.

Known fact: Dually chordal graphs are exactly the 
graphs having locally connected spanning trees



Algorithmic Lab,  Kent State University

How to find a locally connected spanning 
tree in a Dually Chordal graph
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• w(e) :=  # of 
triangles edge e  
belongs to

• Find maximum 
weight spanning 
tree

Definition:

A dually chordal graph 
is the intersection graph 
of the maximal cliques 
of a chordal graph.
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Navigating in a Dually Chordal Graph

Additive r-
carcass:

Each vertex knows its neighbors and O(logn) digits from 
the tree

Dually chordal graphs are exactly the graphs having locally connected spanning trees
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Navigating in a Dually Chordal Graph

Each vertex 
knows its 
neighbors 
and 2 digits 
from the 
tree

Additive r-frame:

Dually chordal graphs are exactly the graphs having locally connected spanning trees

ss

ss
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Frames for k-chordal graphs

Definition: A graph G is called k-chordal if it has no 
induced cycles of size greater than k. When k=3, 
G is a chordal graph.

Theorem: Any BFS-tree T of a k-chordal graph G is 
an additive (k-1)-frame.

Theorem: Any LexBFS-tree T of a chordal graph G
is an additive 1-frame.
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Frames for chordal bipartite graphs

Definition: A graph G is called chordal bipartite if it 
is bipartite and has no induced cycles of size 
greater than 4.

Theorem: Every chordal bipartite graph G admits an 
additive 0-frame
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Frames for AT-free graphs
Definition: A graph is called AT-free if it does not 

have an asteroidal triple (i.e., a set of three 
vertices such that there is a path between any 
pair of them avoiding the closed neighborhood 
of the third).

Theorem: Any BFS-tree T of an AT-free graph G is 
an additive 2-frame.

An asteroid triple
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Frames for tree-length λ graphs
Definition: A graph G is a tree-length λ graph if and only if G admits a 

tree-decomposition into bags of diameter at most λ. The tree-
decomposition is a tree T whose vertices, called bags, are subsets of 
V(G) such that:
– UXV(T)X=V(G);
– For all uv E(G), there exists X V(T) such that u,v X; and
– For all X, Y, Z V(T), if Y is on the path from X to Z in T then X∩Z  Y.

Theorem: Any BFS-tree T of G is a λ–localized additive 5λ-frame.

TreeTree--length 2 graphlength 2 graph

Tree Tree --decompositiondecomposition
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Frames for δ-hyperbolic graphs
Definition: G is a δ-hyperbolic graph if and only if 

for any four vertices u,v,w,x, the two larger of the 
distance sums dG(u,v)+dG(w,x), dG(u,w)+dG(v,x), 
dG(u,x)+dG(v,w) differ by at most 2δ.

Theorem: Any BFS-tree T of G is a 4δ -localized 
additive 8δ-frame.

Note that hyperbolic graphs are used to model some topological 
properties of the Internet.
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Some Lower Bounds for Frames and 
Carcasses of Tree-length λ Graphs

• For any λ≥4, there exists a tree-length λ
graph G with n vertices for which no 

–localized additive 
–frame exists.

• For any λ≥6, there exists a tree-length λ
graph G with n vertices for which no

–localized additive 
–carcass exists
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Unit Disk graphs

• Unit Disk Graphs (UDGs) are the intersection 
graphs of equal sized circles in the plane.

Model 
wireless 
networks
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Experimental results in UDGs
Fix the number of vertices, change density

Average Hop Stretch Factor
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Experimental results in UDGs
Fix the number of vertices, change locality
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Thank YouThank You


