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Based on solid theoretical foundations, we present
strong evidence that a number of real-world networks,
taken from different domains (such as Internet mea-
surements, biological data, web graphs, and social and
collaboration networks) exhibit tree-like structures from
a metric point of view. We investigate a few graph param-
eters, namely, the tree-distortion and the tree-stretch, the
tree-length and the tree-breadth, Gromov’s hyperbolicity,
the cluster-diameter and the cluster-radius in a layering
partition of a graph; such parameters capture and quan-
tify this phenomenon of being metrically close to a tree.
By bringing all those parameters together, we provide
efficient means for detecting such metric tree-like struc-
tures in large-scale networks. We also show how such
structures can be used. For example, they are helpful in
efficient and compact encoding of approximate distance
and almost shortest path information and in quick and
accurate estimation of diameters and radii of those net-
works. Estimating the diameter and estimating the radius
of a graph (or distances between arbitrary vertices) are
fundamental primitives in many network and graph min-
ing algorithms. © 2015 Wiley Periodicals, Inc. NETWORKS,
Vol. 67(1), 49-68 2016
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1. INTRODUCTION

Large networks are everywhere. Can we understand their
structure and exploit it? For example, understanding key
structural properties of large-scale data networks is crucial
for analyzing and optimizing their performance, as well
as improving their reliability and security [59]. In prior
empirical and theoretical studies, researchers have mainly
focused on features such as small world phenomenon, power
law degree distribution, navigability, and high clustering
coefficients (see [8, 9, 12, 27, 40, 53, 54, 57, 70]). Those nice
features were observed in many real-world complex networks
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and graphs arising in Internet applications, in the biological
and social sciences, and in chemistry and physics. Although
those features are interesting and important, as noted in [59],
the impact of intrinsic geometric and topological features
of large-scale data networks on performance, reliability, and
security is of much greater importance (see also [10, 64]).

Recently, a few papers have explored geometric charac-
teristics of real-world networks, namely the hyperbolicity
(sometimes called also the global curvature) of the network
(see, e.g., [4,21,29,51, 59, 67]). It was shown that a num-
ber of data networks, including Internet application networks,
web networks, collaboration networks, social networks, and
others, have small hyperbolicity. It has been suggested [59]
that the property, observed in real-world networks, in which
traffic between nodes tends to go through a relatively small
core of the network, as if the shortest path between them
is curved inwards, may be due to global curvature of the
network. Furthermore, Kennedy et al. [51] proposes that
“hyperbolicity in conjunction with other local characteristics
of networks, such as the degree distribution and clustering
coefficients, provide a more complete unifying picture of
networks, and helps classify in a parsimonious way what
is otherwise a bewildering and complex array of features
and characteristics specific to each natural and man-made
network.”

The hyperbolicity of a graph/network can be viewed as
a measure of how close a graph is to a tree metrically; the
smaller the hyperbolicity of a graph, the closer it is metri-
cally to a tree. Generally, it is known [65] that a graph G is
metrically a tree if and only if G is a block graph, that is,
each biconnected component of G is a complete graph. As
many real-world networks have a highly connected (dense)
core with “whiskers” or “tendrils” that are connected by short
paths through the core [57, 67] (i.e., those networks can be
viewed as dense subgraphs and subtrees glued together), it
is natural to analyze how close they are to trees (or, equiva-
lently, to block graphs) metrically. Recent empirical results on
hyperbolicity [4, 21, 29, 51, 59, 67] suggest that many real-
world complex networks and graphs may possess tree-like
structures from a metric point of view.

In this article, we substantiate this claim through anal-
ysis of a collection of real data networks. We investigate



a few more, recently introduced graph parameters, namely,
tree-distortion and tree-stretch, tree-length and tree-breadth,
Gromov’s hyperbolicity, cluster-diameter and cluster-radius
inalayering partition of a graph. All these parameters attempt
to capture and quantify this phenomenon of being metrically
close to a tree and can be used to measure metric tree-
likeness of a real-world network. Recent advances in theory
(see appropriate sections for details) allow us to calculate or
accurately estimate those parameters for sufficiently large
networks. By examining topologies of numerous publicly
available networks, we demonstrate the existence of metric
tree-like structures in a wide range of large-scale networks,
from communication networks to various forms of social and
biological networks.

Throughout this article, we discuss these parameters
and recently established relationships between them for
unweighted and undirected graphs. It turns out that all these
parameters are at most constant or logarithmic factors apart
from each other. Hence, a constant bound on one of them
translates in a constant or almost constant bound on another.
We say that a graph with n vertices and m edges has a tree-
like structure from a metric point of view (equivalently, is
metrically tree-like) if any one of those parameters is a small
constant, it is not larger than log, (n 4 m).

Recently, Adcock et al. [4] pointed out that “although
large informatics graphs such as social and information net-
works are often thought of as having hierarchical or tree-like
structure, this assumption is rarely tested, and it has proven
difficult to exploit this idea in practice; ... it is not clear
whether such structure can be exploited for improved graph
mining and machine learning ....”

In this article, by bringing all those parameters together,
we provide efficient means for detecting such metric tree-
like structures in large-scale networks. We also show how
such structures can be used. For example, they are helpful in
efficient and compact encoding of approximate distance and
almost shortest path information and in quick and accurate
estimation of diameters and radii of those networks. Esti-
mating the diameter and estimating the radius of a graph
(or distances between arbitrary vertices) are fundamental
primitives in many network and graph mining algorithms.

Graphs that are metrically tree-like have many algorithmic
advantages. They allow for efficient approximate solutions
for a number of optimization problems. For example, they
admit a PTAS for the Traveling Salesman Problem [56], have
an efficient approximate solution for the problem of covering
and packing by balls [26], admit additive sparse spanners
[24,33] and collective additive tree-spanners [36], enjoy
efficient and compact approximate distance [24,42] and
routing [24, 32] labeling schemes, and have efficient algo-
rithms for quick and accurate estimations of diameters and
radii [23]. We elaborate more on these results in appropriate
sections.

For the first time, metric parameters such as tree-length
and tree-breadth, tree-distortion and tree-stretch, cluster-
diameter and cluster-radius are examined, and the algorithmic
advantages of having those parameters bounded by small
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constants are discussed for such a wide range of large-scale
networks.

This article is structured as follows. In Section 2, we give
notation and basic notions used in the article. In Section 3,
we describe our graph datasets. The next four sections are
devoted to analysis of corresponding parameters measuring
metric tree-likeness of our graph datasets: cluster-diameter
and cluster-radius in Section 4; hyperbolicity in Section 5;
tree-distortion in Section 6; tree-breadth, tree-length, and
tree-stretch in Section 7. In each section, we first give theo-
retical background on the parameter(s) and then present our
experimental results. Additionally, an overview of implica-
tions of those results is provided. In Section 8, we further
discuss the algorithmic advantages when a graph is metri-
cally tree-like. Finally, in Section 9, we give some concluding
remarks.

2. NOTATION AND BASIC NOTIONS

All graphs in this article are connected, finite, unweighted,
undirected, loopless, and without multiple edges. For a graph
G = (V,E), we use n and |V| interchangeably to denote the
number of vertices in G. Also, we use m and |E| to denote
the number of edges. The length of a path from a vertex v to
a vertex u is the number of edges in the path. The distance
dg(u,v) between vertices u and v is the length of the shortest
path connecting # and v in G. The ball B, (s, G) of a graph
G centered at vertex s € V and with radius r is the set of all
vertices with distance no more than r from s (i.e., B, (s, G) =
{veV:ds(,s) <r}). Weomit the graph name G and write
B, (s) if the context is about only one graph.

The diameter diam(G) of a graph G = (V, E) is the largest
distance between a pair of vertices in G, that is, diam(G) =
maxyyev dg(u, v). The eccentricity of a vertex v, denoted by
ecc(v), is the largest distance from that vertex v to any other
vertex, that is, ecc(v) = max,cy dg(v, u). The radius rad(G)
of agraph G = (V, E) is the minimum eccentricity of a vertex
in G, that is, rad(G) = min,cymax,cydg(v, u). The center
C(G) = {c € V :ecc(c) =rad(G)} of a graph G = (V,E) is
the set of vertices with minimum eccentricity.

Definitions of graph parameters measuring metric tree-
likeness of a graph, as well as notions and notation local to a
section, are given in appropriate sections.

3. DATASETS

Our datasets come from different domains such as Internet
measurements, biological datasets, web graphs, social, and
collaboration networks. Table 1 shows basic statistics of our
graph datasets. Each graph represents the largest connected
component of the original graph as some datasets consist of
one large connected component and many very small ones.

3.1. Biological Networks

PPI. This is a protein—protein interaction network involv-
ing the yeast Saccharomyces Cerevisiae [49]. Each vertex
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TABLE 1. Graph datasets and their parameters: number of vertices,
number of edges, diameter, radius

G=(V,E) 4] |E| diam(G) rad(G)
PPI [49] 1,458 1,948 19 11
Yeast [15] 2,224 6,609 11 6
DutchElite [30] 3,621 4,311 22 12
EPA [1] 4,253 8,953 10 6
EVA [60] 4,475 4,664 18 10
California [52] 5,925 15,770 13 7
Erdos [11] 6,927 11,850 4 2
Routeview [2] 10,515 21,455 10 5
Homo [68] 16,711 115,406 10 5
AS_CAIDA_20071105 [19] 26475 53,381 17 9
Dimes 3/2010 [66] 26,424 90, 267 8 4
Aqualab 12/2007-09/2008 [20] 31,845 143,383 9 5
AS_CAIDA_20120601 [17] 41,203 121,309 10 5
itdk0304 [18] 190,914 607,610 26 14
DBLB-coauth [72] 317,080 1,049, 866 23 12
Amazon [72] 334,863 925,872 47 24

represents a protein with an edge representing an interaction
between two proteins. Self loops have been removed from the
original dataset. The dataset has been analyzed and described
in [49].

Yeast. This is a protein—protein interaction network involv-
ing budding yeast [15]. Each vertex represents a protein with
an edge representing an interaction between two proteins.
Self loops have been removed from the original dataset. The
dataset has been analyzed and described in [15].

Homo. This is a dataset of protein and genetic interac-
tions in Homo Sapiens (Humans) [68]. Each vertex represents
a protein or a gene. An edge represents an interaction
between two proteins/genes. Parallel edges, representing
different resources for an interaction, have been removed.
The dataset is obtained from BioGRID, a freely accessi-
ble database/repositiory of physical and genetic interactions
available at http://www.thebiogrid.org. The dataset has been
analyzed and described in [68].

3.2.  Social and Collaboration Networks

DutchElite. This is data on the administrative elite in the
Netherlands collected and analyzed by De Volkskrant and
Wouter de Nooy [30]. It is a 2-mode network data represent-
ing membership in the administrative and organization bodies
in the Netherlands in 2006. A vertex represents either a per-
son or an organization. An edge exists between two vertices
if the person vertex belongs to the organization vertex.

EVA. This is a network of interconnections between cor-
porations where an edge exists between two companies
(vertices) if one of them is the owner of the other company
[60].

Erdos. This is a collaboration network of mathematician
Paul Erdos [11]. Each vertex represents an author with an
edge representing a paper co-authorship between two authors.

DBLB-coauth. This is a co-authorship network within the
DBLP Computer Science bibliography [72]. Vertices of the
network represent authors with edges connecting two authors
if they published at least one paper together.

3.3. Web Graphs

EPA. Thisdatasetrepresents pages linking to www.epa.gov
obtained from Jon Kleinberg’s web page, http://www.cs.
cornell.edu/courses/cs685/2002fa/ [1]. The pages were con-
structed by expanding a 200-page response set to a search
engine query, as in the hub/authority algorithm. These data
were collected some time back, so a number of the links may
not exist anymore. The vertices of this graph dataset repre-
sent web pages with edges representing links. The graph was
originally directed. We ignore the direction of edges to get
an undirected graph version of the dataset.

California. This graph dataset was also constructed by
expanding a 200-page response set to a search engine
query “California,” as in the hub/authority algorithm [52].
The dataset was obtained from Jon Kleinberg’s page,
http://www.cs.cornell.edu/courses/cs685/2002fa/. The ver-
tices of this graph dataset represent web pages with edges
representing links between them. The graph was originally
directed. We ignore the direction of edges to obtain an
undirected graph version of the dataset.

3.4. Internet Measurements Networks

Routeview. This is an autonomous system (AS) graph
obtained by the University of Oregon Route Views project
using looking glass data and routing registry [2]. A vertex in
the dataset represents an AS with an edge linking two vertices
if there is at least one physical link between them.

AS_CAIDA. These are datasets of the Internet AS rela-
tionships derived from BGP table snapshots taken at 24-h
intervals over a 5-day period by CAIDA [17, 19]. The AS
relationships available are customer-provider (and provider-
customer, in the opposite direction), peer-to-peer, and sibling-
to-sibling.

Dimes 3/2010. This is an AS relationship graph of the Inter-
net obtained from Dimes [66]. The Dimes project performs
traceroutes and pings from volunteer agents (about 1,000
agent computers) to infer AS relationships. A weekly AS
snapshot is available. The dataset Dimes 3/2010 represents a
snapshot aggregated over the month of March, 2010. It pro-
vides the set of AS level vertices and edges that were found
in that month and were seen at least twice.
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Aqualab. Peer-to-peer clients are used to collect tracer-
oute paths which are used to infer AS interconnections [20].
Probes were made between December 2007 and September
2008 from approximately 992,000 P2P users in 3,700 ASes.

Itdk. This is an Internet router-level graph where each ver-
tex represents a router with an edge between two vertices if
there is a link between the corresponding routers [18]. The
dataset snapshot is computed from ITDKO0304 skitter and
iffinder measurements. The dataset is provided by CAIDA for
April 2003 (see http://www.caida.org/data/active/internet-
topology-data-kit).

3.5. Information Network

Amazon. This is an Amazon product co-purchasing net-
work [72]. The vertices of the network represent products
purchased from the Amazon website and the edges link
“commonly/frequently” co-purchased products.

4. LAYERING PARTITION, ITS
CLUSTER-DIAMETER AND CLUSTER-RADIUS

Layering partition is a graph decomposition procedure
introduced in [13, 22] and used in [7, 13, 22, 25] for embed-
ding graph metrics into trees. It provides a central tool in our
investigation.

A layering of a graph G = (V, E) with respect to a start
vertex s is the decomposition of V into the r + 1 layers
(spheres) L' = {u € V : dg(s,u) =i},i =0,1,...,r. Alay-
ering partition LP(G,s) = {L’i, o ,L;,i :1=0,1,..., r} of
G is a partition of each layer L' into clusters L’i N invi such

that two vertices u,v € L! belong to the same cluster L; if
and only if they can be connected by a path outside the ball
Bi_1(s) of radius i — 1 centered at s. Here, p; is the number of
clusters in layer i. See Figure 1 for an illustration. A layering
partition of a graph can be constructed in O(n + m) time (see
[22]).

A layering tree T'(G,s) of a graph G with respect to a
layering partition LP(G, s) is the graph whose nodes are the
clusters of LP(G, s) and where two nodes C = L} and C' =
LJ’ are adjacent in I'(G, s) if and only if there exist a vertex
u € C and a vertex v € C’ such that uv € E. It was shown in
[13] that the graph I'(G, s) is always a tree and, given a start
vertex s, can be constructed in O(n + m) time [22]. Note that,
for a fixed start vertex s € V, the layering partition LP(G, s)
of G and its tree I'(G, s) are unique.

The cluster-diameter A (G) of layering partition LP(G, s)
with respect to vertex s is the largest diameter of a cluster in
LP(G,s), that is, LP(G, s). The cluster-diameter A(G) of a
graph G is the minimum cluster-diameter over all layering
partitions of G, that is A(G) = mingcy A (G).

The cluster-radius R (G) of layering partition LP(G, s)
with respect to a vertex s is the smallest number » such that
for any cluster C € LP(G, s) thereisavertex v € V withC C
B, (v). The cluster-radius R(G) of a graph G is the minimum
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cluster-radius over all layering partitions of G, thatis, R(G) =
mingey Ry (G).

Clearly, in view of tree I'(G, s) of G, the smaller param-
eters A (G) and R;(G), the closer graph G is to a tree
metrically.

Finding the cluster-diameter A (G) and the cluster-radius
R (G) for a given layering partition LP(G, s) of a graph G
requires O(nm) time,! although the construction of the layer-
ing partition LP(G, s) itself, for a given vertex s, takes only
O(n+m) time. As the diameter of any set is at least its radius
and at most twice its radius, we have the following inequality:

Rs(G) = As(G) = 2R4(G).

In Table 2, we show empirical results on layering partitions
obtained for datasets described in Section 3. For each graph
dataset G = (V, E), we randomly selected a start vertex s and
built a layering partition LP(G, s) of G with respect to s. For
each dataset, Table 2 shows the cluster-diameter A;(G), the
number of clusters in a layering partition LP (G, s) and the
average diameter of clusters in LP(G, s). It turns out that all
graph datasets have small average diameter of clusters. Most
clusters have diameter O or 1, that is, they are essentially
cliques (i.e., complete subgraphs) of G. For most datasets,
more than 95% of the clusters are singletons or cliques with
two or more vertices. Note that, in a graph, a cluster of radius
0 is a single vertex cluster and is an articulation point of the
graph.

To have a better picture of the overall distribution of diam-
eters of clusters, we show in Table 3 the frequencies of
diameters of clusters for three sample datasets: PPI, Yeast,
and AS_CAIDA_20071105. It is interesting to note that, in
all datasets, the clusters with large diameters induce a con-
nected subtree in the tree I'(G, s). For example, in PPI, the
cluster with diameter 8 is adjacent in I'(G,s) to all clus-
ters with diameters 6 and 5. This may indicate that all those
clusters are part of the well-connected network core.

Most of the graph parameters discussed in this article
could be related to a special tree H introduced in [25] and
produced from a layering partition of a graph G.

Canonical tree H: A tree H = (V,F) of a graph G =
(V,E), called a canonical tree of G, is constructed from a lay-
ering partition LP(G, s) of G by identifying for each cluster
C= Lj’: € LP(G,s) an arbitrary vertex x¢ € L;_; which has
a neighbor in C = L} and by making xc adjacent in H with
all vertices v € C (see Fig. 1d for an illustration). Vertex x¢
is called the support vertex for cluster C = Lj’ It was shown
in [25] that the tree H for a graph G can be constructed in
O(n + m) time.

The following result [25] relates the cluster-diameter of a
layering partition of G to embedability of graph G into the
tree H.

I'The parameters A(G) and R(G) can also be computed in total O(nm) time
for any graph G.
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(a) Layering of graph G with respect to s.
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(c) Layering tree I'(G, s).

(b) Clusters of the layering partition LP(G, s).

(d) Canonical tree H obtained from the layering

partition.

FIG. 1. Layering partition and associated constructs. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

TABLE 2. Layering partitions of the datasets and their parameters. A(G) is the largest diameter of a cluster in LP(G, s), where s is a randomly selected
start vertex. For all datasets, the average diameter of a cluster is between 0 and 1. For most datasets, more than 95% of the clusters are singletons or cliques

with two or more vertices

# of clusters Cluster-diameter ~ Average diameter of

% of clusters having % of clusters having

G=(V,E) V| diam(G) in LP(G,s) As(G) clusters in LP(G,s) diameter O (singletons) diameter 1 (cliques)
PPI 1,458 19 1,017 8 0.12 94.99% 2.65%
Yeast 2,224 11 1,838 6 0.12 94.60% 1.74%
DutchElite 3,621 22 2,934 10 0.07 98.02% 0%
EPA 4,253 10 2,523 6 0.07 96.12% 2.46%
EVA 4,475 18 4,266 9 0.03 98.57% 0.63%
California 5,925 13 2,939 8 0.09 94.86% 2.28%
Erdos 6,927 4 6,288 4 0.00 99.95% 0.02%
Routeview 10,515 10 6,702 6 0.06 96.08% 2.37%
Homo 16,711 10 6,817 5 0.03 97.64% 1.61%
AS_CAIDA_20071105 26,475 17 17,067 6 0.06 96.44% 2.12%
Dimes 3/2010 26,424 8 16,065 4 0.06 96.27% 2.27%
Aqualab 12/2007-09/2008 31,845 9 16,287 6 0.06 96.25% 2.33%
AS_CAIDA_20120601 41,203 10 26,562 6 0.06 96.58% 2.0%
itdk0304 190,914 26 89,856 11 0.27 85.98% 5.40%
DBLB-coauth 317,080 23 99, 828 11 0.45 64.98% 28.0%
Amazon 334,863 47 72,278 21 0.49 75.03% 11.02%

Proposition 1 ([25]). For every graph G = (V, E) and any
vertex s of G,

Vx,y € V,dy(x,y) =2 = dg(x,y) = dp(x,y) + Ay(G).

The above proposition shows that the distortion of embed-
ding of a graph G into tree H is additively bounded by A(G),
the largest diameter of a cluster in a layering partition of

G. This result confirms that the smaller the cluster-diameter
A (G) (cluster-radius Rs(G)) of G, the closer graph Gisto a
tree metric. Note that trees have cluster-diameter and cluster-
radius equal to 0. Results similar to Proposition 1 were first
used in [13] to embed a chordal graph into a tree with an addi-
tive distortion of at most 2 and in [22] to embed a k-chordal
graph into a tree with an additive distortion of at most k/2+2.
In [25], Proposition 1 was used to obtain a 6-approximation
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TABLE 3. Frequency of diameters of clusters in layering partition
LP(G,s) (three datasets)

Diameter of a cluster Frequency Relative frequency
(a) PPI

0 966 0.9499
1 21 0.0206
2 14 0.0138
3 5 0.0049
4 5 0.0049
5 1 0.0001
6 4 0.0039
7 0 0

8 1 0.0001
(b) Yeast

0 981 0.946
1 18 0.0174
2 23 0.0223
3 6 0.0058
4 5 0.0048
5 2 0.0019
6 2 0.0019
(c) AS_CAIDA_20071105

0 16,459 0.9644
1 361 0.0216
2 174 0.0102
3 46 0.0027
4 21 0.0012
5 4 0.0002
6 2 0.0001

algorithm for the problem of optimal noncontractive embed-
ding of an unweighted graph metric into a weighted tree
metric. For every chordal graph G (a graph whose largest
induced cycles have length 3), A;(G) < 3 and R;(G) < 2
hold [13]. For every k-chordal graph G (a graph whose largest
induced cycles have length k), As(G) < k/2 + 2 holds
[22]. For every graph G, embeddable noncontractively into a
(weighted) tree with multiplication distortion o, As(G) < 3«
holds [25]. See Section 6 for more on this topic.

5. HYPERBOLICITY

5-Hyperbolic metric spaces have been defined by Gro-
mov [46] in 1987 via a simple four-point condition: for any
four points u, v, w,x, the two larger of the distance sums
d(u,v) +dw,x),du,w) + d(v,x),d(u,x) + d(v,w) differ
by at most 28. They play an important role in geometric
group theory and in the geometry of negatively curved spaces,
and have recently become of interest in several domains
of computer science, including algorithms and networking.
For example, (a) it has been shown empirically in [67] (see
also [3]) that the Internet topology embeds with better accu-
racy into a hyperbolic space than into an Euclidean space
of comparable dimension, (b) every connected finite graph
has an embedding in the hyperbolic plane so that the greedy
routing based on the virtual coordinates obtained from this
embedding is guaranteed to work (see [55]). A connected
graph G = (V, E) equipped with standard graph metric dg is
8-hyperbolic if the metric space (V,dg) is 6-hyperbolic.
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TABLE 4.  §-hyperbolicity of the graph datasets

G=(V,E) VI |E] 3(G)
PPI 1,458 1,948 3.5
Yeast 2,224 6,609 2.5
DutchElite 3,621 4,311 4
EPA 4,253 8,953 2.5
EVA 4,475 4,664 1
California 5,925 15,770 3
Erdos 6,927 11,850 2
Routeview 10,515 21,455 2.5
Homo 16,711 115,406 2
AS_CAIDA_20071105 26,475 53,381 2.5
Dimes 3/2010 26,424 90, 267 2
Aqualab 12/2007- 09/2008 31,845 143,383 2
AS_CAIDA_20120601 41,203 121,309 2

More formally, let G be a graph and let u,v,w,x be
four of its vertices. Denote by Sy, S2,53 the three distance
sums dg (i, v) +dg(w, x), dg(u, w) +dg (v, x) and dg (u, x) +
dg (v, w) sorted in nondecreasing order §1 < S < S3. Define
the hyperbolicity of a quadruplet u,v,w,x as §(u,v,w,x) =
%. Then, the hyperbolicity §(G) of a graph G is the max-
imum hyperbolicity over all possible quadruplets of G, that
is,

8(G) = max &(u,v,w,x).

u,y,w,xeV

8-Hyperbolicity measures the local deviation of a metric
from a tree metric; a graph metric is a tree metric if and only if
it has hyperbolicity 0. Note that chordal graphs, mentioned in
Section 4, have hyperbolicity at most 1 [14], while k-chordal
graphs have hyperbolicity at most k/4 [71].

In Table 4, we show the hyperbolicities of most of our
graph datasets. The computation of hyperbolicities is a costly
operation. We were not able to compute it for three very
large graph datasets since it would take a very long time
to calculate. The best known algorithm [41] to calculate
hyperbolicity has time complexity of O(n*%°) and involves
matrix multiplications. This algorithm still takes a long run-
ning time for large graphs and is hard to implement. The
authors of [41] also propose a 2-approximation algorithm
for calculating hyperbolicity that runs in O(1n%>%°) time and a
2log,n-approximation algorithm that runs in O(n?) time. In
our computations, we used the naive algorithm which calcu-
lates the exact hyperbolicity of a given graph in O(n*) time
via calculating the hyperbolicities of its quadruplets. It is easy
to show that the hyperbolicity of a graph is realized on one of
its biconnected components. Thus, for very large graphs, we
needed to check hyperbolicities only for quadruplets coming
from the same biconnected component. Additionally, we used
an algorithm by Cohen et al. [28] which has 0(n4) time com-
plexity but performs well in practice as it prunes the search
space of quadruplets.

It turns out that most of the quadruplets in our datasets
have small § values (see Table 5). For example, more than
96% of the vertex quadruplets in the EVA and Erdos datasets
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TABLE 5. Relative frequency of §-hyperbolicity of quadruplets in graph
datasets that have less than 10,000 vertices

6 graph  PPI Yeast DutchElite EPA EVA California Erdos

0 048 049 0.54 0.58 0.99 0.49 0.97
0.5 036 045 0 0.37  0.00 0.41 0.03
1 0.13  0.06 0.42 0.06  0.00 0.09 0.00
1.5 0.02  0.00 0 0.00 - 0.00 0.00
0.00  0.00 0.04 0.00 - 0.00 0.00
2.5 0.00  0.00 0 0.00 - 0.00 -
3 0.00 - 0.00 - - 0.00 -
35 0.00 - 0 - - - -
4 - 0.00 - -

%<1 9801 99.82 96.32 99.84 100 99.64 100

have § values equal to 0. For the remaining graph datasets
in Table 5, more than 96% of the quadruplets have § < 1,
indicating that all of those graphs are metrically very close
to trees.

In the remaining part of this section, we discuss the theo-
retical relations between the parameters §(G) and A (G) of
a graph. In [23], the following inequality was proven.

Proposition 2 ([23]). For every n-vertex graph G and any
vertex s of G,

As(G) <44 126(G) + 85(G)logsn.

Here, we complement that inequality by showing that the
hyperbolicity of a graph is at most A(G).

Proposition 3. For every n-vertex graph G and any vertex
s of G,

8(G) = A(G).

Proof. Let LP(G,s) be a layering partition of G and
let T'(G, s) be the corresponding layering tree (consult Fig.
1). From construction of LP(G, s) and I'(G, s), every cluster
C of LP(G,s) separates in G any two vertices belonging to
nodes (clusters) of different subtrees of the forest obtained
from I' (G, s) by removing node C. Note that every vertex of
G belongs to exactly one node (cluster) of the layering tree
raG,s).

Consider an arbitrary quadruplet x,y, z, w of vertices of
G. Let X,Y,Z,W be the nodes in I'(G, s) (i.e., clusters in
LP(G,s)) containing vertices x,y,z,w, respectively. Note
that nodes X,Y,Z,W are not necessarily all different. In
the tree I'(G,s), consider a median? node M of nodes
X,Y,Z, W, that is, a node M the removal of which from
I'(G, s) leaves no connected subtree with more than two
nodes from {X,Y,Z, W}. As a consequence, any connected
component of graph G[V \ M] (the graph obtained from G

21t is known that for any set S € X of nodes of atree T = (X, U) there is a
node v in T, called a median of S, such that any subtree of 7[X \ v] has at
most |S|/2 nodes from S. Such a node v can be found in linear time [45].

by removing vertices of M) cannot have more than 2 ver-
tices out of {x,y,z,w}. Thus, we may assume, without loss
of generality, that for every vertex s € {x, y} and every vertex
t € {z,w}, either s and ¢ are in different connected compo-
nents of G[V \ M] or {s,t} N M # @, i.e., M intersects all
paths of G connecting s and . See Figure 2 for an illustration.
Let u, be the distance from a € {x,y,z, w} to its closest
vertex in M. Note that 1, = 0 is not excluded, thatis,a € M
is possible. Let a, b be a pair of vertices from {x,y, z, w}. If
the vertices a, b belong to different components of G[V \ M],
then M separates a from b and, therefore, .+ up < dg(a, b).
Note that u,+up < dg(a, b) holds also when one of {a, b} or
both belong to M. As M intersects all paths of G connecting
s € {x,y}and r € {z,w}, we get dg(x,2) + dc(y, w) > ux +
My + pz + oy and dg (x, w) +dG (¥, 2) = phy + py + g + toy-
Conversely, all three sums dg(x,z) + dg(y,w), dg(x,w) +
dg(y,2) and dg(x,y) + dg(z,w) are less than or equal to
My + iy + w1z + oy +2A4(G), as by the triangle inequality,
dg(a,b) < pg + pnp + As(G) for every a, b € {x,y,z, w}.
Now, as the two larger distance sums are between p and
u+2A4(G), where = px + py + pz + by, we conclude
that the difference between the two larger distance sums is at
most 2A(G). Thus, necessarily §(G) < As(G). .

Combining Proposition 2 with Proposition 1, one obtains
also the following interesting result relating the hyperbolicity
of a graph G with additive distortion of embedding of G to
its canonical tree H.

Proposition 4 ([23]). For any graph G = (V,E) and its
canonical tree H = (V, F) the following holds:

Yu,v eV, dyu,v) —2 <dg(u,v)
<dyu,v) + 0O(5(G) logn).

As a canonical tree H is constructible in linear time for
a graph G, by Proposition 4, the distances in n-vertex §-
hyperbolic graphs can efficiently be approximated within
an additive error of O(§logn) by a tree metric and this
approximation is sharp (see [44, 46] and [23, 42]).

Graphs and general geodesic spaces with small hyperbol-
icities have many other algorithmic advantages. They allow
for efficient approximate solutions for a number of opti-
mization problems. For example, Krauthgamer and Lee [56]
presented a PTAS for the Traveling Salesman Problem when
the set of cities lie in a hyperbolic metric space. Chepoi and
Estellon [26] established a relationship between the minimum
number of balls of radius r 424 covering a finite subset S of a
8-hyperbolic geodesic space and the size of the maximum r-
packing of S and showed how to compute such coverings and
packings in polynomial time. Chepoi et al. [23] gave efficient
algorithms for quick and accurate estimations of diame-
ters and radii of §-hyperbolic geodesic spaces and graphs.
Additionally, Chepoi et al. [24] showed that every n-vertex
8-hyperbolic graph has an additive O(6 log n)-spanner with
at most O(6n) edges and enjoys an O(8 log n)-additive rout-
ing labeling scheme with 0(810g2n)—bit labels and O(log §)
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(a) M is a median node for X,Y, Z, W
in I'(G, s).

(b) M separates in G vertices = and y

from vertices z and w.

FIG. 2. Tllustration for the proof of Proposition 3. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

time routing protocol. We elaborate more on these results in
Section 8.

6. TREE-DISTORTION

The problem of approximating a given graph metric by a
“simpler” metric is well motivated from several different per-
spectives. A particularly simple metric of choice, also favored
from the algorithmic point of view, is a tree metric, that is, a
metric arising from shortest path distance on a tree containing
the given points. In recent years, a number of authors consid-
ered problems of minimum distortion embeddings of graphs
into trees (see [5—7, 25]), most popular among them being
a noncontractive embedding with minimum multiplicative
distortion.

Let G = (V,E) be a graph. The (multiplicative) tree-
distortion td(G) of G is the smallest integer « such that G
admits a tree (possibly weighted and with Steiner points)
with

Yu,v € V, dg(u,v) < dr(u,v) < adg(u,v).

The problem of finding, for a given graph G, a tree T =
(V US, F) satisfying dg(u,v) < dr(u,v) < td(G)dg(u,v),
for all u,v € V, is known as the problem of minimum dis-
tortion noncontractive embedding of graphs into trees. In
a noncontractive embedding, the distance in the tree must
always be larger that or equal to the distance in the graph,
that is, the tree distances “dominate” the graph distances.

It is known that this problem is NP-hard, and even more,
the hardness result of [5] implies that it is NP-hard to approx-
imate td(G) better than y, for some small constant y. The
best known 6-approximation algorithm using a layering par-
tition technique was recently given in [25]. It improves the
previously known 100-approximation algorithm from [7] and
27-approximation algorithm from [6]. Below, we will provide
a short description of the method of [25].
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The following proposition establishes a relationship
between the tree-distortion and the cluster-diameter of a
graph.

Proposition 5 ([25]). For every graph G and any its vertex
s, Ag(G)/3 < 1d(G) < 2A4(G) + 2.

Proposition 5 shows that the cluster-diameter A;(G) of
a layering partition of a graph G linearly bounds the tree-
distortion td(G) of G.

Combining Proposition 5 and Proposition 1, the following
result is obtained.

Proposition 6 ([25]). For any graph G = (V,E) and its
canonical tree H = (V, F) the following holds:

Yu,v eV, dg(u,v) — 2 <dgu,v) < dyu,v) + 3td(G).

Surprisingly, a multiplicative distortion turned into an
additive distortion. Furthermore, whileatree T = (VUS, F)
satisfying dg(u,v) < dr(u,v) < td(G)dg(u,v), for all
u,v € V,is NP-hard to find, a canonical tree H of G can
be constructed in O(m) time (where m = |E|).

By assigning proper weights to edges of a canonical tree
H or adding at most n = |V| new Steiner points to H, the
authors of [25] achieve a good non-contractive embedding of
a graph G into a tree. Recall that a canonical tree H = (V, F)
of G = (V,E) is constructed in the following way: identify
for each cluster C = L} € LP(G,s) of a layering partition
LP(G,s) of G an arbitrary vertex x¢c € L;—; which has a
neighbor in C = L! and make x¢ adjacent in H to all vertices
v € C (seeFig. 3a). Note that H is an unweighted tree, without
any Steiner points, and resembles a BFS-tree of G. Two other
trees for G are constructed as follows.

Tree H; : Tree H, = (V,F,{) is obtained from H
by assigning uniformly the weight £ = max{dg(u,v) :
uvisanedge of H} to all edges of H. So, H; is a uniformly
weighted tree without Steiner points. It turns out that G
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(a) Topology of trees H and H,.

(b) Topology of tree H,. Squares denote Steiner

points.

FIG. 3. Embedding into trees H, Hy, and Hé. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

embeds in tree H; noncontractively. Note that, although the
topology of the tree Hy can be determined in O(m) time (H,
is isomorphic to H), computation of the weight £ requires
O(nm) time. Thus, the tree Hy is constructible in O(nm) total
time. See Figure 3a for an illustration.

Tree H, : Tree H, = (V U S, F’, ) is obtained from H
in the following way. First, introduce one Steiner point pc
for each cluster C := L]’f and add an edge between each
vertex of C and pc and an edge between pc and the sup-
port vertex xc for C. Then, assign uniformly the weight
{ = % max {A(G), max {dg(u,v) : uvisanedge of H}} to all
edges of the obtained tree. So, H; is a uniformly weighted
tree with at most O(n) Steiner points. Again, G embeds into
tree Hé noncontractively and H, é can be obtained in O(nm)
total time. See Figure 3b for an illustration.

Constructed trees have the following distance properties
(for comparison, we also include the results for H mentioned
earlier).

Proposition7 ([25]). Let G = (V,E) be a graph, s be an
arbitrary vertex, o = td(G), Ay = As(G), and H, Hy, sz be
trees as described above. Then, for any two vertices x and y
of G, the following holds:

dH(xJ) -2 = dG(xay) = dH(x’y) + AS’
dy(x,y) —2 < dg(x,y) < dp(x,y) + 3a,
dg(x,y) < dpy,(x,y) = (As + D(dG(x,y) +2),
dg(x,y) = dp,(x,y) < max 3c — 1,2a + 1} (dg(x,y) +2),
dg(x,y) =dp;(x,y) = (Ag+ D(dg(x,y) + 1),
dg(x,y) = dp;(x,y) < 3a(dg(x,y) + D).

As pointed out in [25], tree H, provides a 6-approximate
solution to the problem of minimum distortion noncontractive
embedding of graphs into trees.

In our empirical study, we analyze embeddings of our
graph datasets into each of these three trees and measure

how close these graph datasets resemble a tree from this
perspective. We compute the following measures:

e maximum distortion right := max { ;ZEZ‘L)) cu,v €V, dr(u,v)
> dg(u,v) > 0};

e maximum distortion left := max {
> dr(u,v) > 0};

dg(uy)
dr (u,v)

cu,v € V,dg(u,v)

e average distortion right := an{Z;EZ:?) cu,v € V,dr(u,v)
> dg(u,v) > O};

e average distortion left := avg{j‘;E:‘V; cu,v € V,dg(u,v)
> dr(u,v) > 0};

e averagerelative distortion:= avg [W Tu,v e V};
and

1

e distance-weighted average distortion := S —doiy)
u,ve i

dr(uy)\ _ Buyevdr (u,v)
6, v) - goty) = Trrcvdotum -

2u,veV

A pair of distinct vertices u,v of G = (V,E) is said
to be a right pair with respect to tree H = (V,F) if
dg(u,v) < dg(u,v). If dg(u,v) < dg(u,v) then {u,v} is
called a left pair. Note that G has no left pairs with respect to
trees Hy and H,. Hence, in case of trees Hy and H,, we talk
only about maximum distortion, average distortion, average
relative distortion and distance-weighted average distortion.
Distance-weighted average distortion is used in the literature
when distortion of distant pairs of vertices is more important
than that of close pairs, as it gives larger weight values to
distortion of distant pairs (see [50]). Clearly, any tree graph
would have maximum distortion, average relative distortion
and distance-weighted average distortion equal to 1, 0, and
1, respectively.

Tables 6 and 7 show the results of embedding our graph
datasets into trees H, Hy, and Hj, respectively. It turns out
that most of the datasets embed into tree H with average dis-
tortion (right or left, right being usually better) between 1 and
1.5. Also, many pairs of vertices enjoy exact embedding into
the tree H; they preserve their original graph distances (for
example, around 88% of the pairs in the Erdos dataset, 72%
of the pairs in Homo, 57% in AS_CAIDA_20120601 pre-
serve their original graph distances). Comparing the results of
noncontractive embeddings into trees H, and H 4/3’ we observe
that maximum distortions are slightly improved in H, over
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TABLE 6. Distortion results of embedding each dataset into a canonical tree H

Average Max
distortion  distortion % of

Average
distortion

distortion % of

Max
% of pairs  Average relative  Distance-weighted

Graph left left left pairs right right right pairs  dr = dg distortion average distortion
PPI 1.50 7 70.50 1.34 3 09.10 20.40 0.25 0.79
Yeast 1.49 5 56.30 1.39 3 12.20 31.50 0.22 0.85
DutchElite 1.54 7 73.00 1.41 3 03.90 23.10 0.25 0.76
EPA 1.50 5 44.66 1.38 3 10.47 44.87 0.18 0.88
EVA 1.30 6 32.31 1.28 3 14.77 52.92 0.11 0.95
California 1.52 5 61.82 1.37 3 07.92 30.25 0.23 0.81
Erdos 1.35 3 02.75 1.41 3 08.91 88.34 0.04 1.02
Routeview 1.41 4 24.39 1.41 3 33.34 42.28 0.21 1.03
Homo 1.53 4 02.83 1.68 3 25.16 72.01 0.18 1.13
AS_CAIDA_20071105 1.48 4 2143 1.36 3 35.42 43.15 0.19 1.03
Dimes 3/2010 1.54 3 05.74 1.37 3 44.42 49.84 0.18 1.13
Aqualab 12/2007- 09/2008 1.42 4 31.71 1.42 3 35.75 32.54 0.24 1.03
AS_CAIDA_20120601 1.35 4 22.42 1.40 3 20.43 57.15 0.14 1.01
itdk0304 1.60 8 94.85 1.26 3 00.55 04.60 0.33 0.67
DBLB-coauth 1.77 9 95.82 1.25 3 00.59 03.59 0.38 0.62
Amazon 2.48 19 99.17 1.20 3 00.20 00.63 0.54 0.54

TABLE 7. Distortion results of noncontractive embedding of datasets into trees Hy and H,,

Tree Hy Tree H,

Average Max Average relative  Distance-weighted — Average Max Average relative  Distance-weighted
Graph distortion distortion distortion average distortion  distortion distortion distortion average distortion
PPI 5.71 21 471 5.53 5.30 16 4.30 5.20
Yeast 4.38 15 3.38 425 3.79 12 2.79 3.74
DutchElite 5.45 21 445 5.33 6.53 20 5.53 6.46
EPA 4.51 15 3.51 4.39 4.07 12 3.07 3.99
EVA 5.83 18 4.83 5.71 7.78 18 6.78 7.66
California 4.16 15 3.18 4.05 4.99 16 3.99 493
Erdos 3.09 9 2.09 3.07 3.07 8 2.07 3.06
Routeview 4.28 12 3.28 4.14 4.80 12 3.80 4.67
Homo 4.65 12 3.65 4.54 3.97 10 2.97 3.95
AS_CAIDA_20071105 4.24 12 3.24 4.12 4.77 12 3.77 4.66
Dimes 3/2010 3.44 9 2.44 3.38 3.36 8 2.36 332
Aqualab 12/2007- 09/2008 4.23 12 3.23 4.13 4.54 12 3.54 4.46
AS_CAIDA_20120601 4.11 12 3.11 4.03 4.53 12 3.53 4.49
itdk0304 5.37 24 437 5.38 5.71 22 4.71 5.83
DBLB-coauth 5.58 27 4.58 5.54 5.13 22 4.13 5.15
Amazon 8.82 57 7.82 8.78 7.87 42 6.87 7.95

distortions in Hy, but average distortions are very much com-
parable. Furthermore, distance-weighted average distortions
are better in Hy than in H 2 This confirms Gupta’s claim [47]
that the Steiner points do not really help.

As tree H; provides a 6-approximate solution to the prob-
lem of minimum distortion noncontractive embedding of
graphs into trees, dividing by 6 the maximum distortion val-
ues in Table 7 for tree H),, we obtain a lower bound on td(G)
for each graph dataset G. For example, td(G) is at least 4/3
for Erdos and Dimes 3/2010, at least 5/3 for Homo, at least 2
for Yeast, EPA, Routeview, AS_CAIDA_20071105, Aqualab
12/2007-09/2008 and AS_CAIDA_20120601, at least 8/3 for
PPI and California, at least 10/3 for DutchElite, at least 3 for
EVA, at least 11/3 for itdk0304 and DBLB-coauth, and at
least 7 for Amazon.
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7. TREE-BREADTH, TREE-LENGTH, AND
TREE-STRETCH

There are two other graph parameters measuring metric
tree-likeness of a graph that are based on the notion of tree-
decomposition introduced by Robertson and Seymour in their
work on graph minors [63].

A tree-decomposition of a graph G = (V,E) is a pair
({X;:iel}, T = (,F)) where {X; : i € I}1is a collection of
subsets of V, called bags, and T is a tree. The nodes of T are
the bags {X; : i € I} satisfying the following three conditions
(see Fig. 4):

1. 'UIXi =V;
s
2. Foreachedgeuv € E,thereisabagX;suchthatu,v € X;;
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(a) A graph G.

(b) A tree-decomposition of G.

FIG.4. A graph and its tree-decomposition of width 3, of length 3, and of breadth 2. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

3. For all i,j,k € I, if j is on the path from i to k in T,
then X; N X C X;. Equivalently, this condition could be
stated as follows: for all vertices v € V, the set of bags
{i € I : v € X;} induces a connected subtree T, of T.

For simplicity, we denote a tree-decomposition ({X; : i € I},
T = (I,F)) of a graph G by 7 (G).

The width of a tree-decomposition 7 (G) = ({X; : i € I},
T = (I,F)) is max;e|X;| — 1. The tree-width of a graph
G, denoted by tw(G), is the minimum width over all tree-
decompositions 7 (G) of G [63]. Trees are exactly the graphs
with tree-width 1.

The length of a tree-decomposition 7 (G) of a graph G is
A 1= max;¢/max, yex,dc(u,v) (i.e., each bag X; has diam-
eter at most A in G). The tree-length of G, denoted by
tl(G), is the minimum length over all tree-decompositions
of G [34]. The chordal graphs are exactly the graphs with
tree-length 1. Note that these two graph parameters are not
related to each other. For instance, a clique on n vertices has
tree-length 1 and tree-width n — 1, whereas a cycle on 3n
vertices has tree-width 2 and tree-length n. Analysis of a few
real-world networks (such as Aqualab, AS_CAIDA, Dimes)
performed in [29] shows that although those networks have
small hyperbolicities, they all have sufficiently large tree-
width due to well-connected cores. As we demonstrate below,
the tree-length of those graph datasets is relatively small.

The breadth of a tree-decomposition 7 (G) of a graph G
is the minimum integer r such that for every i € I there
is a vertex v; € V with X; € B,(v;, G) (i.e., each bag X;
can be covered by a ball B,(v;, G) of radius at most r in
G). Note that vertex v; does not need to belong to X;. The
tree-breadth of G, denoted by tb(G), is the minimum breadth

over all tree-decompositions of G [37]. Evidently, for any
graph G, 1 < tb(G) < tI(G) < 2tb(G) holds. Hence, if one
parameter is bounded by a constant for a graph G then the
other parameter is bounded for G as well.

Clearly, in view of a tree-decomposition 7 (G) of G, the
smaller the parameters tl(G) and tb(G) of G, the closer graph
G is to a tree metrically. Unfortunately, while graphs with
tree-length 1 (as they are exactly the chordal graphs) can
be recognized in linear time, the problem of determining
whether a given graph has tree-length at most A is NP-
complete for every fixed A > 1 (see [58]). Judging from
this result, it is conceivable that the problem of determin-
ing whether a given graph has tree-breadth at most p is
NP-complete, too.

The following proposition establishes a relationship
between the tree-length and the cluster-diameter of a layering
partition of a graph.

Proposition 8 ([34]). For every graph G and any vertex s,
As(G)/3 =1(G) = Ag(G) + 1.

Thus, the cluster-diameter A (G) of a layering partition
provides easily computable bounds for the hard to compute
parameter t1(G).

One can prove similar inequalities relating the tree-breadth
and the cluster-radius of a layering partition of a graph.

Proposition9. For every graph G and any vertex s,
As(G)/6 = Rs(G)/3 < 1h(G) = Ry(G) +1 = Ay(G) + L.

Furthermore, a tree-decomposition of G with breadth at
most 3tb(G) can be constructed in O(n + m) time.
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Proof.

The proof is similar to the proof from [34] of Proposition
8. First, we show R(G)/3 < tb(G). Let 7(G) be a tree-
decomposition of G with minimum breadth tb(G). Let X1 X»
be an edge of 7(G) and 77,7, be subtrees of 7 (G) after
removing the edge X1 X5. Itis known [31] thatset/ = X;NX>»
separates in G vertices belonging to bags of 7; but not to /
from vertices belonging to bags of 7, but not to /. Assume
that 7 (G) is rooted at a bag containing vertex s, the source of
the layering partition LP(G, s). Let C be a cluster from layer
L; (ie., C = L] forsomej = 1,...,p;). Let Z be the nearest
common ancestor of all bags of 7 (G) containing vertices
of C (such Z always exists). Let z be the vertex such that
Z C B ) (z, G). We will show that dg(x,z) < 3tb(G) holds
for every vertex x € C.

Consider an arbitrary vertex x € C. Necessarily, there is
a vertex y € C and two bags X and Y of 7 (G) containing
vertices x and y, respectively, such that Z = NCA7 () (X, Y)
(i.e., Z is the nearest common ancestor of X and Y in 7 (G)).
Let P be a shortest path of G from s to x. By the separator
property above, P intersects Z. Indeed, if neither s nor x is
in Z, then for a neighbor Z’ of Z on the path of 7 (G) from
Z to the root, set I = Z N Z' separates in G vertex x from
vertex s [31]. See Figure 5 for an illustration. Let a be a
vertex of PN Z closest to s in G. As both x and y belong to C,
there exist a path Q from x to y in G using only intermediate
vertices w with dg (s, w) > i. Path Q also intersects set Z. Let
b e QNZ.Wehavedg(s,x) =i = dg(s,a)+dg(a,x) andi <
dg(s,b) < dg(s,a)+dg(a,2)+dg(z,b) < dg(s,a)+2tb(G).
Hence, dg(a,x) = i — dg(s,a) < 2tb(G) and, therefore,
dg(x,2) < dg(x,a) +dg(a,z) < 2tb(G) + tb(G) = 3tb(G).
Thus, any vertex x of C is at distance at most 3tb(G) from z
in G, implying R;(G)/3 < tb(G).

Note that, for the neighborx’ of xon P, d (x’, 7) < 3tb(G)—
1 must hold, thatis, B3wg) (z, G) contains not only all vertices

of C = Lf but also all neighbors of vertices of C appearing
in layer L;_1. This fact will be useful in the second part of
this proof.

Now we show that tb(G) < R;(G) + 1. Consider the tree
['(G, s) of the layering partition LP (G, s) and assume I'(G, s)
is rooted at node {s}. Let p(C) be the parent of node C in
I'(G,s). Clearly, I'(G, s) satisfies already conditions 1 and 3
of tree-decompositions and only violates condition 2 as the
edges joining vertices in different (neighboring) layers are not
yet covered by bags (which are the clusters in this case). We
can obtain a tree-decomposition I'' from I'(G, s) as follows.
" will have the same structure as I' (G, s), only the nodes of
I'(G, s) will slightly expand to cover additional edges of G
and form the bags of I'". To each node C of I'(G, s) (assume
C C L;) we add all vertices from its parent p(C) (p(C) <
L;_1) which are adjacent to vertices of C in G. This expansion
of Cresultsin abag Ct of IV which, by construction, contains
now also each edge uv of G withu € C C L; and v €
p(C) C L;_;. Thus, I satisfies conditions 1 and 2 of tree-
decompositions. Also, if C C B,(z, G) for some vertex z and
integer r, then ct c B,11(z, G) must hold. Furthermore,
each vertex v of G that was in a node C now belongs to bag
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FIG. 5. Illustration for the proof of Proposition 9. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

CT and to all bags formed from children of C in I'(G, s) (and
only to them). Hence, all bags containing v form a star in I"'.
All these indicate that T' is a tree-decomposition of G with
breadth at most R;(G) + 1, that is, tb(G) < Ry(G) + 1.
Furthermore, as we indicated in the first part of this proof,
for any cluster C there is a vertex z in G such that C T C
B3 () (z, G). The latter implies that the tree I' obtained from
['(G,s) has breadth at most 3tb(G). Finally, as I'” is con-
structible in linear time and R;(G) < A;(G) < 2R,(G) holds
for every graph G, the proposition follows. .

Hence, the cluster-radius R;(G) of a layering partition pro-
vides easily computable bounds for the tree-breadth tb(G) of
a graph. In Table 8, we show the corresponding lower and
upper bounds on the tree-breadth for some of our datasets.
The lower bound is obtained by dividing R;(G) by 3, the
upper bound is obtained by calculating the breadth of the
tree-decomposition I,

Reformulating Proposition 1, we obtain the following
result.

Proposition 10.  For any graph G = (V, E) and its canon-
ical tree H = (V, F) the following holds:

Yu,v eV, dygu,v) —2 < dgu,v) < dy(u,v) + 3tl(G)
<dy(u,v) + 6tb(G).
Graphs with small tree-length or small tree-breadth have

many other nice properties. Every n-vertex graph with tree-
length tI(G) = A has an additive 2A-spanner with O(An +
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TABLE 8. Lower and upper bounds on the tree-breadth of our graph
datasets

Lower bound
on tb(G)

Upper bound

G=(V,E) R (G) on tb(G)

PPI

Yeast

DutchElite

EPA

EVA

California

Erdos

Routeview

Homo
AS_CAIDA_20071105
Dimes 3/2010

Aqualab 12/2007- 09/2008
AS_CAIDA_20120601
itdk0304
DBLB-coauth

Amazon
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nlogn) edges and an additive 41-spanner with O(An) edges,
both constructible in polynomial time [33]. Every n-vertex
graph G with tb(G) = p has a system of at most log, 7 collec-
tive additive tree (2 plog,n)-spanners constructible in polyno-
mial time [36]. Those graphs also enjoy a 6A-additive routing
labeling scheme with O(Alog?n)-bit labels and O(log 1) time
routing protocol [32], and a (2 plog,n)-additive routing label-
ing scheme with 0(10g3n)-bit labels and O(1) time routing
protocol with O(log n) message initiation time (by combining
results of [36] and [38]). See Section 8 for further details.

Here, we elaborate a little bit more on a connection estab-
lished in [37] between the tree-breadth and the tree-stretch of
a graph (and the corresponding tree ¢-spanner problem).

The tree-stretch ts(G) of a graph G = (V, E) is the small-
est number ¢ such that G admits a spanning tree T = (V,E’)
with dr(u,v) < tdg(u,v) forevery u,v € V. T is called a tree
t-spanner of G and the problem of finding such atree T for G is
known as the tree 7-spanner problem. Note that as T is a span-
ning tree of G, necessarily dg(u,v) < d7(u,v) and E’ C E.
The latter makes the tree-stretch parameter different from the
tree-distortion where new (not from the graph) edges can be
used to build a tree. It is known that the tree #-spanner problem
is NP-hard [16]. The best known approximation algorithms
have approximation ratio of O(logn) [37, 39].

The following two results were obtained in [37].

Proposition 11 ([37]). For every graph G, th(G) <
[ts(G)/2] and t1(G) < ts(G).

Proposition 12 ([37]). Foreveryn-vertex graph G, ts(G) <
2tb(G)logyn. Furthermore, a spanning tree T of G with
dr(u,v) < 2tb(G)logyndg(u,v), for every u,v € V, can be
constructed in polynomial time.

Proposition 12 is obtained by showing that every n-vertex
graph G with tb(G) = p admits a tree (2plog,n)-spanner

constructible in polynomial time. Together with Proposition
11, this provides a log,n-approximate solution for the tree
t-spanner problem in general unweighted graphs.

We conclude this section with two other inequalities estab-
lishing relations between the tree-stretch, the tree-distortion,
and the hyperbolicity of a graph.

Proposition 13 ([35]). For every graph G, tl(G) <td(G) <
ts(G) < 2td(G)logyn.

Proposition 14 ([35]). For every §-hyperbolic graph G,
1s(G) < O(8log’n).

Proposition 13 says that if a graph G is noncontractively
embeddable into a tree with distortion td(G) then it is embed-
dable into a spanning tree with stretch at most 2td(G)log,n.
Furthermore, a spanning tree with stretch at most 2td(G)log,n
can be constructed in polynomial time. Proposition 14 says
that every 8-hyperbolic graph G admits a tree O(8log*n)-
spanner. Furthermore, such a spanning tree for a §-hyperbolic
graph can be constructed in polynomial time.

8. USE OF METRIC TREE-LIKENESS

As we have mentioned earlier, metric tree-likeness of a
graph is useful in anumber of ways. Among other advantages,
it allows one to design compact and efficient approximate
distance labeling and routing labeling schemes as well as
efficient algorithms for quick and accurate estimation of
the diameter and the radius of a graph. In this section, we
elaborate on these applications. In general, low distortion
embedability of a graph G into a tree T allows one to solve
approximately many distance related problems on G by first
solving them on the tree T and then interpreting that solution
on G.

8.1.  Approximate distance queries

Commonly, when one makes a query concerning a pair
of vertices in a graph (adjacency, distance, shortest route,
etc.), one needs to make global access to the structure stor-
ing that information. A compromise to this approach is to
store enough information locally in a label associated with
a vertex such that the query can be answered using only
the information in the labels of the two vertices in question
and nothing else. Motivation of localized data structure in
distributed computing is surveyed and widely discussed in
[43, 62].

Here, we are mainly interested in the distance and rout-
ing labeling schemes, introduced by Peleg (see, e.g., [62]).
Distance labeling schemes are schemes that label the vertices
of a graph with short labels in such a way that the distance
between any two vertices u and v can be determined effi-
ciently by merely inspecting the labels of u and v, without
using any other information. Routing labeling schemes are
schemes that label the vertices of a graph with short labels in
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Graph distortion
=1 <12<13<1b <2 <22

PPI 20.41|37.68]47.90|65.93190.68/96.37

Yeast 31.51|38.45|53.22|72.30(91.03|98.55

DutchElite 23.13|27.99]42.97|64.60(88.71/95.44

EPA 44.87/50.83165.50|76.52|91.82|98.68

EVA 52.92|73.37|82.68192.83199.12/99.88

California 30.25|40.21|51.89|64.53|88.97|98.06
Erdos 88.34/88.34|89.84196.9999.55/99.98| | o
Routeview 42.28|44.75]58.17|81.94196.40|99.85 g
Homo 72.01|72.13|73.48(79.08]90.79(99.97 E '
el

AS_CAIDA_20071105 |43.15|46.60|62.39|84.54(95.68|99.90
Dimes 3/2010 49.84/50.06 |56.77|89.30|97.05/99.99
Aqualab 12/2007- 09/2008|32.54|33.23|44.61|76.4695.93|99.98

AS_CAIDA_20120601 |57.15|59.57|71.82|89.58(98.65(99.98

distortion

itdk0304 4.60 [15.18|23.67|42.54|81.98/93.55 . e I o
DBLB-coauth 3.59 |12.08(17.60|30.64|67.92|83.10 e -G Il Rl
oMo =S _Caida_20071105 =f=Dimes -Aqualab

Amazon 063 267 457 1016 3310 4653 =He=AS_Caida_20120601 f=itdk0304 «=@=DBLB-coauth = AMazON

(a) Percentage of vertex pairs whose distance was distorted only (b) Cumulative frequency chart.
up to a given value.

FIG. 6. Distortion distribution for embedding of a graph dataset into its canonical tree H. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

such a way that given the label of a source vertex and the label
of a destination vertex, it is possible to compute efficiently
the port number of the edge from the source that heads in the
direction of the destination.

It is known that n-vertex trees enjoy a distance labeling
scheme where each vertex is assigned an O(log®n)-bit label
such that given labels of two vertices the distance between
them can be inferred in constant time [61]. We can use for
our datasets their canonical trees to compactly and distribu-
tively encode their approximate distance information. Given
a graph dataset G, we first compute in linear time its canon-
ical tree H. Then, we preprocess H in O(nlogn) time (see
[61]) to assign each vertex v € V an O(logzn)—bit distance
label. Given two vertices u,v € V, we can compute in O(1)
time the distance dy (i, v) from their labels and output this
distance as a good estimate for the distance between u and v
in G.

Figure 6 demonstrates how accurately canonical trees
represent pairwise distances in our datasets. For a given
number € > 1, we show how many vertex pairs have
a distortion less than e, that is, pairs u,v € V with

dy(u,y) dg(u,v)

max { de(u,v)’ dy(u,v)

} < €. We can see that H approximates
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the distances for most vertex pairs with a high level of accu-
racy. Exact graph distances were preserved in H for at least
40% of the vertex pairs in 8 datasets (EPA, EVA, Erdos,
Routeview, Homo, AS_CAIDA_20071105, Dimes 3/2010,
and AS_CAIDA_20120601). Atleast 50% of the vertex pairs
of 6 datasets have distance distortion in H less than 1.2. At
least 60% of the vertex pairs for 6 datasets have distance dis-
tortion less than 1.3. At least 70% of the vertex pairs of 10
datasets have distance distortion less than 1.5. At least 80%
of the vertex pairs of 14 datasets have distance distortion
less than 2. At least 90% of the vertex pairs of 14 datasets
have distance distortion less than 2.2. For the DBLB-coauth
dataset, 80% (90%) of the vertex pairs embed into H with
distortion no more than 2.2 (2.4, respectively; not shown on
the table). For the Amazon dataset, 80% (90%) of the vertex
pairs embed into H with distortion no more than 3.2 (3.8,
respectively; not shown on the table).

Hence, using embeddings of our datasets into their canon-
ical trees, we obtain for them a compact and efficient
approximate distance labeling scheme. Each vertex of a graph
dataset G gets an O(log>n)-bit label from the canonical tree
and the distance between any two vertices of G can be
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computed with a good level of accuracy in constant time
from their labels only.

8.2.  Approximating optimal routes

First, we formally define approximate routing labeling
schemes. Let s, r be two real numbers. A family 9t of graphs
is said to have an /(n)-bit (s, r)-approximate routing labeling
scheme if there exist a labeling function L and an efficient
algorithm/function f, called the routing decision or routing
protocol. The labeling function L labels the vertices of each
n-vertex graph in 9 with distinct labels of up to /(n) bits.
Given the label of a current vertex v and the label of the
destination vertex (in the header of the packet), the algo-
rithm f decides in time polynomial in the length of the given
labels, and using only those two labels, whether this packet
has already reached its destination, and if not, to which neigh-
bor of v to forward the packet. Furthermore, the routing
path from any source x to any destination y produced by
this scheme in a graph G from N must have length at most
s - dg(x,y) + r. For simplicity, (1, r)-approximate labeling
schemes (distance or routing) are called r-additive labeling
schemes, and (s, 0)-approximate labeling schemes are called
s-multiplicative labeling schemes.

A very good routing labeling scheme exists for trees [69].
An n-vertex tree can be preprocessed in O(nlogn) time so
that each vertex is assigned an O(logn)-bit routing label.
Given the label of a source vertex and the label of a destina-
tion, it is possible to compute in constant time the port number
of the edge from the source that appears on the (shortest) path
to the destination.

Unfortunately, a canonical tree H of a graph G is not suit-
able for approximately routing in G; H may have artificial
edges (not coming from G) and, therefore, a path of H from
a source to a destination may not be available for routing in
G. To reduce the problem of routing in G to routing in a tree
T, the tree T needs to be a spanning tree of G. Hence, a span-
ning tree 7 of G with minimum stretch (i.e., a tree f-spanner
of G with r = ts(G)) would be a perfect choice. Unfortu-
nately, finding a tree 7-spanner of a graph with minimum 7 is
an NP-hard problem.

For our graph datasets, one can exploit the facts that they
have small tree-breadth/tree-length and/or small hyperbolic-
ity.

If the tree-breadth of an n-vertex graph G is p then, by
a result from [37], G admits a tree (2plog,n)-spanner con-
structible in polynomial time. Hence, G enjoys a (2plog,n)-
multiplicative routing labeling scheme with O(logn)-bit
labels and O(1) time routing protocol (routing is essentially
done in that tree spanner). Another result for graphs with
tb(G) = p, useful for designing routing labeling schemes, is
presented in [36]. It states that every n-vertex graph G with
tb(G) = p has a system of at most log,n collective additive
tree (2plog,n)-spanners, that is, a system 7 of at most log,n
spanning trees of G such that for any two vertices u,v of G
there is a tree T in 7 with dr(u,v) < dg(u,v) + 2plog,n.
Furthermore, such a system 7 for G can be constructed in

polynomial time [36]. By combining this with a result from
[38], we obtain that every n-vertex graph G with tb(G) = p
enjoys a (2plog,n)-additive routing labeling scheme with
0(log3n)—bit labels and O(1) time routing protocol with
O(logn) message initiation time. The approach of [38] is
to assign to each vertex of G a label with 0(10g3n) bits (dis-
tance and routing labels coming from log,n spanning trees)
and then, using the label of a source vertex v and the label of a
destination vertex u, identify in O(log n) time a best spanning
tree in 7 to route from v to u.

If the tree-length of an n-vertex graph G is A then, by result
from [32], G enjoys a 6A-additive routing labeling scheme
with O(Alog®n)-bit labels and O(log 1) time routing protocol.

If the hyperbolicity of an n-vertex graph G is § then,
by result from [24], G enjoys an O(6 log n)-additive routing
labeling scheme with 0(810g2n)-bit labels and O(log §) time
routing protocol. Note that, for any graph G, the hyperbolicity
of G is at most its tree-length [23].

Thus, for our graph datasets, there exists a very com-
pact labeling scheme (at most O(log?n) or O(log>n) bits per
vertex) that encodes logarithmic length routes between any
pair of vertices, that is, routes of length at most dg(u, v) +
min {0(8 logn), 6, 2plog2n} < diam(G) + O(logn) <
O(logn) for each vertex pair u,v of G. The latter implies
very good navigability of our graph datasets. Recall that, for
our graph datasets, diam(G) < O(logn) holds.

8.3.  Approximating diameter and radius

Recall that the eccentricity of a vertex v of a graph G,
denoted by ecc(v), is the maximum distance from v to any
other vertex of G, that is, ecc(v) := max,ecydg(v,u). The
diameter diam(G) of G is the largest eccentricity of a vertex
in G, thatis, diam(G) := max,cyecc(v) = max, yevdc U, v).
The radius rad(G) of G is the smallest eccentricity of a
vertex in G, that is, rad(G) := min,cyecc(v). A vertex
c of G with ecc(v) = rad(G) (i.e., a smallest eccen-
tricity vertex) is called a central vertex of G. The center
C(G) of G is the set of all central vertices of G. Let also
FW):={ueV:dg(v,u) = ecc(v)} be the set of vertices of
G furthest from v.

In general (even unweighted) graphs, it is still an open
problem whether the diameter and/or the radius of a graph
G can be computed faster than the time needed to compute
the entire distance matrix of G (which requires O(nm) time
for a general unweighted graph). Conversely, it is known that
both, the diameter and the radius, of a tree 7' can be calculated
in linear time [48]. That can be done using 2 Breadth-First-
Search (BFS) scans as follows. Pick an arbitrary vertex u of
T. Run a BFS starting from u to find v € F(u). Run a second
BFS starting from v to find w € F(v). Then, dr(v,w) =
diam(T), that is, v, w is a diametral pair of T, and rad(G) =
L(dr(v,w) + 1)/2]. To find the center of T it suffices to take
one or two adjacent middle vertices of the (v, w)-path of T'.

Interestingly, Chepoi et al. [23] established that this
approach of 2 BFS-scans can be adapted to provide quick
(in linear time) and accurate approximations of the diameter,
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TABLE 9. Estimation of diameters and radii

# of BFS Estimated
scans needed radius, that
to get is, ecc(-) of a
G=(,E) diam(G) rad(G) diam(G) middle vertex
PPI 19 11 3 12
Yeast 11 6 3 6
DutchElite 22 12 4 13
EPA 10 6 2 7
EVA 18 10 2 10
California 13 7 2 8
Erdos 4 2 2 3
Routeview 10 5 2 5
Homo 10 5 2 6
AS_CAIDA_20071105 17 9 2 9
Dimes 3/2010 8 4 2 5
Aqualab 12/2007- 09/2008 9 5 2 5
AS_CAIDA_20120601 10 5 2 5
itdk0304 26 14 2 15
DBLB-coauth 23 12 2 14
Amazon 47 24 2 26

radius, and center of any finite set S of §-hyperbolic geodesic
spaces and graphs. In particular, for a §-hyperbolic graph G,
it was shown that if v € F(u) and w € F(v), then dg(v,w) >
diam(G) — 2§ and rad(G) < [(dg(v,w) + 1)/2] + 34. Fur-
thermore, the center C(G) of G is contained in the ball of
radius 58 + 1 centered at a middle vertex ¢ of any shortest
path connecting v and w in G.

As our graph datasets have small hyperbolicities, accord-
ingto [23],afew (2, 3,4, ...) BFS-scans, each next starting ata
vertex last visited by the previous scan, should provide a pair
of vertices x and y such that dg(x, y) is close to the diameter
diam(G) of G. Surprisingly (see Table 9), a few BFS-scans
were sufficient to get the exact diameters of all of our graph
datasets: for 13 datasets, 2 BFS-scans (just like for trees) were
sufficient to find the exact diameter of a graph. Two datasets
needed three BFS-scans to find the diameter, and only one
dataset required four BFS-scans to get the diameter. We also
computed the eccentricity of a middle vertex of a longest
shortest path produced by these few BFS-scans and reported
this eccentricity as an estimation for the radius. It turned out
that the eccentricity of that middle vertex was equal to the
exact radius for six datasets, was only one unit larger than
the exact radius for eight datasets, and for two datasets was
only two units larger than the exact radius.

9. CONCLUSION

Based on solid theoretical foundations, we presented
strong evidence that a number of real-world networks, taken
from different domains such as Internet measurements, bio-
logical datasets, web graphs, social and collaboration net-
works, exhibit metric tree-like structures. We investigated
a few graph parameters, namely, tree-distortion and tree-
stretch, tree-length and tree-breadth, Gromov’s hyperbolicity,
cluster-diameter and cluster-radius in a layering partition
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of a graph. Such parameters capture and quantify this phe-
nomenon of being metrically close to a tree. Recent advances
in theory allowed us to calculate or accurately estimate these
parameters for sufficiently large networks. All these parame-
ters are at most constant or (poly)logarithmic factors apart
from each other. Specifically, for every n-vertex, m-edge
graph G, the graph parameters td(G), tI(G), tb(G), As(G),
Ry (G) are within small constant factors from each other. The
parameters ts(G) and §(G) are within a factor of at most
O(log n) from td(G), tI(G), tb(G), As(G), Rs(G). The tree-
stretch ts(G) is within a factor of at most 0(10g2n) from the
hyperbolicity §(G). One can summarize those relationships
with the following chains of inequalities:

3(G) < Ag(G) < O(8(G) logn);

Rs(G) = As(G) < 2R,(G); th(G) < tI(G) < 2tb(G);
3(G) = tl(G) = td(G) < ts(G)

< 2th(G)log,n < O(8(G)log*n);
tI(G) — 1 < A{(G) < 3t(G) < 3td(G) < 32A4(G) +2);
th(G) — 1 < Ry(G) < 3tb(G) < 3 [ts(G)/2].

If one of these parameters or its average version has a small
value for a large-scale network (e.g., it is not larger than
log, (n + m)), we say that that network has a metric tree-like
structure. Among these parameters, the theoretically smallest
ones are §(G), Ry(G) and tb(G) (with tb(G) being at most
R;(G) + 1). Our experiments showed that average versions
of As(G) and of td(G) have also very small values for the
investigated graph datasets.

In Table 10, we provide a summary of metric tree-likeness
measurements calculated for our datasets. Figure 7 shows
four important metric tree-likeness measurements (scaled) in
comparison. Figure 8 gives pairwise dependencies between
those measurements (one as a function of another).

From the experimental results, we observe that in almost
all cases the measurements seem to be monotonic with respect
to each others. The smaller one measurement for a given
dataset, the smaller the other measurements are. There are
also a few exceptions. For example, the EVA dataset has
relatively large cluster-diameter, Ag(G) = 9, but small
hyperbolicity, §(G) = 1. Conversely, the Erdos dataset has
As(G) = 4 while its hyperbolicity §(G) is equal to 2 (see Fig.
8a). Yet, the Erdos dataset has better embedability (smaller
average distortions) into trees H, Hy, and Hé than that of
EVA, suggesting that the (average) cluster-diameter may have
a greater impact on the embedability into trees H, Hy, and
H,. Comparing the measurements obtained for Erdds with
those obtained for Homo, we observe that both have the same
hyperbolicity 2; however, Erdos has better embedability (see
the average distortion) into trees H ,Hg,Hé. This could be
explained by a smaller A (G) and average diameter of clus-
ters in the Erdos dataset. Comparing measurements obtained
for PPI with those obtained for California (the same holds for
AS_CAIDA_20071105 vs. AS_CAIDA_20120601), both
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TABLE 10. Summary of tree-likeness measurements

Average diameter
of clusters in

Cluster-diameter

Tree H H, H,
average average average

Cluster-radius

G=(V,E) diam(G) rad(G) As(G) LP(G,s) 8(G) distortion*  distortion  distortion R (G)
PPI 19 11 8 0.12 35 1.38 5.71 5.30 4
Yeast 11 6 6 0.12 2.5 1.32 4.38 3.79 4
DutchElite 22 12 10 0.07 4 141 545 6.53 6
EPA 10 6 6 0.07 2.5 1.27 4.51 4.07 4
EVA 18 10 9 0.03 1 1.14 5.83 7.78 5
California 13 7 8 0.09 3 1.35 4.16 4.99 4
Erdos 4 2 4 0.00 2 1.05 3.09 3.07 2
Routeview 10 5 6 0.06 2.5 1.24 4.28 4.80 3
Homo 10 5 5 0.03 2 1.19 4.65 3.97 3
AS_CAIDA_20071105 17 9 6 0.06 2.5 1.23 4.24 4.77 3
Dimes 3/2010 8 4 4 0.06 2 1.20 344 3.36 2
Aqualab 12/2007- 09/2008 9 5 6 0.06 2 1.28 4.23 4.54 3
AS_CAIDA_20120601 10 5 6 0.06 2 1.16 4.11 4.53 3
itdk0304 26 14 11 0.27 - 1.57 5.37 5.71 6
DBLB-coauth 23 12 11 0.45 - 1.74 5.58 5.13 7
Amazon 47 24 21 0.49 - 2.47 8.82 7.87 12

__ (avg. distortion right x# right pairs )4-( avg. distortion left x# left pairs )4-# undistorted pairs
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FIG. 7. Four tree-likeness measurements scaled. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

have the same A (G) and R;(G) values; however, Cali-
fornia (AS_CAIDA_20120601) has smaller hyperbolicity
and average diameter of clusters. We also observe that the
datasets Routeview and AS_CAIDA_20071105 have same
values of A (G), Rs(G),and § (G) but AS_CAIDA_20071105
has a relatively smaller average diameter of clusters. This
could explain why AS_CAIDA_20071105 has relatively bet-
ter embedability into H, H,, and Hé than Routeview. We
can see that the difference in average diameters of clus-
ters was relatively small, resulting in a small difference in
embedability.

From these observations, one can suggest that, for classifi-
cations of our datasets, all these tree-likeness measurements
are important; they collectively capture and explain their
metric tree-likeness. We suggest that metric tree-likeness
measurements in conjunction with other local characteristics
of networks, such as the degree distribution and clustering
coefficients, provide a more complete unifying picture of
network structures.

We conclude this article with a few open theoretical
questions.

1. We observed that many real-world networks do exhibit

a metric tree-like structure. Is it just because all those
networks are connected, have relatively small number
of edges, high clustering coefficient, and Power-Law
degree distribution, or is metric tree-likeness is an inde-
pendent feature of those networks? Generally, can one
identify what structural obstacles (perhaps, large isomet-
ric cycles, grids, etc.) govern metric tree-unlikeness of a
graph?

. With respect to specific tree-likeness parameters of a

graph, we are interested in the following questions. We
have listed above all known inequalities between differ-
ent metric tree-likeness parameters of a graph. Can those
bounds be improved? Are they sharp?

. We have mentioned in Section 6 that tree H, provides

a 6-approximate solution to the problem of minimum
distortion noncontractive embedding of graphs into trees.
In Proposition 9, we showed that there is a simple linear-
time 3-approximation algorithm for computing the tree-
breadth of a graph. Can these approximation bounds be
improved? What inapproximability results can be proven
for these problems?

. Weknow (see Proposition 13) that if a graph G is noncon-

tractively embeddable into a tree with distortion td(G),
then it is embeddable into a spanning tree with stretch
at most 2td(G)log,n, and such an embedding and a cor-
responding spanning tree can be found in polynomial
time. We know also (see Proposition 14) that every §-
hyperbolic graph G admits a tree O(8log>n)-spanner and
such a spanning tree for G can be constructed in polyno-
mial time. Are these results best possible? Can they be
improved? In particular, does any §-hyperbolic graph G
admit a tree O(8 log n)-spanner?

. In Section 8, we listed a number of problems that can be

solved efficiently if tree-likeness parameters of a graph
are bounded. What other interesting problems can be
solved on metric tree-like graphs more efficiently than
on general graphs?
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(a) hyperbolicity 6(G) vs. cluster-diameter A,(G).
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FIG.8. Tree-likeness measurements: pairwise comparison. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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