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Abstract. We investigate the minimum line-distortion and the mini-
mum bandwidth problems on unweighted graphs and their relations with
the minimum length of a Robertson-Seymour’s path-decomposition. The
length of a path-decomposition of a graph is the largest diameter of a
bag in the decomposition. The path-length of a graph is the minimum
length over all its path-decompositions. In particular, we show: (i) if a
graph G can be embedded into the line with distortion k, then G admits a
Robertson-Seymour’s path-decomposition with bags of diameter at most
k in G; (ii) for every class of graphs with path-length bounded by a con-
stant, there exist an efficient constant-factor approximation algorithm for
the minimum line-distortion problem and an efficient constant-factor ap-
proximation algorithm for the minimum bandwidth problem; (iii) there
is an efficient 2-approximation algorithm for computing the path-length
of an arbitrary graph; (iv) AT-free graphs and some intersection families
of graphs have path-length at most 2; (v) for AT-free graphs, there exist
a linear time 8-approximation algorithm for the minimum line-distortion
problem and a linear time 4-approximation algorithm for the minimum
bandwidth problem.

1 Introduction and Previous Work

Computing a minimum distortion embedding of a given n-vertex graph G into
the line � was recently identified as a fundamental algorithmic problem with
important applications in various areas of computer science, like computer vision
[21], as well as in computational chemistry and biology (see [15]). It asks, for a
given graph G = (V,E), to find a mapping f of vertices V of G into points of
� with minimum number k such that dG(x, y) ≤ |f(x) − f(y)| ≤ kdG(x, y) for
every x, y ∈ V . The parameter k is called the minimum line-distortion of G and
denoted by ld(G). The embedding f is called non-contractive since dG(x, y) ≤
|f(x)− f(y)| for every x, y ∈ V .

In [3], Bǎdoiu et al. showed that this problem is hard to approximate
within a constant factor. They gave an exponential-time exact algorithm and a
polynomial-time O(n1/2)-approximation algorithm for arbitrary unweighted in-
put graphs, along with a polynomial-time O(n1/3)-approximation algorithm for
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unweighted trees. In another paper [2] Bǎdoiu et al. showed that the problem
is hard to approximate by a factor O(n1/12), even for weighted trees. They also
gave a better polynomial-time approximation algorithm for general weighted
graphs, along with a polynomial-time algorithm that approximates the mini-
mum line-distortion k embedding of a weighted tree by a factor polynomial in
k. Fast exponential-time exact algorithms for computing the line-distortion of a
graph were proposed in [8,9]. Fomin et al. in [9] showed that a minimum dis-
tortion embedding of an unweighted graph into the line can be found in time
5n+o(n). Fellows et al. in [8] gave an O(nk4(2k + 1)2k) time algorithm that
for an unweighted graph G and integer k either constructs an embedding of
G into the line with distortion at most k, or concludes that no such embed-
ding exists. They extended their approach also to weighted graphs obtaining an
O(nk4W (2k+1)2kW ) time algorithm, where W is the largest edge weight. Thus,
the problem of minimum distortion embedding of a given n-vertex graph G into
the line � is Fixed Parameter Tractable. Recently, Heggernes et al. in [13,14]
initiated the study of minimum distortion embeddings into the line of specific
graph classes. In particular, they gave polynomial-time algorithms for the prob-
lem on bipartite permutation graphs and on threshold graphs [14]. Furthermore,
in [13], Heggernes et al. showed that the problem of computing a minimum dis-
tortion embedding of a given graph into the line remains NP-hard even when
the input graph is restricted to a bipartite, cobipartite, or split graph, imply-
ing that it is NP-hard also on chordal, cocomparability, and AT-free graphs.
They also gave polynomial-time constant-factor approximation algorithms for
split and cocomparability graphs.

Minimum distortion embedding into the line may appear to be closely re-
lated to the widely known and extensively studied graph parameter bandwidth,
denoted by bw(G). The only difference between the two parameters is that a
minimum distortion embedding has to be non-contractive, whereas there is no
such restriction for bandwidth. Formally, given an unweighted graph G = (V,E)
on n vertices, consider a 1-1 map f of the vertices V into integers in [1, n]; f
is called a layout of G. The bandwidth of layout f is defined as the maximum
stretch of any edge, i.e., bw(f) = maxuv∈E |f(u) − f(v)|. The bandwidth of a
graph is defined as the minimum possible bandwidth achievable by any 1-1 map
(layout) V → [1, n]. That is, bw(G) = minf :V →[1,n] bw(f).

It is known that bw(G) ≤ ld(G) for every connected graph G (see, e.g., [14]).
However, the bandwidth and the minimum line-distortion of a graph can be
very different. For example, it is common knowledge that a cycle of length n has
bandwidth 2, whereas its minimum line-distortion is exactly n − 1 [14]. Band-
width is known to be one of the hardest graph problems; it is NP-hard even for
very simple graphs like caterpillars of hair-length at most 3 [18], and it is hard to
approximate by a constant factor even for trees [1]. Polynomial-time algorithms
for the exact computation of bandwidth are known for very few graph classes,
including bipartite permutation graphs [12] and interval graphs (see, e.g., [17]
and papers cited therein). A constant-factor approximation algorithm is known
for AT-free graphs [16]. In [10] Golovach et al. showed also that the bandwidth
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minimization problem is Fixed Parameter Tractable on AT-free graphs by pre-
senting an n2O(k log k) time algorithm. For general (unweighted) n-vertex graphs,
the minimum bandwidth can be approximated within a factor of O(log3.5 n) [7].
For n-vertex trees and chordal graphs, the minimum bandwidth can be approx-
imated within a factor of O(log2.5 n) [11].

Our main tool in this paper is Robertson-Seymour’s path-decomposition and
its length. A path-decomposition ([20]) of a graph G = (V,E) is a sequence of
subsets {Xi : i ∈ I} (I := {1, 2, . . . , q}) of vertices of G, called bags, with three
properties: (1)

⋃
i∈I Xi = V ; (2) For each edge uv ∈ E, there is a bag Xi such

that u, v ∈ Xi; (3) For every three indices i ≤ j ≤ k, Xi∩Xk ⊆ Xj (equivalently,
the subsets containing any particular vertex form a contiguous subsequence of the
whole sequence). We denote a path-decomposition {Xi : i ∈ I} of a graph G by
P(G). The width of a path-decomposition P(G) = {Xi : i ∈ I} is maxi∈I |Xi|−1.
The path-width of a graph G, denoted by pw(G), is the minimum width over all
path-decompositions P(G) of G [20]. The caterpillars are exactly the graphs
with path-width 1. Following [5] (where the notion of tree-length of a graph was
introduced), we define the length of a path-decomposition P(G) of a graph G to
be λ := maxi∈I maxu,v∈Xi dG(u, v) (i.e., each bag Xi has diameter at most λ in
G). The path-length of G, denoted by pl(G), is the minimum length over all path-
decompositions of G. Interval graphs are exactly the graphs with path-length 1;
it is known that G is an interval graph if and only if G has a path-decomposition
with each bag being a maximal clique of G. Following [6] (where the notion
of tree-breadth of a graph was introduced), we define the breadth of a path-
decomposition P(G) of a graph G to be the minimum integer r such that for
every i ∈ I there is a vertex vi ∈ V with Xi ⊆ DG(vi, r) (i.e., each bag Xi can
be covered by a disk DG(vi, r) of radius at most r in G). Note that vertex vi
does not need to belong to Xi. The path-breadth of G, denoted by pb(G), is the
minimum breadth over all path-decompositions of G. Evidently, for any graph
G with at least one edge, 1 ≤ pb(G) ≤ pl(G) ≤ 2pb(G) holds. Hence, if one
parameter is bounded by a constant for a graph G then the other parameter is
bounded for G as well.

Recently, Robertson-Seymour’s tree-decompositions with bags of bounded ra-
dius proved to be very useful in designing an efficient approximation algorithm
for the problem of minimum stretch embedding of an unweighted graph into
its spanning tree [6]. The decision version of the problem is the tree t-spanner
problem which asks, for a given graph G = (V,E) and an integer t, if a spanning
tree T exists such that dT (x, y) ≤ t dG(x, y) for every x, y ∈ V . It was shown
in [6] that: (a) if a graph G can be embedded to a spanning tree with stretch t,
then G admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most �t/2� and diameter at most t in G (i.e., the tree-breadth tb(G) of G
is at most �t/2� and the tree-length tl(G) of G is at most t); (b) there is an
efficient algorithm which constructs for an n-vertex unweighted graph G with
tb(G) ≤ ρ a spanning tree with stretch at most 2ρ log2 n. As a consequence, an
efficient (log2 n)-approximation algorithm for the problem of minimum stretch
embedding of an unweighted graph into its spanning tree was obtained [6].
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Contribution of This Paper: Motivated by [6], in this paper, we investi-
gate possible connections between the line-distortion and the path-length (path-
breadth) of a graph. We show that, for every graph G, pl(G) ≤ ld(G) and
pb(G) ≤ �ld(G)/2� hold. Furthermore, we demonstrate that for every class of
graphs with path-length bounded by a constant, there is an efficient constant-
factor approximation algorithm for the minimum line-distortion problem. As a
consequence, every graph G with ld(G) = c can be embedded in polynomial
time into the line with distortion at most O(c2) (reproducing a result from [3]).
Additionally, using the same technique, we show that, for every class of graphs
with path-length bounded by a constant, there is an efficient constant-factor ap-
proximation algorithm for the minimum bandwidth problem. We also investigate
(i) what particular graph classes have constant bounds on path-length and (ii)
how fast the path-length of an arbitrary graph can be computed or sharply esti-
mated. We present an efficient 2-approximation (3-approximation) algorithm for
computing the path-length (resp., the path-breadth) of a graph. We show that
AT-free graphs and some intersection families of graphs have small path-length
and path-breadth. In particular, the path-length of every AT-free graph is at
most 2. Using this and some additional structural properties, we give a linear
time 8-approximation algorithm for the minimum line-distortion problem and a
linear time 4-approximation algorithm for the minimum bandwidth problem for
AT-free graphs.

2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. We call G = (V,E) an n-vertex m-edge
graph if |V | = n and |E| = m. In this paper we consider only graphs with
n > 1. A clique is a set of pairwise adjacent vertices of G. By G[S] we denote
a subgraph of G induced by vertices of S ⊆ V . For a vertex v of G, the sets
NG(v) = {w ∈ V : vw ∈ E} and NG[v] = NG(v) ∪ {v} are called the open
neighborhood and the closed neighborhood of v, respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between vertices u and v is the length
of a shortest path connecting u and v in G. The diameter in G of a set S ⊆ V
is maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in some
papers they are called the weak diameter and the weak radius to indicate that
the distances are measured in G not in G[S]). The distance between a vertex v
and a set S of G is measured as dG(v, S) = minu∈S dG(v, u). The disk of G of
radius k centered at vertex v is the set of all vertices at distance at most k to v:
DG(v, k) = {w ∈ V : dG(v, w) ≤ k}.

The following result generalizes a characteristic property of the famous class
of AT-free graphs (see [4]). An independent set of three vertices such that each
pair is joined by a path that avoids the neighborhood of the third is called
an asteroidal triple. A graph G is an AT-free graph if it does not contain any
asteroidal triples [4]. Proofs of statements in this section are omitted.



162 F.F. Dragan, E. Köhler, and A. Leitert

Proposition 1. Let G be a graph with pl(G) ≤ λ. Then, for every three vertices
u, v, w of G there is one vertex, say v, such that the disk of radius λ centered at
v intercepts every path connecting u and w, i.e., the removal of disk DG(v, λ)
from G disconnects u and w.

We will also need the following property of graphs with pl(G) ≤ λ. A path P
of a graph G is called k-dominating path of G if every vertex v of G is at distance
at most k from a vertex of P , i.e., dG(v, P ) ≤ k. A pair of vertices x, y of G is
called a k-dominating pair if every path between x and y is a k-dominating path
of G. It is known that every AT-free graph has a 1-dominating pair [4].

Corollary 1. Every graph G with pl(G) ≤ λ has a λ-dominating pair.

The following proposition further strengthens the connections between graphs
with small path-length and AT-free graphs. Recall that the k-power of a graph
G = (V,E) is a graph Gk = (V,E′) such that for every x, y ∈ V (x 
= y), xy ∈ E′

if and only if dG(x, y) ≤ k.

Proposition 2. For a graph G with pl(G) ≤ λ, G2λ is an AT-free graph.

A subset of vertices of a graph is called connected if the subgraph induced by
those vertices is connected. We say that two connected sets S1, S2 of a graph G
see each other if they have a common vertex or there is an edge in G with one
end in S1 and the other end in S2. A family of connected subsets of G is called
a bramble if every two sets of the family see each other. We say that a bramble
F = {S1, . . . , Sh} of G is k-dominated by a vertex v of G if in every set Si of F
there is a vertex ui ∈ Si with dG(v, ui) ≤ k.

Proposition 3. For a graph G with pb(G) ≤ ρ, every bramble of G is ρ-
dominated by a vertex.

Corollary 2. Let G be a graph with pb(G) ≤ ρ, S be a subset of vertices of G
and r:S → N be a radius function defined on S such that the disks of the family
F = {DG(x, r(x)) : x ∈ S} pairwise intersect. Then the disks {DG(x, r(x) + ρ) :
x ∈ S} have a nonempty common intersection.

3 Bandwidth of Graphs with Bounded Path-Length

In this section we show that there is an efficient algorithm that for any graph
G with pl(G) = λ produces a layout f with bandwidth at most (4λ+ 2)bw(G).
Moreover, this statement is true even for all graphs with λ-dominating shortest
paths. Recall that a shortest path P of a graph G is a k-dominating shortest
path of G if every vertex v of G is at distance at most k from a vertex of P , i.e.,
dG(v, P ) ≤ k. We will need the following auxiliary lemma.

Lemma 1 ([19]). For each vertex v ∈ V of an arbitrary graph G and each

positive integer r, |DG(v,r)|−1
2r ≤ bw(G).
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The main result of this section is the following.

Proposition 4. Every graph G with a k-dominating shortest path has a layout
f with bandwidth at most (4k + 2)bw(G). If a k-dominating shortest path of G
is given in advance, then such a layout f can be found in linear time.

Proof. Let P = (x0, x1, . . . , xi, . . . , xj , . . . , xq) be a k-dominating shortest path
of G. Consider a Breadth-First-Search-tree TP of G started from path P , i.e.,
BFS(P )-tree of G. For each vertex xi of P , let Xi be the set of vertices of G that
are located in the branch of TP that is rooted at xi. We have xi ∈ Xi. Since P
k-dominates G, we have dG(v, xi) ≤ k for every i ∈ {1, . . . , q} and every v ∈ Xi.
Now create a layout f of G by placing vertices of Xi before all vertices of Xj , if
i < j, and by placing vertices within each Xi in an arbitrary order.

We claim that this layout f has bandwidth at most (4k + 2)bw(G). Consider
any edge uv of G and assume u ∈ Xi and v ∈ Xj (i ≤ j). For this edge uv we have

f(v)−f(u) ≤ |⋃j
l=i Xl|−1. We know also that dP (xi, xj) = j−i ≤ 2k+1, since P

is a shortest path of G and dP (xi, xj) = dG(xi, xj) ≤ dG(xi, u)+1+dG(xj , v) ≤
2k + 1. Consider vertex xc of P with c = i + �(j − i)/2�, i.e., a middle vertex
of subpath of P between xi and xj . Consider an arbitrary vertex w in Xl,
i ≤ l ≤ j. Since dG(xc, w) ≤ dG(xc, xl) + dG(xl, w), dG(xc, xl) ≤ �2k + 1�/2
and dG(xl, w) ≤ k, we get dG(xc, w) ≤ 2k+1. In other words, disk DG(xc, 2k+

1) contains all vertices of
⋃j

l=i Xl. Applying Lemma 1 to |DG(xc, 2k + 1)| ≥
|⋃j

l=i Xl|, we conclude f(v) − f(u) ≤ |⋃j
l=i Xl| − 1 ≤ |DG(xc, 2k + 1)| − 1 ≤

2(2k + 1)bw(G) = (4k + 2)bw(G). ��
Corollary 3. For every n-vertex m-edge graph G, a layout with bandwidth at
most (4pl(G) + 2)bw(G) can be found in O(n2m) time.

Proof. For an n-vertex m-edge graph G, a k-dominating shortest path with
k ≤ pl(G) can be found in O(n2m) time as follows. Iterate over all vertex pairs
of G. For each pair pick a shortest path P connecting them and run BFS(P)
to find most distant vertex vP from P . Finally, report that path P for which
dG(vP , P ) is minimum. By Corollary 1, this minimum is at most pl(G). ��

Thus, we have the following interesting conclusion.

Theorem 1. For every class of graphs with path-length bounded by a constant,
there is an efficient constant-factor approximation algorithm for the minimum
bandwidth problem.

In Section 6 we show that the path-length of every AT-free graph is at most
2. Using additional structural properties of AT-free graphs, we give for them
a linear time 4-approximation algorithm for the minimum bandwidth problem.
This result reproduces an approximation result from [16] with a better run-time.

4 Path-Length and Line-Distortion

In this section, we first show that the line-distortion of a graph gives an upper
bound on its path-length and then demonstrate that if the path-length of a
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graph G is bounded by a constant then there is an efficient constant-factor
approximation algorithm for the minimum line-distortion problem on G.

Proposition 5. For an arbitrary graph G, pl(G) ≤ ld(G), pw(G) ≤ ld(G) and
pb(G) ≤ �ld(G)/2�.
Proof. It is known (see, e.g., [14]) that every connected graph G = (V,E) has a
minimum distortion embedding f into the line � (called a canonic embedding)
such that |f(x) − f(y)| = dG(x, y) for every two vertices of G that are placed
next to each other in � by f . Assume, in what follows, that f is such a canonic
embedding and let k := ld(G).

Consider the following path-decomposition of G created from f . For each
vertex v, form a bag Bv consisting of all vertices of G which are placed by f in
the interval [f(v), f(v)+k] of the line �. Order these bags with respect to the left
ends of the corresponding intervals. Evidently, for every vertex v ∈ V , v ∈ Bv,
i.e., each vertex belongs to a bag. More generally, a vertex u belongs to a bag
Bv if and only if f(v) ≤ f(u) ≤ f(v) + k. Since ld(G) = k, for every edge uv of
G, |f(u)− f(v)| ≤ k holds. Hence, both ends of edge uv belong either to bag Bu

(if f(u) < f(v)) or to bag Bv (if f(v) < f(u)). Consider now three bags Ba, Bb,
and Bc with f(a) < f(b) < f(c) and a vertex v of G that belongs to Ba and Bc.
We have f(a) < f(b) < f(c) ≤ f(v) ≤ f(a) + k < f(b) + k. Hence, necessarily, v
belongs to Bb as well.

It remains to show that each bag Bv, v ∈ V , has in G diameter at most
k, radius at most �k/2� and cardinality at most k + 1. Indeed, for any two
vertices x, y ∈ Bv, we have |f(x) − f(y)| ≤ k, i.e., dG(x, y) ≤ |f(x)− f(y)| ≤ k.
Furthermore, any interval [f(v), f(v) + k] (of length k) can have at most k + 1
vertices of G as the distance between any two vertices placed by f to this interval
is at least 1 (|f(x) − f(y)| ≥ dG(x, y) ≥ 1). Thus, |Bv| ≤ k + 1 for every v ∈ V .

Consider now the point pv := f(v) + �k/2� in the interval [f(v), f(v) + k]
of �. Assume, without loss of generality, that pv is between f(x) and f(y), the
images of two vertices x and y of G placed next to each other in � by f . Let
f(x) ≤ pv < f(y). Since f is a canonic embedding, there must exist in G a
vertex c on a shortest path between x and y such that dG(x, c) = pv − f(x) and
dG(c, y) = f(y)−pv = dG(x, y)−dG(x, c). We claim that for every vertex w ∈ Bv,
dG(c, w) ≤ �k/2� holds. Assume f(w) ≥ f(y) (the case when f(w) ≤ f(x) is
similar). Then, we have dG(c, w) ≤ dG(c, y) + dG(y, w) ≤ (f(y)− pv) + (f(w)−
f(y)) = f(w)− pv ≤ f(w)− f(v)− �k/2� ≤ k − �k/2� ≤ �k/2�. ��

It should be noted that the difference between the path-length and the line-
distortion of a graph can be very large. A complete graph Kn on n vertices
has path-length 1, whereas the line-distortion of Kn is n − 1. Note also that
the bandwidth and the path-length of a graph do not bound each other. The
bandwidth of Kn is n − 1 while its path-length is 1. On the other hand, the
path-length of cycle C2n is n while its bandwidth is 2.

Now we show that there is an efficient algorithm that for any graph G with
pl(G) = λ produces an embedding f of G into the line � with distortion at
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most (12λ + 7)ld(G). Again, this statement is true even for all graphs with λ-
dominating shortest paths. We will need the following auxiliary lemma from [3].
We reformulate it slightly. Recall that a subset of vertices of a graph is called
connected if the subgraph induced by those vertices is connected.

Lemma 2 ([3]). Any connected subset S ⊆ V of a graph G = (V,E) can be
embedded into the line with distortion at most 2|S| − 1 in time O(|V |+ |E|). In
particular, there is a mapping f , computable in O(|V | + |E|) time, of vertices
from S into points of the line such that dG(x, y) ≤ |f(x) − f(y)| ≤ 2|S| − 1 for
every x, y ∈ S.

The main result of this section is the following.

Proposition 6. Every graph G with a k-dominating shortest path admits an
embedding f of G into the line with distortion at most (8k + 4)ld(G) + (2k)2 +
2k + 1. If a k-dominating shortest path of G is given in advance, then such an
embedding f can be found in linear time.

Proof. Like in the proof of Proposition 4, consider a k-dominating shortest path
P = (x0, x1, . . . , xi, . . . , xj , . . . , xq) of G and identify by BFS(P ) the sets Xi,
i ∈ {1, . . . , q}. We had dG(v, xi) ≤ k for every i ∈ {1, . . . , q} and every v ∈ Xi.
It is clear also that each Xi is a connected subset of G. Similar to [3], we define
an embedding f of G into the line � by placing vertices of Xi before all vertices
of Xj , if i < j, and by placing vertices within each Xi in accordance with the
embedding mentioned in Lemma 2. Also, for each i ∈ {1, . . . , q − 1}, leave a
space of length 2k+ 1 between the interval of � spanning the vertices of Xi and
the interval spanning the vertices of Xi+1.

We claim that f is a (non-contractive) embedding with distortion at most
(8k+4)ld(G)+(2k)2+2k+1. It is sufficient to show that dG(x, y) ≤ |f(x)−f(y)|
for every two vertices of G that are placed next to each other in � by f and that
|f(v)− f(u)| ≤ (8k + 4)ld(G) + (2k)2 + 2k + 1 for every edge uv of G (see, e.g.,
[3,14]).

From Lemma 2, we know that dG(x, y) ≤ |f(x)− f(y)| ≤ 2|Xl| − 1 for every
x, y ∈ Xl and l ∈ {1, 2, . . . , q}. Additionally, for every x ∈ Xi and y ∈ Xi+1

(i ∈ {1, 2, . . . , q− 1}), we have dG(x, y) ≤ dG(x, xi)+ 1+ dG(y, xi+1) ≤ 2k+1 ≤
|f(y)−f(x)| (as a space of length 2k+1 is left between the interval of � spanning
the vertices of Xi and the interval spanning the vertices of Xi+1). Hence, f is
non-contractive.

Consider now an arbitrary edge uv of G and assume u ∈ Xi and v ∈ Xj

(i ≤ j). For this edge uv we have f(v) − f(u) ≤ ∑j
l=i(2|Xl| − 1 + 2k + 1) −

2k − 1 ≤ 2|⋃j
l=i Xl| + 2k(j − i + 1) − 2k − 1 = 2|⋃j

l=i Xl| + 2k(j − i) − 1.
Recall that dP (xi, xj) = j − i ≤ 2k + 1, since P is a shortest path of G and
dP (xi, xj) = dG(xi, xj) ≤ dG(xi, u)+1+dG(xj , v) ≤ 2k+1. Hence, f(v)−f(u) ≤
2|⋃j

l=i Xl|+ 2k(2k + 1)− 1.

As in the proof of Proposition 4, |⋃j
l=iXl| − 1 ≤ (4k+2)bw(G). As bw(G) ≤

ld(G) for every graphG (see, e.g., [14]), we get f(v)−f(u) ≤ 2|⋃j
l=i Xl|+2k(2k+

1)− 1 ≤ 2(4k+ 2)bw(G) + 2k(2k+ 1) + 1 ≤ (8k+ 4)ld(G) + 2k(2k+ 1) + 1. ��
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Corollary 4. For every n-vertex m-edge graph G, an embedding into the line
with distortion at most (12pl(G) + 7)ld(G) can be found in O(n2m) time.

Proof. See the proof of Corollary 3 and note that, by Proposition 5, pl(G) ≤
ld(G). Hence, the distortion established in Proposition 6 becomes ≤ (8pl(G) +
4)ld(G) + 2(2pl(G) + 1)ld(G) + 1 ≤ (12pl(G) + 7)ld(G). ��

Thus, we have the following interesting conclusion.

Theorem 2. For every class of graphs with path-length bounded by a constant,
there is an efficient constant-factor approximation algorithm for the minimum
line-distortion problem.

Using inequality pl(G) ≤ ld(G) in Corollary 4 once more, we reproduce a
result of [3].

Corollary 5 ([3]). For every graph G with ld(G) = c, an embedding into the
line with distortion at most O(c2) can be found in polynomial time.

It should be noted that, since the difference between the path-length and the
line-distortion of a graph can be very large (close to n), the result in Corollary
4 seems to be stronger.

Theorem 1 and Theorem 2 stress the importance of investigations of (i) what
particular graph classes have constant bounds on path-length and of (ii) how fast
the path-length of an arbitrary graph can be computed or sharply estimated.

5 Constant-Factor Approximation of Path-Length

Let G = (V,E) be an arbitrary graph and s be its arbitrary vertex. A layering
L(s,G) of G with respect to a start vertex s is the decomposition of V into
the layers Li = {u ∈ V : dG(s, u) = i}, i = 0, 1, . . . , q. We can get a path-
decomposition of G by adding to each layer Li (i > 0) all vertices from layer
Li−1 that have a neighbor in Li. Let L

+
i := Li∪ (

⋃
v∈Li

(NG(v)∩Li−1)). Clearly,

the sequence {L+
1 , . . . , L

+
q } is a path-decomposition of G and can be constructed

in O(|E|) total time. We call this path-decomposition an extended layering of
G and denote it by L+(s,G). It turns out that this type of path-decomposition
has length at most twice as large as the path-length of the graph.

Theorem 3. For every graph G with pl(G) = λ there is a vertex s such that
the length of the extended layering L+(s,G) of G is at most 2λ. In particular, a
factor 2 approximation of the path-length of an arbitrary n-vertex graph can be
computed in O(n3) total time.

Proof. Consider a path-decomposition P(G) = {X1, . . . , Xp} of length pl(G) = λ
of G. Let s be an arbitrary vertex from X1. Consider the layering L(s,G) of G
with respect to s where Li = {u ∈ V : dG(s, u) = i} (i = 0, 1, . . . , q). Let x and
y be two arbitrary vertices from Li (i ∈ {1, . . . , q}) and x′ and y′ be arbitrary
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vertices from Li−1 with xx′, yy′ ∈ E. We will show that max{dG(x, y), dG(x, y′),
dG(x

′, y)} ≤ 2λ. By induction on i, we may assume that dG(y
′, x′) ≤ 2λ as

x′, y′ ∈ Li−1.
If there is a bag in P(G) containing both vertices x and y, then dG(x, y) ≤ λ

and therefore dG(x, y
′) ≤ λ + 1 ≤ 2λ, dG(y, x

′) ≤ λ + 1 ≤ 2λ. Assume now
that all bags containing x are earlier in P(G) = {X1, X2, . . . , Xp} than the bags
containing y. Let B be a bag of P(G) containing both ends of edge xx′ (such
a bag necessarily exists by properties of path-decompositions). By the position
of this bag B in P(G) and the fact that s ∈ X1, any shortest path connecting
s with y must have a vertex in B. Let w be a vertex of B that is on a shortest
path of G connecting vertices s and y and containing edge yy′. Such a shortest
path must exist because of the structure of the layering L(s,G) that starts at s
and puts y′ and y in consecutive layers. We have max{dG(x,w), dG(x′, w)} ≤ λ.
If w = y′ then we are done; max{dG(x, y), dG(x, y′), dG(x′, y)} ≤ λ + 1 ≤ 2λ.
So, assume that w 
= y′. Since dG(x, s) = dG(s, y) = i (by the layering) and
dG(x,w) ≤ λ, we must have dG(w, y

′) + 1 = dG(w, y) = dG(s, y) − dG(s, w) =
dG(s, x)−dG(s, w) ≤ dG(w, x) ≤ λ. Hence, dG(y, x) ≤ dG(y, w)+dG(w, x) ≤ 2λ,
dG(y, x

′) ≤ dG(y, w) + dG(w, x
′) ≤ 2λ and dG(y

′, x) ≤ dG(y
′, w) + dG(w, x) ≤

2λ− 1.
We conclude that the distance between any two vertices from L+

i is at most
2λ, that is, the length of tree decomposition L+(s,G) of G is at most 2λ. ��
Theorem 4. For every graph G with pb(G) = ρ there is a vertex s such that
the breadth of the extended layering L+(s,G) of G is at most 3ρ. In particular,
a factor 3 approximation of the path-breadth of an arbitrary n-vertex graph can
be computed in O(n3) total time.

Proof. Since pl(G) ≤ 2pb(G), by Theorem 3, there is a vertex s in G such that
the length of extended layering L+(s,G) = {L+

1 , . . . , L
+
q } of G is at most 4ρ.

Consider a bag L+
i of L+(s,G) and a family F = {DG(x, 2ρ) : x ∈ L+

i } of disks of
G. Since dG(u, v) ≤ 4ρ for every pair u, v ∈ L+

i , the disks of F pairwise intersect.
Hence, by Corollary 2, the disks {DG(x, 3ρ) : x ∈ L+

i } have a nonempty common
intersection. A vertex w from that common intersection has all vertices of L+

i

within distance at most 3ρ. That is, for each i ∈ {1, . . . , q} there is a vertex wi

with L+
i ⊆ DG(wi, 3ρ). ��

6 Approximation of Line-Distortions of AT-Free Graphs

The path-length of every AT-free graph is bounded by 2 (proof is omitted).

Proposition 7. If G is an AT-free graph, then pb(G) ≤ pl(G) ≤ 2.

The class of AT-free graphs contains a number of intersection families of
graphs, among them the permutation graphs, the trapezoid graphs and the
cocomparability graphs. Theorem 2 implies already that there is an efficient
constant-factor approximation algorithm for the minimum line-distortion prob-
lem on permutation graphs, trapezoid graphs, cocomparability graphs as well



168 F.F. Dragan, E. Köhler, and A. Leitert

as AT-free graphs. Recall that for arbitrary (unweighted) graphs the minimum
line-distortion problem is hard to approximate within a constant factor [3]. Fur-
thermore, the problem remains NP-hard even when the input graph is restricted
to a chordal, cocomparability, or AT-free graph [13]. Polynomial-time constant-
factor approximation algorithms were known only for split and cocomparability
graphs [13]. As far as we know, for AT-free graphs (the class which contains all
cocomparability graphs), no prior efficient approximation algorithm was known.

In this section, using additional structural properties of AT-free graphs we give
a better approximation algorithm for all AT-free graphs. It is an 8-approximation
algorithm and runs in linear time. The following nice structural result from [16]
will be very useful.

Lemma 3 ([16]). Let G = (V,E) be an AT-free graph. Then, there is a dom-
inating path π = (v0, . . . , vk) and a layering L = {L0, . . . , Lk} with Li = {u ∈
V : dG(u, v0) = i} such that for all u ∈ Li (i ≥ 1), uvi ∈ E or uvi−1 ∈ E.
Computing π and L can be done in linear time.

Theorem 5. There is a linear time algorithm to compute an 8-approximation
of the line-distortion of an AT-free graph.

Proof. Let G be an AT-free graph. We first compute a path π = (v0, . . . , vk) and
a layering L = {L0, . . . , Lk} as defined in Lemma 3. To define an embedding f
of G into the line, we partition every layer Li in three sets: {vi}, Xi = {x : x ∈
Li, vix ∈ E}, and X i = Li \ ({vi} ∪ Xi). Note that if x ∈ Xi, then vi−1x ∈ E.
Since each vertex in Xi is adjacent to vi and each vertex in X i is adjacent to
vi−1, for all x, y ∈ Xi, dG(x, y) ≤ 2, and for all x, y ∈ Xi, dG(x, y) ≤ 2. Also, for
all x ∈ Xi and y ∈ Xi, dG(x, y) ≤ 3. The embedding f places vertices of G into
the line in the following order: (v0, . . . , vi−1, Xi, Xi, vi, Xi+1, Xi+1, vi+1, . . . , vk).
Between every two vertices x, y placed next to each other in the line, to guarantee
non-contractiveness, f leaves a space of length dG(x, y) (which is either 1 or 2
or 3, where 3 occurs only when x ∈ Xi and y ∈ Xi for some i).

We will now show that f approximates the minimum line-distortion of G.
Since L is a BFS layering from v0, i.e., it represents the distances of vertices
from v0, there is no edge xy with x ∈ Li−1 and y ∈ Li+1. Also note that
DG(vi, 2) ⊇ Li ∪ Li+1 ∪ {vi−1}. By the definition of f , for all xy ∈ E with
x, y ∈ Li ∪ Li+1, |f(x) − f(y)| < |f(vi−1) − f(vi+1)|. Therefore, counting how
many vertices are placed by f between f(vi−1) and f(vi+1) and the distance in G
between vertices placed next to each other, we get |f(x)−f(y)| ≤ 2(|DG(vi, 2)|−
2)+2 = 2(|DG(vi, 2)|− 1). Using Lemma 1 and the fact that bw(G) ≤ ld(G), we
get |f(x)− f(y)| ≤ 8 ld(G) for all xy ∈ E. ��

It is easy to see that the order in which vertices of G placed by f into the line
gives also a layout of G with bandwidth at most 4bw(G). This reproduces an
approximation result from [16] (in fact, their algorithm had complexity O(m +
n logn) for an n-vertex m-edge graph, since it involved a known O(n logn) time
algorithm to find an optimal layout for a caterpillar tree).

Corollary 6 ([16]). There is a linear time algorithm to compute a 4-approxi-
mation of the minimum bandwidth of an AT-free graph.
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