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In this paper, we introduce and investigate the Minimum Eccentricity Shortest Path (MESP)
problem in unweighted graphs. It asks for a given graph to find a shortest path with 
minimum eccentricity. Let n and m denote the number of vertices and the number of 
edges of a given graph. We demonstrate that:

• a minimum eccentricity shortest path plays a crucial role in obtaining the best to date 
approximation algorithm for a minimum distortion embedding of a graph into the 
line;

• the MESP problem is NP-hard for planar bipartite graphs with maximum degree 3 and 
W[2]-hard for general graphs;

• a shortest path of minimum eccentricity k can be computed in O(n2k+2m) time;
• a 2-approximation, a 3-approximation, and an 8-approximation for the MESP problem 

can be computed in O(n3) time, in O(nm) time, and in O(m) time, respectively;
• in a graph with a shortest path of eccentricity k, a k-dominating set can be found 

in nO(k) time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs occurring in this paper are connected, finite, unweighted, undirected, loopless and without multiple edges. For 
a graph G = (V , E), we use n = |V | and m = |E| to denote the cardinality of the vertex set and the edge set of G . For a ver-
tex v of G , NG(v) = { u ∈ V | uv ∈ E } is called the open neighbourhood, and NG [v] = NG(v) ∪ {v} the closed neighbourhood
of v .

The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance dG (u, v) of two 
vertices u and v is the length of a shortest path connecting u and v . The distance between a vertex v and a set S ⊆ V
is defined as dG (v, S) = minu∈S dG(u, v). The eccentricity eccG(v) of a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its 
eccentricity is eccG(S) = maxu∈V dG(u, S).

In this paper, we investigate the following problem.

Definition 1 (Minimum eccentricity shortest path problem). For a given graph G , find a shortest path P such that, for each 
shortest path Q , eccG(P ) ≤ eccG(Q ).
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Although this problem might be of an independent interest (it may arise in determining a “most accessible” speedy 
linear route in a network and can find applications in communication networks, transportation planning, water resource 
management and fluid transportation), our interest in this problem stems from the role it plays in obtaining the best to 
date approximation algorithm for a minimum distortion embedding of a graph into the line. In Section 2, we demonstrate 
that every graph G with a shortest path of eccentricity k admits an embedding f of G into the line with distortion at most 
(8k + 2) ld(G), where ld(G) is the minimum line-distortion of G . Furthermore, if a shortest path of G of eccentricity k is 
given in advance, then such an embedding f can be found in linear time.

This fact augments the importance of investigating the Minimum Eccentricity Shortest Path problem (MESP problem) in 
graphs. Fast algorithms for it will imply fast approximation algorithms for the minimum line distortion problem. Existence of 
low eccentricity shortest paths in special graph classes will imply low approximation bounds for those classes. For example, 
all AT-free graphs (and hence all interval, permutation, cocomparability graphs) enjoy a shortest path of eccentricity at 
most 1 [4], all convex bipartite graphs enjoy a shortest path of eccentricity at most 2 [9].

We prove also that for every graph G with ld(G) = λ, the minimum eccentricity of a shortest path of G is at most
⌊

λ
2

⌋
. 

Hence, one gets an efficient embedding of G into the line with distortion at most O(λ2).
In Section 3, we show that the MESP problem is NP-hard for bipartite planar graphs with maximum degree 3, W[2]-hard 

on general graphs, and that a shortest path of minimum eccentricity k, in general graphs, can be computed in O(n2k+2m)

time. In Section 4, we design, for the MESP problem on general graphs, a 2-approximation algorithm that runs in O(n3)

time, a 3-approximation algorithm that runs in O(nm) time and an 8-approximation algorithm that runs in linear time. In 
Section 5, we will show that in a graph with a shortest path of eccentricity k a k-dominating set can be found in nO(k) time.

Note that our Minimum Eccentricity Shortest Path problem is close but different from the Central Path problem in graphs 
introduced in [21]. It asks for a given graph G to find a path P (not necessarily shortest) such that any other path of G has 
eccentricity at least eccG(P ). The Central Path problem generalizes the Hamiltonian Path problem and therefore is NP-hard 
even for chordal graphs [20]. Our problem is polynomial time solvable for chordal graphs [10].

In what follows, we will need the following additional notions and notations.
The diameter of a graph G is diam(G) = maxu,v∈V dG (u, v). The diameter diamG(S) of a set S ⊆ V is defined as 

maxu,v∈S dG(u, v). A pair of vertices x, y of G is called a diametral pair if dG(u, v) = diam(G). In this case, every short-
est path connecting x and y is called a diametral path.

A path P of a graph G is called a k-dominating path of G if eccG(P ) ≤ k. In this case, we say also that P k-dominates
each vertex of G . A pair of vertices x, y of G is called a k-dominating pair if every path connecting x and y has eccentricity 
at most k.

For a vertex s, let L(s)
i = { v | dG(s, v) = i } denote the vertices with distance i from s. We will also refer to L(s)

i as the i-th 
layer.

2. Motivation through the line-distortion of a graph

Computing a minimum distortion embedding of a given n-vertex graph G into the line � was recently identified as 
a fundamental algorithmic problem with important applications in various areas of computer science, like computer vi-
sion [22], as well as in computational chemistry and biology (see [16,17]). The minimum line distortion problem asks, for 
a given graph G = (V , E), to find a mapping f of vertices V of G into points of � with minimum number λ such that 
dG(x, y) ≤ | f (x) − f (y)| ≤ λ dG(x, y) for every x, y ∈ V . The parameter λ is called the minimum line-distortion of G and 
denoted by ld(G). The embedding f is called non-contractive since dG (x, y) ≤ | f (x) − f (y)| for every x, y ∈ V .

In [2], Bǎdoiu et al. showed that this problem is hard to approximate within some constant factor. They gave an 
exponential-time exact algorithm and a polynomial-time O(n1/2)-approximation algorithm for arbitrary unweighted in-
put graphs, along with a polynomial-time O(n1/3)-approximation algorithm for unweighted trees. In fact, their algorithms 
achieve line-distortion O (λ2) for general (unweighted) graphs, and line-distortion O (λ3/2) for unweighted trees, where λ is 
the minimum line-distortion. In another paper [1], Bǎdoiu et al. showed that the problem is hard to approximate by a factor 
O(n1/12), even for weighted trees. They also gave a better polynomial-time approximation algorithm for general weighted 
graphs, along with a polynomial-time algorithm that approximates the minimum line-distortion λ embedding of a weighted 
tree by a factor that is polynomial in λ.

Fast exponential-time exact algorithms for computing the line-distortion of a graph were proposed in [5,12,13]. Fomin 
et al. [13] showed that a minimum distortion embedding of an unweighted graph into the line can be found in time 5n+o(n) . 
Fellows et al. [12] gave an O(nλ4(2λ + 1)2λ) time algorithm that for an unweighted graph G and integer λ either constructs 
an embedding of G into the line with distortion at most λ, or concludes that no such embedding exists. They extended 
their approach also to weighted graphs obtaining an O(nλ4W (2λ + 1)2λW ) time algorithm, where W is the largest edge 
weight. Thus, the problem of minimum distortion embedding of a given n-vertex graph G into the line � is Fixed Parameter 
Tractable. Recently, Cygan and Pilipczuk [5] enhanced the 5n+o(n) time and O∗(2n) space algorithm by Fomin et al. [13] to 
an algorithm working in O(4.383n) time and space.

Heggernes et al. [14,15] initiated the study of minimum distortion embeddings into the line of specific graph classes 
other than trees. In particular, they gave polynomial-time algorithms for the problem on bipartite permutation graphs 
and on threshold graphs [15]. Furthermore, in [14], Heggernes et al. showed that the problem of computing a minimum 
distortion embedding of a given graph into the line remains NP-hard even when the input graph is restricted to a bipartite, 
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Fig. 1. Illustration to the proof of Theorem 3. (a) The decomposition {X0, X1, . . . , Xq} of the vertex set V of G . (b) The upper part of the twice around tour. 
(c) An embedding f obtained from following the upper part of the twice around tour.

cobipartite, or split graph, implying that it is NP-hard also on chordal, cocomparability, and AT-free graphs. They also gave 
polynomial-time constant-factor approximation algorithms for split and cocomparability graphs.

Recently, in [9], a more general result for unweighted graphs was proven: for every class of graphs with path-length 
bounded by a constant, there exists an efficient constant-factor approximation algorithm for the minimum line-distortion 
problem. As a byproduct, an efficient algorithm was obtained which for each unweighted graph G with ld(G) = λ constructs 
an embedding with distortion at most O(λ2). Furthermore, for AT-free graphs, a linear time 8-approximation algorithm for 
the minimum line-distortion problem was obtained. Note that AT-free graphs contain all cocomparability graphs and hence 
all interval, permutation and trapezoid graphs.

In this section, we simplify and improve the result of [9]. We show that a minimum eccentricity shortest path plays a 
crucial role in obtaining the best to date approximation algorithm for the minimum line-distortion problem.

We will need the following simple “Local Density” Lemma which generalizes a Local Density Lemma from [2].

Lemma 2. For every vertex set S ⊆ V of an arbitrary graph G = (V , E),

|S| − 1 ≤ diamG(S) ld(G).

Proof. Consider an embedding f ∗ of G into the line � with distortion ld(G). Let a and b be the leftmost and the rightmost, 
respectively, in � vertices of S , i.e., f ∗(a) = min{ f ∗(v) | v ∈ S} and f ∗(b) = max{ f ∗(v) | v ∈ S}. Consider a shortest path P
in G between a and b. Since, for each edge xy of G (and hence of P ), | f ∗(x) − f ∗(y)| ≤ ld(G) holds, we get f ∗(b) −
f ∗(a) ≤ dG (a, b) ld(G) ≤ diamG(S) ld(G). On the other hand, since all vertices of S are mapped to points of � between f ∗(a)

and f ∗(b), we have f ∗(b) − f ∗(a) ≥ |S| − 1. �
The main result of this section is the following.

Theorem 3. Every graph G with a shortest path of eccentricity k admits an embedding f of G into the line with distortion at most 
(8k + 2) ld(G). If a shortest path of G of eccentricity k is given in advance, then such an embedding f can be found in linear time.

Proof. Our embedding is based on the idea from [2]. Let P = (x0, x1, . . . , xi, . . . , x j, . . . , xq) be a shortest path of G of eccen-
tricity k. Build a BFS(P , G)-tree T of G (i.e., a Breadth-First-Search tree of G started at path P ). Denote by {X0, X1, . . . , Xq}
the decomposition of the vertex set V of G obtained from T by removing the edges of P . That is, Xi is the vertex set of 
a subtree (branch) of T growing from vertex xi of P . See Fig. 1(a) for an illustration. Since eccentricity of P is k, we have 
dG(v, xi) ≤ k for every i ∈ {1, . . . , q} and every v ∈ Xi .

We define an embedding f of G into the line � by performing a preorder traversal of the vertices of T starting at 
vertex x0 and visiting first vertices of Xi and then vertices of Xi+1, i = 0, . . . , q − 1. We place vertices of G on the line in 
that order, and also, for each i ∈ {0, . . . , q − 1}, we leave a space of length dT (vi, vi+1) between any two vertices vi and 
vi+1 placed next to each other (this can be done during the preorder traversal). Alternatively, f can be defined by creating 
a twice around tour of the tree T , which visits vertices of Xi prior to vertices of Xi+1, i = 0, . . . , q − 1, and then returns to 
x0 from xq along edges of P . Following vertices of T from x0 to xq as shown in Fig. 1(b) (i.e., using upper part of the twice 
around tour), f (v) can be defined as the first appearance of vertex v in that subtour (see Fig. 1(c)).

We claim that f is a (non-contractive) embedding with distortion at most (8k + 2) ld(G). It is sufficient to show that 
dG(x, y) ≤ | f (x) − f (y)| for every two vertices of G that are placed by f next to each other in � and that | f (v) − f (u)| ≤
(8k + 2) ld(G) for every edge uv of G (see, e.g., [2,15]).
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Let x, y be arbitrary two vertices of G that are placed by f next to each other in �. By construction, we know that 
| f (x) − f (y)| = dT (x, y). Since dG(x, y) ≤ dT (x, y), we get also dG (x, y) ≤ | f (x) − f (y)|, i.e., f is non-contractive.

Consider now an arbitrary edge uv of G and assume u ∈ Xi and v ∈ X j (i ≤ j). Note that dP (xi, x j) = j − i ≤ 2k + 1, 
since P is a shortest path of G and dP (xi, x j) = dG(xi, x j) ≤ dG(xi, u) + 1 + dG(x j, v) ≤ 2k + 1. Set S = ⋃ j

h=i Xh . For any two 
vertices x, y ∈ S , dG(x, y) ≤ dG(x, P ) + 2k + 1 + dG (y, P ) ≤ k + 2k + 1 + k = 4k + 1 holds. Hence, diamG(S) ≤ 4k + 1. Consider 
subtree T S of T induced by S . Clearly, T S is connected and has |S| − 1 edges. Therefore, f (v) − f (u) ≤ 2(|S| − 1) since each 
edge of T S contributes to f (v) − f (u) at most 2 units. Now, by Lemma 2, f (v) − f (u) ≤ 2(|S| − 1) ≤ 2 diamG(S) ld(G) ≤
(8k + 2) ld(G). �

Recall that a pair x, y of vertices of a graph G forms a k-dominating pair if every path connecting x and y in G has 
eccentricity at most k. It turns out that the following result is true.

Proposition 4. If the minimum line-distortion of a graph G is λ, then G has a 
⌊

λ
2

⌋
-dominating pair.

Proof. Let f be an optimal line embedding for G . This embedding has a first vertex v1 and a last vertex vn . Let u be 
an arbitrary vertex and P an arbitrary path from v1 to vn . If u is not on this path, there is an edge vi v j of P with 
f (vi) < f (u) < f (v j). Without loss of generality, we can say that f (u) − f (vi) ≤

⌊
( f (v j) − f (vi))/2

⌋ ≤ ⌊
λ
2

⌋
. Thus, each 

vertex is 
⌊

λ
2

⌋
-dominated by each path from v1 to vn , i.e., v1, vn is a 

⌊
λ
2

⌋
-dominating pair. �

Corollary 5. For every graph G with ld(G) = λ, the minimum eccentricity of a shortest path of G is at most
⌊

λ
2

⌋
.

Theorem 3 and Corollary 5 stress the importance of investigating the Minimum Eccentricity Shortest Path problem in 
graphs. As we will show later, although the MESP problem is NP-hard on general graphs, there are much better (than 
for the minimum line distortion problem) approximation algorithms for it. We design for the MESP problem on general 
graphs a 2-approximation algorithm that runs in O(n3) time, a 3-approximation algorithm that runs in O(nm) time and an 
8-approximation algorithm that runs in linear time.

Combining Theorem 3 and Corollary 5 with those approximation results, we reproduce a result of [2] and [9].

Corollary 6 ([2,9]). For every graph G with ld(G) = λ, an embedding into the line with distortion at most O(λ2) can be found in 
polynomial time.

It should be noted that, since the ratio between the minimum eccentricity of a shortest path and the line-distortion of a 
graph can be very large (e.g., the line distortion of a complete graph on n vertices is n − 1, whereas each shortest path of 
such a graph has eccentricity 1), the result in Theorem 3 seems to be stronger. Furthermore, one version of our algorithm 
(that uses an 8-approximation algorithm for the MESP problem) runs in total linear time.

3. Finding an optimal solution

In this section, we will show that finding a minimum eccentricity shortest path is NP-hard and W[2]-hard. Additionally, 
we will present a pseudo-polynomial time algorithm for finding such a path.

To show NP-hardness, we define the decision version of this problem (k-ESP) as follows: Given a graph G and an inte-
ger k, does G contain a shortest path P with eccentricity at most k?

Theorem 7. The decision version of the Minimum Eccentricity Shortest Path problem is NP-complete.

Proof. To prove Theorem 7, we use a version of 3-SAT called Planar Monotone 3-SAT which was introduced by de Berg 
and Khosravi in [6]. Consider an instance of 3-SAT given in CNF with the variables P = {p1, . . . , pn} and the clauses C =
{c1, . . . , cm}. A clauses is called positive if it consists only of positive literals (i.e., pa ∨ pb ∨ pc) and is called negative if it 
consists only of negative literals (i.e., ¬pa ∨ ¬pb ∨ ¬pc). Consider the bipartite graph G = (P, C, E) where pic j ∈ E if and 
only if c j contains pi or ¬pi . An instance of 3-SAT is planar monotone if each clause is either positive or negative and there 
is a planar embedding for G such that all variables are on a (horizontal) line L, all positive clauses are above L, all negative 
clauses are below L, and no edge is crossing L. Planar Monotone 3-SAT is NP-complete [6].

Now, assume that we are given an instance I of Planar Monotone 3-SAT with the variables P = {p1, . . . , pn} and the 
clauses C = {c1, . . . , cm}. Also, let k = max{n, m}. We create a graph G as shown in Fig. 2. For each variable pi create two 
vertices, one representing pi and one representing ¬pi . Create one vertex ci for every clause ci . Additionally, create two 
vertices u0, un and, for each i with 0 ≤ i ≤ n, a vertex vi . Connect each variable vertex pi and ¬pi with vi−1 and vi directly 
with an edge. Connect each clause with the literals contained in it with a path of length k. Also connect v0 with u0 and vn

with un with a path of length k.
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Fig. 2. Reduction from Planar Monotone 3-SAT to k-ESP. Illustration to the proof of Theorem 7.

Recall that, by the definition of I , the corresponding bipartite graph G has a planar embedding where all variables are 
on a line. Therefore, we can clearly achieve a planar embedding for G when placing its vertices as shown in Fig. 2.

Note that every shortest path in G not containing v0 and vn has an eccentricity larger than k. Also, a shortest path from 
v0 to vn has length 2n (dG(vi−1, vi) = 2, passing through pi or ¬pi ). Since k ≥ n, no shortest path from v0 to vn is passing 
through a vertex ci ; in this case the minimal length would be 2k + 2. Additionally, note that, for all vertices in G except the 
vertices which represent clauses, the distance to a vertex vi with 0 ≤ i ≤ n is at most k.

We will now show that I is satisfiable if and only if G has a shortest path with eccentricity k.
First, assume I is satisfiable. Let f : P → {T , F } be a satisfying assignment for the variables. As shortest path P we 

choose a shortest path from v0 to vn . Thus, we have to chose between pi and ¬pi . We will chose pi if and only if 
f (pi) = T . Because I is satisfiable, there is a pi for each c j such that either f (pi) = T and dG (c j, pi) = k, or f (pi) = F and 
dG(c j, ¬pi) = k. Thus, P has eccentricity k.

Next, consider a shortest path P in G of eccentricity k. As mentioned above, P contains either pi or ¬pi . Now, we define 
f : P → {T , F } as follows:

f (pi) =
{

T if pi ∈ P ,

F else, i.e. ¬pi ∈ P .

Because P has eccentricity k and only vertices representing a literal in the clause c j are at distance k to vertex c j , f is a 
satisfying assignment for I . �

While the reduction works in principle for any version of SAT (given as CNF), choosing Planar Monotone 3-SAT allows to 
construct a planar graph G .

Note that the created graph is bipartite. Set the colour of each vertex vi to black and of each p j and ¬p j to white. For 
some vertex x on the shortest path from ci to p j (or ¬p j), set the colour of x based on its distance to p j (or ¬p j), i.e., x is 
white if dG(x, pi) is even and black otherwise.

Additionally, V.B. Le1 pointed out that, by slightly modifying the created graph as follows, it can be shown that the 
problem remains NP-complete even if the graph has the maximum vertex-degree 3. First, increase k to k = max{2n − 1, m}
and update all distances in the graph accordingly. Therefore, 2k +2 > 4n −2. Then, replace each vertex vi where 1 ≤ i ≤ n −1
with three vertices v−

i , v ′
i , and v+

i such that NG (v−
i ) = {pi, ¬pi, v ′

i}, NG(v ′
i) = {v−

i , v+
i }, and NG(v+

i ) = {pi+1, ¬pi+1, v ′
i}. 

Note that a path from v0 to vn which, for all i, passes through pi or ¬pi has length 4n − 2. This is still a shortest path, 
because each path from v0 to vn passing through some ci has length 2k + 2 > 4n − 2. Also, since dG (pi, pi+1) = 4, the graph 
remains bipartite. Next, to limit the degree of a vertex pi (or ¬pi ), instead of connecting it directly to all clauses containing 
it, make pi adjacent to the root of a binary tree Ti with height �log2 k�. Then, connect each clause containing pi to a leaf 
of Ti using a path with length k −�log2 k� −1 and, last, remove unused branches of Ti . Because this does not effect planarity 
or colouring, we get:

Corollary 8. The decision version of the MESP problem remains NP-complete when restricted to planar bipartite graphs with the 
maximum vertex-degree 3.

We can slightly modify the MESP problem such that a start vertex s and an end vertex t of the path are given. This 
is, for a given a graph G and two vertices s and t , find a shortest path P from s to t such that, for each shortest path Q
from s to t , eccG(P ) ≤ eccG(Q ). We call this the (s, t)-MESP problem. From the reduction above, it follows that the decision 
version of this problem is NP-complete, too.

Corollary 9. The decision version of the (s, t)-MESP problem is NP-complete.

1 University of Rostock, Germany.
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Note that the factor k in the reduction above depends on the input size. In [18], it was already mentioned that, for 
k = 1, the problem can be solved in O(n3m) time by modifying an algorithm given in [7]. There, the problem was called 
Dominating Shortest Path problem.

The next algorithm will show that the k-ESP problem remains polynomial for each fixed k. Our algorithm is a general-
ization of the algorithm mentioned in [18]. It is based on Lemma 10 below. Informally, Lemma 10 states that, if a graph has 
a shortest path P with eccentricity k starting at s, each layer L(s)

i is dominated by a subpath of P of length at most 2k.

Lemma 10. Let P = {s = v0, v1, . . . , vl} be a shortest path with eccentricity k, vi ∈ L(s)
i , and Pi,k = {vmax{0,i−k}, . . . , vmin{i+k,l}}. 

Then, L(s)
i ⊆ Nk

G [Pi,k].

Proof. Assume there is a vertex u ∈ L(s)
i \ Nk

G [Pi,k]. Consider any vertex v j ∈ P \ Pi,k . By the definition of Pi,k it follows that 
|i − j| > k. Thus, because u ∈ L(s)

i and v j ∈ L(s)
j , dG(v j, u) ≥ |i − j| > k. This contradicts with P having eccentricity k. �

For Algorithm 1 below, we say a shortest path τ = {vi−k, . . . , v j} with i ≤ j ≤ i + k is a layer-dominating path for a 
layer L(s)

i if

• vl ∈ L(s)
l for i − k ≤ l ≤ j,

• j < i + k implies that there is no edge v j w ∈ E with w ∈ L(s)
j+1, and

• Nk
G [τ ] ⊇ L(s)

i with Nk
G [τ ] := ⋃ j

l=i−k Nk
G [vl].

We say that a layer-dominating path σ = {vi−k, . . . , v j} for layer L(s)
i is compatible with a layer-dominating path τ =

{ui+1−k, . . . , u j′ } for layer L(s)
i+1 if j′ − j ∈ {0, 1} and vl = ul for i + 1 − k ≤ l ≤ j. This is, σ and τ share a path of 

length j − i − 1 + k.

Algorithm 1: Determines if there is a shortest path of eccentricity at most k starting at a given vertex s.
Input: A graph G = (V , E) and a positive integer k.
Output: A shortest path with eccentricity at most k if existent in G .

1 Calculate the layers L(s)
i = { v ∈ V | dG (s, v) = i} with 0 ≤ i ≤ eccG (s).

2 if eccG (s) ≤ 2k then
3 For each shortest path P from s, determine if eccG (P ) ≤ k. In this case, return P . If there is no such P , then G does not contain a shortest path 

of eccentricity at most k starting at s.

4 for i = k to eccG (s) − k do
5 Create an empty vertex set V ′

i .

6 foreach layer-dominating path τ for layer L(s)
i do

7 Add a vertex vτ , representing the path τ , to V ′
i .

8 foreach vτ ∈ V ′
eccG (s)−k do

9 If Nk
G [τ ] � ⋃eccG (s)

j=eccG (s)−k L(s)
j , remove vτ from V ′

eccG (s)−k .

10 Create a graph G ′ = (V ′, E ′) with V ′ = V ′
k ∪ . . . ∪ V ′

eccG (s)−k and E ′ = { vσ vτ | σ is compatible with τ }.

11 G contains a shortest path of eccentricity at most k starting at s if and only if G ′ contains a path from a vertex vσ ∈ V ′
k to a vertex vτ ∈ V ′

eccG (s)−k .

Theorem 11. Algorithm 1 determines if there is a shortest path of eccentricity at most k starting from a given vertex s in O(n2k+1m)

time.

Proof (Correctness). To show the correctness of the algorithm, we need to show that line 11 is correct. Without loss of 
generality, we can assume that eccG(s) > 2k. Otherwise, the algorithm would have stopped in line 3.

First, assume that there is a shortest path P = {s = u0, . . . , ul} of length l in G with eccG(P ) ≤ k. Note that eccG(s) − k ≤
l ≤ eccG(s). Then, by Lemma 10, each subpath τ = {ui−k, . . . , u j} (k ≤ i ≤ eccG(s) − k, j = min{l, i + k}) is a layer-dominating 
path for layer L(s)

i . Additionally, if j = l, then Nk
G [τ ] ⊇ ⋃eccG (s)

j=eccG (s)−k L(s)
j . Thus, the algorithm creates a vertex vτ ∈ V ′

i in 
line 7 which represents a subpath of P for each i with k ≤ i ≤ eccG(s) − k. If vτ ∈ V ′

i and vσ ∈ V ′
i+1 represent subpaths 

of P , vτ and vσ are adjacent in G ′ because τ and σ are compatible. Therefore, there is a path in G ′ from a vertex in V ′
k to 

a vertex in V ′
eccG (s)−k .

Next, assume that G ′ contains a path P ′ from a vertex u ∈ V ′
k to a vertex v ∈ V ′

eccG (s)−k . Each vertex vσ ∈ V ′
i ∩ P ′

represents a layer-dominating path for layer L(s)
i in G . By definition of layer-dominating paths, if vσ ∈ V ′

i is adjacent to 
vτ ∈ V ′

i+1, the paths σ and τ in G (of length 2k) can be combined to a longer path (of length 2k + 1). If τ has length less 
than 2k, it is a subpath of σ . Thus, P ′ represents a path P in G from s to a vertex w ∈ L(s)

q with eccG(s) − k ≤ q ≤ eccG(s).
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Fig. 3. Reduction from Dominating Set to k-ESP. Illustration to the proof of Theorem 13.

Each vertex vτ ∈ V ′
i ∩ P ′ represents a layer-dominating path τ for layer L(s)

i . Because of line 9, vτ ∈ V ′
eccG (s)−k implies 

Nk
G [τ ] ⊇ ⋃k

j=eccG (s)−k L(s)
j . Thus, P is a shortest path starting from s with eccG(P ) ≤ k. �

Proof (Complexity). If eccG(s) ≤ 2k, the algorithm stops after line 3. In this case there are at most O(n2k) shortest paths 
starting from s. Thus, finding a shortest path with eccentricity k can be done in O(n2km) time by deciding in O(m) time if 
a path has eccentricity k.

Next, assume eccG(s) > 2k. The graph can only contain O(n2k+1) layer-dominating paths because each such path has at 
most 2k + 1 vertices in it. Therefore, creating the vertices of G ′ (lines 4–9) can be done in O(n2k+1m) time.

Store the found layer-dominating paths in a forest structure T as follows. For each vertex v of G , T contains a tree T v

rooted at v of depth at most 2k. This tree T v stores all layer-dominating paths of G starting at v . Any node u in T v (including 
the root v) at depth less than 2k has as the children all neighbours w of u in G such that dG (s, w) = dG (s, w) + 1. Every 
node of T v represents a unique path of G corresponding to the path of T v from the root v to this node. A leaf t of T v has a 
pointer to a layer-dominating path τ (and, hence, to the corresponding vertex vτ in G ′) if the path τ = {v, . . . , t} from the 
root v to the leaf t forms a layer-dominating path τ in G .

Now, given a layer-dominating path σ = {vi−k, vi−k+1, . . . , v j}, we can determine all layer-dominating paths τ which σ
is compatible with in O(m) time as follows. Take the tree T vi−k+1 in T and, following path σ , decent to node v j of T vi−k+1

representing path {vi−k+1, . . . , v j}. Then, leaves of T vi−k+1 attached to v j have pointer to all paths τ which σ is compatible 
with.

Since G ′ has at most O(n2k+1) vertices, creating G ′ (in line 10) takes at most O(n2k+1m) time. Thus, the overall running 
time for Algorithm 1 is O(n2k+1m). �

Algorithm 1 determines if there is a shortest path of eccentricity at most k for a given vertex s. If a start vertex is not 
given, iterating Algorithm 1 over each vertex will determine if there is a shortest path of eccentricity at most k in a given 
graph G in O(n2k+2m) time. If k is unknown, a path with minimum eccentricity can be found by trying different values 
for k starting with 1. Then, the runtime is O(n4m) +O(n6m) + . . . +O(n2k+2m) =O(n2k+2m).

Corollary 12. If a given graph G contains a shortest path with eccentricity k, the MESP problem can be solved for G in O(n2k+2m)

time, even if k is unknown.

Next, we will show that the problem is W[2]-hard. Therefore, we do not expect that MESP is Fixed Parameter Tractable, 
i.e., there is probably no algorithm that finds an optimal solution in f (k) nO(1) time.

Theorem 13. The Minimum Eccentricity Shortest Path problem is W[2]-hard.

Proof. To show W[2]-hardness, we will make a parametrised reduction from the Dominating Set problem which is known 
to be W[2]-complete [8].

Consider a given instance (G, k) of the Dominating Set problem where G = (V , E) is a graph with V = {v1, v2, . . . , vn}. 
Based on (G, k), we will construct an instance (H, k) of the MESP problem with a graph H as follows. Start with an empty 
graph and add a copy of V , i.e., only add the vertices without edges between them. Add k sets of vertices U1, U2, . . . , Uk
with Ui = {ui

1, u
i
2, . . . , u

i
n} and, for each j with 1 ≤ j < k, make all vertices in U j adjacent to all vertices in U j+1. Add the 

vertices s, s′ , t , and t′ and connect s with s′ and t with t′ , respectively, with a path of length k. Additionally, make s adjacent 
to all vertices in U1 and make t adjacent to all vertices in Uk . Connect each vertex u j

i ∈ U j with each vertex in NG [vi] ⊆ V
with a path of length k for all j with 1 ≤ j ≤ k. Fig. 3 gives an illustration.

Because dH (s, s′) = dH (t, t′) = k, each shortest path in H not containing s and t has an eccentricity larger than k. Also, 
a shortest path from s to t has length k + 1, intersects all sets U j , and does not intersect V .
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Fig. 4. Example for Lemma 14 and Lemma 15. The shortest path from s to t which contains x has eccentricity 1 and the distance from x to v is 2. The 
shortest path from s to t which contains u and w has eccentricity 3.

First, assume that H has a shortest path P with eccentricity k. By definition of P and construction of H , for every 
v ∈ V , there is a vertex u j

i ∈ P such that dH (v, u j
i ) = dH (v, P ) = k and, hence, v ∈ NG [vi]. Therefore, the set D = { vi ∈ V |

there is a j with u j
i ∈ P } is a dominating set for G with cardinality at most k.

Next, assume there is a dominating set D for G with cardinality at most k. Without loss of generality, let D =
{v1, v2, . . . , vk}. Then, we define P = {s, u1

1, u
2
2, . . . , u

k
k, t}. By construction of H , each vertex v ∈ NG [vi] is at distance k

to ui
i . Thus, because D is a dominating set, there is a vertex ui

i ∈ P for each vertex v ∈ V with dH (v, ui
i) = k. Therefore, 

P has eccentricity k in H . �
4. Approximation algorithms

In this section, we will present different approximation algorithms. The algorithms differ in their approximation factor 
and runtime. The algorithms are based on the following two Lemmas.

Lemma 14. In a graph G, let P be a shortest path from s to t of eccentricity at most k. For each layer L(s)
i , there is a vertex pi ∈ P such 

that the distance from pi to each vertex v ∈ L(s)
i is at most 2k. Additionally, pi ∈ L(s)

i if i ≤ dG(s, t), and pi = t if i ≥ dG (s, t).

Proof. For each vertex v , let p(v) ∈ P be a vertex with dG(p(v), v) ≤ k.
For each i ≤ dG(s, t), let pi ∈ P ∩ L(s)

i be the vertex in P with distance i to s. For an arbitrary vertex v ∈ L(s)
i , let 

j = dG(s, p(v)). Because eccG(P ) ≤ k and P is a shortest path, |i − j| ≤ k. Thus, dG (pi, v) ≤ dG(pi, p(v)) + dG (p(v), v) ≤ 2k.
Let L′ = { v | dG(s, v) ≥ dG (s, t)}. Because P has eccentricity at most k, dG(p, t) ≤ k for all p ∈ { p(v) | v ∈ L′}. Therefore, 

dG(t, v) ≤ 2k for all v ∈ L′ . �
Lemma 15. If G has a shortest path of eccentricity at most k from s to t, then every path Q with s ∈ Q and dG (s, t) ≤ maxv∈Q dG(s, v)

has eccentricity at most 3k.

Proof. Let P be a shortest path from s to t with eccG(P ) ≤ k and Q an arbitrary path with s ∈ Q and dG(s, t) ≤
maxv∈Q dG (s, v). Without loss of generality, we can assume that Q starts at s. Also, let u be an arbitrary vertex. Since 
eccG(P ) ≤ k, there is a vertex p ∈ P with dG (u, p) ≤ k. Because dG (s, t) ≤ maxv∈Q dG(s, v), there is a vertex q ∈ Q with 
dG(s, p) = dG (s, q). By Lemma 14, the distance between p and q is at most 2k. Thus, the distance from q to u is at 
most 3k. �
Corollary 16. For a given graph G and two vertices s and t, each shortest path from s to t is a 3-approximation for the (s, t)-MESP 
problem.

Note that the bounds given in Lemma 14 and Lemma 15 are tight. Fig. 4 gives an example.
Our first approximation algorithm, Algorithm 2, is based on Lemma 15 and gives a 3-approximation. For each possible 

start vertex, it finds a shortest path with maximal length. Out off all these paths, it selects the one with the smallest 
eccentricity.

Algorithm 2: A 3-approximation for the MESP problem.
Input: A graph G = (V , E).
Output: A shortest path with eccentricity at most 3k, where k is the minimum eccentricity of all paths in G .

1 foreach s ∈ V do
2 Find a vertex v for which the distance to s is maximal. Also find a shortest path P (s) from s to v .
3 Calculate k(s) = eccG (P (s)).

4 Among all computed paths P (s), select one for which k(s) is minimal.

Theorem 17. Algorithm 2 calculates a 3-approximation for the MESP problem in O(nm) time.
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Proof. Assume a given graph G has a shortest path P from s to t with eccG(P ) = k and s is the vertex selected by the loop 
in line 1. Let v be a vertex such that dG (s, v) is maximal (line 2). Because dG (s, v) is maximal, dG (s, t) ≤ dG(s, v). Thus, by 
Lemma 15, each path from s to v has eccentricity at most 3k, i.e. k(s) ≤ 3k (line 3). Therefore, the eccentricity of the path 
selected in line 4 is also at most 3k.

It is easy to see that line 2 and line 3 run in O(m) time for a given s. Therefore, the overall runtime for the algorithm 
is O(nm). �

For Algorithm 3 below, we say the layer-wise eccentricity of a shortest path Q from s to t is φ if, for each layer L(s)
i , 

max
{

dG(qi, u) | u ∈ L(s)
i

}
≤ φ where qi ∈ Q ∩ L(s)

i if i ≤ dG (s, t) and qi = t if i > dG(s, t). By Lemma 14, a shortest path 
with eccentricity k has a layer-wise eccentricity of 2k. Therefore, determining a shortest path with minimum layer-wise 
eccentricity gives a 2-approximation for the MESP problem. To find such a path, Algorithm 3 computes, for each vertex s, 
the maximal distance of a vertex v to all other vertices u in the same layer L(s)

i and uses a modified BFS to find a shortest 
path with minimal layer-wise eccentricity starting at s.

Algorithm 3: A 2-approximation for the MESP problem.
Input: A graph G = (V , E).
Output: A shortest path with eccentricity at most 2k, where k is the minimum eccentricity of all paths in G .

1 Calculate the distances dG (u, v) for all vertex pairs u and v , including L(u)
i = { v ∈ V | dG (u, v) = i} with 0 ≤ i ≤ eccG (u) for each u.

2 foreach s ∈ V do
3 Set φ(s) := 0.
4 for i := 1 to eccG (s) do
5 foreach v ∈ L(s)

i do
6 Set φ(v) := max

u∈L(s)
i

dG (u, v).

7 Let N−
G (v) = L(s)

i−1 ∩ NG (v) denote the neighbours of v in the previous layer. Set φ(v) := max{minu∈N−
G (v) φ(u), φ(v)}.

8 Set φ+(v) := max{ dG (u, v) | dG (s, u) ≥ i}.

9 Calculate a BFS-tree T (s) starting from s. If multiple vertices u are possible as parent for a vertex v , select one with the smallest φ(u).
10 Let t be the vertex for which φ′(t) := max{φ(t), φ+(t)} is minimal. Set k(s) := φ′(t)
11 Among all computed pairs s and t , select a pair (and corresponding path in T (s)) for which k(s) is minimal.

Theorem 18. Algorithm 3 calculates a 2-approximation for the MESP problem in O(n3) time.

Proof (Correctness). Assume a given graph G has a shortest path P from s to t with eccG(P ) = k and s is the vertex selected 
by the loop starting in line 2. Let Q be a shortest path from s to v .

We will now show that lines 4 to 8 calculate for each v the minimal φ(v) such that there is a shortest path Q from s
to v with a layer-wise eccentricity φ(v).

By induction, assume this is true for all vertices u ∈ L(s)
j with j ≤ i − 1. Now let v be an arbitrary vertex in L(s)

i . Line 6

calculates the maximal distance φ(v) from v to all other vertices in L(s)
i . Since v is the only vertex in Q ∩ L(s)

i for every 
shortest path Q from s to v , the layer-wise eccentricity of each Q is at least φ(v). Let u be a neighbour of v in the previous 
layer. By induction hypothesis, φ(u) is optimal. Therefore, φ(v) := max{minu∈N−

G [v] φ(u), φ(v)} (line 7) is optimal for v .

Since line 9 selects the vertex u with the smallest φ(u) as parent for v , each path Q from s to v in T (s) has an optimal 
layer-wise eccentricity of φ(v). Line 8 calculates the maximal distance from v to all vertices in { u | dG(s, u) ≥ dG(s, v)}. 
Thus, eccG(Q ) ≤ φ′(v) and line 10 and line 11 select a shortest path which has an eccentricity at most φ′(v).

By Lemma 14, we know that P has a layer-wise eccentricity of at most 2k. Thus, the path Q from s to t in T (s) has a 
layer-wise eccentricity of at most 2k. Additionally, Lemma 14 says that t 2k-dominates all vertices in { v | dG (s, v) ≥ dG(s, t)}. 
Therefore, eccG(Q ) ≤ 2k. Thus, the path selected in line 11 is a shortest path with eccentricity at most 2k. �
Proof (Complexity). Line 1 runs in O(nm) time. If the distances are stored in an array, they can be later accessed in constant 
time. Therefore, line 6 and line 8 run in O(n) time for a given s and v or in O(n3) time overall. For a given s, line 7 runs 
in O(m) time and, therefore, has an overall runtime of O(nm). Line 9 has an overall runtime of O(nm), line 11 takes O(n2)

time, and line 10 runs in O(n) time. Adding all together, the total runtime is O(n3). �
For the case that a start vertex s for a shortest path is given, Algorithm 3 can be simplified by having only one iteration 

of the loop starting in line 2. Then, the runtime is O(nm).

Corollary 19. A 2-approximation for the (s, t)-MESP problem can be computed in O(nm) time.
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Algorithm 2 and Algorithm 3 both iterate over all vertices of the graph to find the best start vertex. Lemma 20 will show 
that a constant factor approximation can be found with a simple algorithm which starts at an arbitrary vertex. However, the 
approximation factor will be much higher.

Lemma 20. Let G be a graph having a shortest path of eccentricity k. Let x be a vertex most distant from some arbitrary vertex, and y
be a vertex most distant from x. Then, x, y is a 8k-dominating pair of G.

Proof. Let p be an end vertex of a shortest path of eccentricity k in a given graph G . By Lemma 14, the diameter of each 
layer L(p)

i in G is at most 4k. Assume, x is most distant from an arbitrary vertex s.
If there is a layer containing both s and x, then dG (s, x) ≤ 4k. By the choice of x, each vertex of G is within distance at 

most 4k from s, hence, within distance at most 8k from x. Evidently, in this case, x, y is a 8k-dominating pair of G .
Assume now, without loss of generality, that x ∈ L(p)

i and s ∈ L(p)

l with i < l. Consider an arbitrary vertex v of G which 
belongs to a layer with an index smaller than i. We show that dG (x, v) ≤ 8k. As L(p)

i separates v from s, a shortest path 
P (s, v) of G between s and v must have a vertex u in L(p)

i . We have dG (s, x) ≥ dG(s, v) = dG (s, u) + dG (u, v) and, by 
the triangle inequality, dG (s, x) ≤ dG(s, u) + dG(u, x). Hence, dG (u, v) ≤ dG(u, x) and, since both u and x belong to same 
layer L(p)

i , dG(u, x) ≤ 4k. That is, dG (x, v) ≤ dG(x, u) + dG(u, v) ≤ 2dG (u, x) ≤ 8k.
If dG (x, y) ≤ 8k then, by the choice of y, each vertex of G is within distance at most 8k from x. Hence, x, y is a 

8k-dominating pair of G . So, assume that dG (x, y) > 8k, i.e., the layer L(p)

j with i < j contains y. Repeating the arguments 
of the previous paragraph, we can show that dG (y, v) ≤ 8k for every vertex v that belongs to a layer with an index greater 
than j.

Consider now an arbitrary path P of G connecting vertices x and y. P has a vertex in every layer L(p)

h with i ≤ h ≤ j. 
Hence, for each vertex v of G that belongs to layer L(p)

h (i ≤ h ≤ j), there is a vertex u ∈ P ∩ L(p)

h such that dG (v, u) ≤ 4k. As 
dG(v, x) ≤ 8k for each vertex v from L(p)

i′ with i′ < i and dG (v, y) ≤ 8k for each vertex v from L(p)

j′ with j′ > j, we conclude 
that eccG(P ) ≤ 8k. �
Corollary 21. An 8-approximation for the MESP problem can be calculated in linear time.

5. Solving k-domination using a MESP

In [18], an O(n7) time algorithm was presented which finds a minimum dominating set for graphs containing a shortest 
path with eccentricity 1. Using a similar approach, we will generalize this result to find a minimum k-dominating set for 
graphs containing a shortest path with eccentricity k.

Recall that, for a graph G = (V , E), a vertex set D is a k-dominating set if Nk
G [D] = V . Additionally, D is a minimum

k-dominating set if there is no k-dominating set D ′ for G with |D ′| < |D|.

Lemma 22. Let D be a minimum k-dominating set of a graph G and let G have a shortest path of eccentricity at most k starting at a 
vertex s. Then, for all non-negative integers i ≤ eccG(s),∣∣∣∣∣∣D ∩

i+k⋃
l=i−k

L(s)
l

∣∣∣∣∣∣ ≤ 6k + 1.

Proof. Let P = {s = v0, v1, . . . , v j} be a shortest path with j ≤ eccG(s) and eccG(P ) ≤ k. Also, let Di = D ∩ ⋃i+k
l=i−k L(s)

l be a 
set of k-dominating vertices in the layers L(s)

i−k to L(s)
i+k . Because D is k-dominating, Di can only k-dominate vertices in the 

layers L(s)
i−2k to L(s)

i+2k . By Lemma 10, these layers are also k-dominated by Pi = {vi−3k, . . . , vi+3k}. Thus,

Nk
G [Di] ⊆

i+2k⋃
l=i−2k

L(s)
l ⊆ Nk

G [Pi].

Assume, |Di | > |Pi |. Note that |Pi | ≤ 6k + 1. Then, there is a k-dominating set D ′ = (D \ Di) ∪ Pi such that |D| > |D ′|. Thus, 
D is not a minimum k-dominating set. �

Based on Lemma 22, Algorithm 4 below computes a minimum k-dominating set for a given graph G = (V , E) with a 
shortest path of eccentricity k starting at a vertex s as follows. In the i-th iteration, the algorithm knows all vertex sets S
for which there is a vertex set S ′ such that (i) S = S ′ ∩ (L(s)

i−k ∪ . . . ∪ L(s)
i−1+k), (ii) the set S∗ = S ∪ (S ′ ∩ L(s)

i−1−k) k-dominates 
L(s) and has cardinality at most 6k + 1, and (iii) S ′ k-dominates the layers L(s) to L(s) . Due to Lemma 22, a set S∗ with a 
i−1 0 i−1
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larger cardinality cannot be a subset of a minimum dominating set of G and, hence, neither can be S or S ′ . Each such set S
is stored as a pair (S, S ′) in a set Xi−1 where S ′ is a corresponding set with minimum cardinality, i.e., Xi−1 does not contain 
two pairs (S, S ′) and (T , T ′) with S = T . Note that, since S ′ has minimum cardinality, it does not contain any vertices from 
any layer L(s)

j with j > i − 1 + k. We will show later that, this way, Xi−1 always contains a pair (S, S ′) such that S ′ is subset 
of some minimum k-dominating set.

Then, for each pair (S, S ′) ∈ Xi−1, the algorithm computes all sets S ∪ U which k-dominate the layer L(s)
i and have 

cardinality at most 6k + 1. For such a set, the sets R = (S ∪ U ) \ L(s)
i−k and R ′ = S ′ ∪ U are created and, if the set Xi does not 

contain a pair (P , P ′) with P = R , stored as the pair (R, R ′) in Xi . In the case that Xi already contains such a pair (P , P ′), 
either, if |R ′| < |P ′|, (P , P ′) is replaced by (R, R ′) or, if |R ′| ≥ |P ′|, (R, R ′) is not added to Xi .

Note that L(s)
i+k = ∅ for i > eccG(s) − k. Therefore, the algorithm can stop after eccG(s) − k iterations.

Algorithm 4: Determines a minimum k-dominating set in a given graph G containing a shortest path of eccentricity k
starting at s.

Input: A graph G , an integer k, and a vertex s which is start vertex of a shortest path with eccentricity k.
Output: A minimum k-dominating set.

1 Compute the layers L(s)
0 , L(s)

1 , . . . , L(s)
eccG (s) .

2 Create the set X0 := { (S, S) | S ⊆ Nk
G [s]; 0 < |S| ≤ 6k + 1}.

3 for i := 1 to eccG (s) − k do
4 Create Xi := ∅.
5 foreach (S, S ′) ∈ Xi−1 do
6 foreach U ⊆ L(s)

i+k with |S ∪ U | ≤ 6k + 1 do

7 if Nk
G [S ∪ U ] ⊇ L(s)

i then
8 R := (S ∪ U ) \ L(s)

i−k

9 R ′ := S ′ ∪ U
10 if There is no pair (P , P ′) ∈ Xi with P = R then
11 Insert (R, R ′) into Xi .

12 if There is a pair (P , P ′) ∈ Xi with P = R and |R ′| < |P ′| then
13 Replace (P , P ′) in Xi by (R, R ′).

14 Among all pairs (S, S ′) ∈ XeccG (s)−k for which S ′ k-dominates G , determine one with minimum |S ′|, say (D, D ′).
15 Output D ′ .

Theorem 23. For a given graph G and a vertex s which is start vertex of a shortest path with eccentricity k, Algorithm 4 determines a 
minimum k-dominating set in nO(k) time.

Proof (Correctness). To prove the correctness, we show by induction that, for each i with 0 ≤ i ≤ eccG(s) − k, there is a 
minimum k-dominating set D and a pair (S, S ′) ∈ Xi such that S ′ = D ∩ ⋃i+k

l=0 L(s)
l . If this is true for i = eccG(s) − k, then 

S ′ = D . Hence, if (S, S ′) is a pair in XeccG (s)−k such that S ′ k-dominates G and has minimum cardinality, then S ′ is a 
minimum k-dominating set of G .

By construction in line 2, X0 contains all pairs (S, S ′) such that S ′ is a vertex set with cardinality at most 6k + 1 which 
k-dominates L(s)

0 . Thus, the base case is true. Next, by induction hypothesis and by definition of the pairs (S, S ′), there is a 
minimum dominating set D and a pair (S, S ′) ∈ Xi−1 such that S = S ′ ∩ ⋃i+k−1

l=i−k L(s)
l = D ∩ ⋃i+k−1

l=i−k L(s)
l . Let M = D ∩ L(s)

i+k . By 

Lemma 22, 
∣∣∣D ∩ ⋃i+k

l=i−k L(s)
l

∣∣∣ = |S ∪ M| ≤ 6k + 1. Therefore, there is an iteration of the loop starting in line 6 with U = M . 

Because S ∪ M = D ∩ ⋃i+k
l=i−k L(s)

l , S ∪ M k-dominates L(s)
i , i.e., Nk

G [S ∪ M] ⊇ L(s)
i . Thus, the algorithm creates a pair (R, R ′)

with R ′ = D ∩ ⋃i+k
l=0 L(s)

l (see line 7 to line 9).
Assume that there is a pair (P , P ′) �= (R, R ′) with P = R and |P ′| ≤ |R ′|, i.e., (R, R ′) will not be stored in Xi or replaced 

by (P , P ′) (see line 10 to line 13). Because P = R , P ′ ∩ ⋃i+k
l=i−k+1 L(s)

l = D ∩ ⋃i+k
l=i−k L(s)

l . Let D ′ = P ′ ∪ (D ∩ ⋃eccG (s)−k
l=i−k+1 L(s)

l ). 
By definition, P ′ k-dominates 

⋃i
l=0 L(s)

l . Thus, D ′ k-dominates 
⋃i

l=0 L(s)
l . Note that D ′ ⊇ D ∩ (

⋃eccG (s)
l=i−k+1 L(s)

l ). Thus, D ′ also 
k-dominates 

⋃eccG (s)
l=i+1 L(s)

l . Therefore, D ′ is a minimum k-dominating set and there is a pair (P , P ′) ∈ Xi such that P ′ =
D ′ ∩ ⋃i+k

l=0 L(s)
l . �

Proof (Complexity). For a given i, there are no two pairs (S, S ′) and (T , T ′) in Xi with S = T (see line 10 to line 13). Thus, 
for each set U ⊆ L(s)

i+k , S ∪ U �= T ∪ U . Additionally, since S and T intersect at most 2k consecutive layers, S �= T for all pairs 
(S, S ′) ∈ Xi and (T , T ′) ∈ X j with |i − j| ≥ 2k. Therefore, a set S ∪ U is processed at most O(k) times by the loop starting 
in line 6. Hence, because there are at most n6k+1 sets S ∪ U with |S ∪ U | ≤ 6k + 1, the loop starting in line 6 has at most 
O(n6k+1k) iterations.
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Next, we show that a single iteration of the loop starting in line 6 requires at most O(m) time. It takes at most O(m)

time to check if Nk
G [S ∪U ] ⊇ L(s)

i (line 7) and at most O(n) time to construct (R, R ′). Determining if Xi contains a pair (P , P ′)
with P = R and (if necessary) replacing it can be achieved in O(n) time as follows. One way is to use a tree-structure similar 
to the one we used for Algorithm 1. An other (less memory efficient) option is to use an array Ai of size n6k+1 where each 
element can store a pair (S, S ′). To determine the index of a pair, assume that each vertex of G has a unique identifier in 
the range from 0 to n − 1. Additionally, assume that the vertices in a set S are ordered by their identifier. Therefore, each 
set S can be represented by a unique (6k + 1)-digit number with base n. This number is the index of a pair (S, S ′) in Ai . 
Hence, it takes at most O(n) time to add (R, R ′) to Xi and (if necessary) replace a pair (P , P ′).

Therefore, the total runtime of the algorithm is O(n6k+1km). �
If the start vertex s is unknown, one can use Algorithm 1 to, first, find a shortest path with eccentricity k and, then, use 

Algorithm 4 to find a minimum k-dominating set.

6. Conclusion

We have shown that, if a graph has a shortest path of eccentricity at most k, we can compute an (8k + 2)-approximation 
for the line distortion of the graph. Motivated by this result, we investigated the Minimum Eccentricity Shortest Path prob-
lem. We have shown that the problem is NP-hard even if a start-end vertex pair is given and presented a pseudo-polynomial 
time algorithm solving it which runs in O(n2k+2m) time if the given graph contains a shortest path with eccentricity k. We 
also gave constant factor approximation algorithms. The best one computes a 2-approximation in O(n3) time and the fastest 
one computes an 8-approximation in linear time. Additionally, we presented an algorithm which, for a graph containing a 
shortest path with eccentricity k, computes a minimum k-dominating set in nO(k) time.

The problem can be naturally split into two subproblems. First, find the start and end vertices of an optimal path. 
Second, for a given vertex pair, find a shortest path between them with the minimum eccentricity. We know that the 
second subproblem remains NP-hard. However, is it possible to determine the start and end vertices of an optimal path 
efficiently? That is, can we find two vertices s and t in polynomial time such that a path from s to t has the minimum 
eccentricity in G?

We have shown that one can compute a constant factor approximation in linear time. Therefore, MESP is in APX. It 
remains an open question if the problem is APX-complete.

Notes added in proof

1. When this paper was under review (some of its results were already presented at WADS 2015 [11]), we have learned 
about a follow-up paper by Birmelé et al. [3]. They showed that our linear-time method (the double-BFS procedure) 
described in Lemma 20 is in fact a 5-approximation algorithm for the MESP problem and that it can be extended to 
obtain a linear-time 3-approximation algorithm.

2. Using our Local Density Lemma (Lemma 2), one can improve (see [19]) our approximation ratio from [9] for the mini-
mum line-distortion problem on AT-free graphs from 8 to 6.
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