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We develop efficient parameterized, with additive error, approximation algorithms for the 
(Connected) r-Domination problem and the (Connected) p-Center problem for unweighted 
and undirected graphs. Given a graph G , we show how to construct a (connected) 

(
r +

O(μ)
)
-dominating set D with |D| ≤ |D∗| efficiently. Here, D∗ is a minimum (connected) 

r-dominating set of G and μ is our graph parameter, which is the tree-breadth or the cluster 
diameter in a layering partition of G . Additionally, we show that a +O(μ)-approximation for 
the (Connected) p-Center problem on G can be computed in polynomial time. Our interest 
in these parameters stems from the fact that in many real-world networks, including 
Internet application networks, web networks, collaboration networks, social networks, 
biological networks, and others, and in many structured classes of graphs these parameters 
are small constants.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The (Connected) r-Domination problem and the (Connected) p-Center problem, along with the p-Median problem, are 
among basic facility location problems with many applications in data clustering, network design, operations research – 
to name a few. Let G = (V , E) be an unweighted and undirected graph. Given a radius r(v) ∈ N for each vertex v of G , 
indicating within what radius a vertex v wants to be served, the r-Domination problem asks to find a set D ⊆ V of minimum 
cardinality such that dG (v, D) ≤ r(v) for every v ∈ V . The Connected r-Domination problem asks to find an r-dominating set D
of minimum cardinality with an additional requirement that D needs to induce a connected subgraph of G . When r(v) = 1
for every v ∈ V , one gets the classical (Connected) Domination problem. Note that the Connected r-Domination problem 
is a natural generalisation of the Steiner Tree problem (where each vertex t in the target set has r(t) = 0 and each other 
vertex s has r(s) = diam(G)). The connectedness of D is important also in network design and analysis applications (e.g. in 
finding a small backbone of a network). It is easy to see also that finding minimum connected dominating sets is equivalent 
to finding spanning trees with the maximum possible number of leaves.

The (closely related) p-Center problem asks to find in G a set C ⊆ V of at most p vertices such that the value 
maxv∈V dG(v, C) is minimised. If, additionally, C is required to induce a connected subgraph of G , then one gets the Con-
nected p-Center problem.

✩ Results of this paper were partially presented at the COCOA 2017 conference [24].
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The domination problem is one of the most well-studied NP-hard problems in algorithmic graph theory. To cope with 
the intractability of this problem, it has been studied both in terms of approximability (relaxing the optimality) and 
fixed-parameter tractability (relaxing the runtime). The Domination problem is notorious in the theory of fixed-parameter 
tractability (see, e.g., [15,26] for an introduction to parameterized complexity). It was the first problem to be shown 
W[2]-complete [15], and it is hence unlikely to be FPT, i.e., unlikely to have an algorithm with runtime f (k)nc for f a 
computable function, k the size of an optimal solution, c a constant, and n the number of vertices of the input graph. Simi-
lar results are known also for the connected domination problem [22]. From the approximability prospective, a logarithmic 
approximation factor can be found by using a simple greedy algorithm, and finding a sublogarithmic approximation factor 
is NP-hard [27]. The problem is in fact Log-APX-complete [18] and it is unlikely that there is a good FPT approximation 
algorithm for it (see [6] and [7]).

The p-Center problem is known to be NP-hard on graphs. However, for it, a simple and efficient factor-2 approximation 
algorithm exists [21]. Furthermore, it is a best possible approximation algorithm in the sense that an approximation with 
factor less than 2 is proven to be NP-hard (see [21] for more details). The NP-hardness of the Connected p-Center problem is 
shown in [28]. For the edge-weighted variant of the p-center problem, [19] shows that a (2 −ε)-approximation is W[2]-hard 
for parameter p and NP-hard for graphs of highway dimension h = O(log2 n), while also offering a 3/2-approximation al-
gorithm of running time 2O(ph log h)nO(1) . A variant of the p-center problem, called the (k, r)-center problem is investigated 
in [3,13,25]. It asks whether a given graph G has at most k vertices (called centers) such that every other vertex of G is 
within distance at most r from some center. It is shown [25] that the (k, r)-center problem parameterized by the num-
ber k of centers is W[1]-hard in the L∞ metric. From the positive side, [3] gives an O

(
(2r + 1)twn

)
time algorithm for 

the (k, r)-center problem and a randomized O
(
(2r + 2)twnO(1)

)
time algorithm for the connected (k, r)-center problem 

in n-vertex graphs of tree-width tw. Additionally, the (k, r)-center problem, parameterized by k and r, is fixed-parameter 
tractable (FPT) on planar graphs, i.e., it admits an algorithm of complexity 2O(r log r)

√
knO(1) [13]. Moreover, the same type 

of FPT algorithms can be designed for the more general class of map graphs (see [13] for details).
Recently, in [10], a new type of approximability result (call it a parameterized approximability result) was obtained: there 

exists a polynomial time algorithm which finds in an arbitrary graph G having a minimum r-dominating set D a set D ′
such that |D ′| ≤ |D| and each vertex v ∈ V is within distance at most r(v) + 2δ from D ′ , where δ is the hyperbolicity 
parameter of G (see [10] for details). We call such a D ′ an (r + 2δ)-dominating set of G . Later, in [17], this idea was 
extended to the p-Center problem: there is a quasi-linear time algorithm for the p-Center problem with an additive error 
less than or equal to six times the input graph’s hyperbolicity (i.e., it finds a set C ′ with at most p vertices such that 
maxv∈V dG(v, C ′) ≤ minC⊆V ,|C |≤p maxv∈V dG (v, C) + 6δ). We call such a C ′ a +6δ-approximation for the p-Center problem.

In this paper, we continue the line of research started in [10] and [17]. Unfortunately, the results of [10,17] are hardly 
extendable to connected versions of the r-Domination and p-Center problems. It remains an open question whether similar 
approximability results parameterized by the graph’s hyperbolicity can be obtained for the Connected r-Domination and 
Connected p-Center problems. Instead, we consider two other graph parameters: the tree-breadth ρ and the cluster diame-
ter � in a layering partition (formal definitions will be given in the next sections). Both parameters (like the hyperbolicity) 
capture the metric tree-likeness of a graph (see, e.g., [2] and papers cited therein). As demonstrated in [2], in many real-
world networks, including Internet application networks, web networks, collaboration networks, social networks, biological 
networks, and others, as well as in many structured classes of graphs the parameters δ, ρ , and � are small constants.

We show here that, for a given n-vertex, m-edge graph G , having a minimum r-dominating set D and a minimum 
connected r-dominating set C :

• an (r + �)-dominating set D ′ with |D ′| ≤ |D| can be computed in linear time;
• a connected (r + 2�)-dominating set C ′ with |C ′| ≤ |C | can be computed in O

(
m α(n) log �

)
time (where α(n) is the 

inverse Ackermann function);
• a +�-approximation for the p-Center problem can be computed in linear time;
• a +2�-approximation for the connected p-Center problem can be computed in O

(
m α(n) log min(�, p)

)
time.

Furthermore, given a tree-decomposition with breadth ρ for G:

• an (r + ρ)-dominating set D ′ with |D ′| ≤ |D| can be computed in O(nm) time;
• a connected 

(
r + 5ρ

)
-dominating set C ′ with |C ′| ≤ |C | can be computed in O(nm) time;

• a +ρ-approximation for the p-Center problem can be computed in O(nm log n) time;
• a +5ρ-approximation for the Connected p-Center problem can be computed in O(nm log n) time.

To compare these results with the results of [10,17], notice that, for any graph G , its hyperbolicity δ is at most � [2]
and at most two times its tree-breadth ρ [9], and the inequalities are sharp.

Note that, for split graphs (graphs in which the vertices can be partitioned into a clique and an independent set), δ
and ρ are at most 1, and � is at most 2. Additionally, as shown in [11], there is (under reasonable assumptions) no 
polynomial-time algorithm to compute a sublogarithmic-factor approximation for the (Connected) Domination problem in 
split graphs. Hence, there is no such algorithm even for constant δ, ρ , and �.
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One can extend this result to show that there is no polynomial-time algorithm A which computes, for any constant c, 
a +c log n-approximation for split graphs. Hence, there is no polynomial-time +c� log n-approximation algorithm in general. 
Consider a given split graph G = (C ∪ I, E) with n vertices where C induces a clique and I induces an independent set. Create 
a graph H = (C H ∪ I H , E H ) by, first, making n copies of G . Let C H = C1 ∪ C2 ∪ . . . ∪ Cn and I H = I1 ∪ I2 ∪ . . . ∪ In . Second, 
make the vertices in C H pairwise adjacent. Then, C H induces a clique and I H induces an independent set. If there is such 
an algorithm A, then A produces a (connected) dominating set DA for H which has at most 2c log n more vertices than a 
minimum (connected) dominating set D . Thus, by pigeonhole principle, H contains a clique Ci for which |Ci ∩ DA| = |Ci ∩ D|. 
Therefore, such an algorithm A would allow to solve the (Connected) Domination problem for split graphs in polynomial 
time.

After an extended abstract of these results was published in [24], we learned about new results (including approx-
imation results) obtained in [23] for the (k, r)-center problem. For any r ≥ 1, an algorithm that solves the problem in 
O

(
(3r + 1)cwnO(1)

)
time, where cw is the clique-width of the input graph, as well as a tight SETH lower bound match-

ing this algorithm’s performance are presented. Furthermore, algorithms are presented that, for any ε > 0, run in time 
O

(
(tw /ε)O(tw)nO(1)

)
, O

(
(cw /ε)O(cw)nO(1)

)
and return a (k, (1 + ε)r)-center if a (k, r)-center exists. Although these ap-

proximation results have a flavor of our approximation results in a sense that they keep k unchanged and extend the value 
of r, the algorithms of [23] are exponential in tw | cw and have a multiplicative approximation factor (1 +ε); our algorithms 
are low-polynomial and have additive approximation surpluses. On the other hand, the approximation results of [23] cannot 
really be compared with ours, as there are graphs (e.g. large cliques) with tree-length 1 and unbounded tree-width and 
there are graphs (e.g. large cycles) with tree-width 2 and unbounded tree-length.

2. Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected, without loops, and without multiple 
edges. For a graph G = (V , E), we use n = |V | and m = |E| to denote the cardinality of the vertex set and the edge set of G , 
respectively.

The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance dG(u, v) in a graph G
of two vertices u and v is the length of a shortest path connecting u and v . The distance between a vertex v and a set S ⊆ V
is defined as dG (v, S) = minu∈S dG (u, v). For a vertex v of G and some positive integer r, the set Nr

G [v] = {
u | dG (u, v) ≤ r

}

is called the r-neighbourhood of v . The eccentricity eccG(v) of a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its eccentricity 
is eccG(S) = maxu∈V dG(u, S).

For some function r : V →N, a vertex u is r-dominated by a vertex v (by a set S ⊆ V ), if dG (u, v) ≤ r(u) (dG(u, S) ≤ r(u), 
respectively). A vertex set D is called an r-dominating set of G if each vertex u ∈ V is r dominated by D . Additionally, for 
some non-negative integer φ, we say a vertex is (r + φ)-dominated by a vertex v (by a set S ⊆ V ), if dG (u, v) ≤ r(u) + φ

(dG(u, S) ≤ r(u) + φ, respectively). An (r + φ)-dominating set is defined accordingly. For a given graph G and function r, the 
(Connected) r-Domination problem asks for the smallest (connected) vertex set D such that D is an r-dominating set of G .

The degree of a vertex v is the number of vertices adjacent to it. For a vertex set S , let G[S] denote the subgraph of G
induced by S . A vertex set S is a separator for two vertices u and v in G if each path from u to v contains a vertex s ∈ S; 
in this case we say S separates u from v .

A tree-decomposition of a graph G = (V , E) is a tree T with the vertex set B where each vertex of T , called bag, is a 
subset of V such that: (i) V = ⋃

B∈B B , (ii) for each edge uv ∈ E , there is a bag B ∈ B with u, v ∈ B , and (iii) for each 
vertex v ∈ V , the bags containing v induce a subtree of T . A tree-decomposition T of G has breadth ρ if, for each bag B
of T , there is a vertex v in G with B ⊆ Nρ

G [v]. The tree-breadth of a graph G is ρ , written as tb(G) = ρ , if ρ is the minimal 
breadth of all tree-decomposition for G . A tree-decomposition T of G has length λ if, for each bag B of T and any two 
vertices u, v ∈ B , dG(u, v) ≤ λ. The tree-length of a graph G is λ, written as tl(G) = λ, if λ is the minimal length of all 
tree-decomposition for G .

For a rooted tree T , let 	(T ) denote the number of leaves of T . For the case when T contains only one node, let 
	(T ) := 0. With α, we denote the inverse Ackermann function (see, e.g., [12]). It is well known that α grows extremely 
slowly. For x = 1080 (estimated number of atoms in the universe), α(x) ≤ 4.

3. Using a layering partition

The concept of a layering partition was introduced in [5,8]. The idea is the following. First, partition the vertices of a 
given graph G = (V , E) in distance layers Li = { v | dG(s, v) = i } for a given vertex s. Second, partition each layer Li into 
clusters in such a way that two vertices u and v are in the same cluster if and only if they are connected by a path only 
using vertices in the same or upper layers. That is, u and v are in the same cluster if and only if, for some i, {u, v} ⊆ Li

and there is a path P from u to v in G such that, for all j < i, P ∩ L j = ∅. Note that each cluster C is a set of vertices of G , 
i.e., C ⊆ V , and all clusters are pairwise disjoint. The created clusters form a rooted tree T with the cluster {s} as the root 
where each cluster is a node of T and two clusters C and C ′ are adjacent in T if and only if G contains an edge uv with 
u ∈ C and v ∈ C ′ . Fig. 1 gives an example for such a partition. A layering partition of a graph can be computed in linear 
time [8].
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Fig. 1. Example of a layering partition. A given graph G (a) and the layering partition of G generated when starting at vertex s (b). Example taken from [8].

For the remainder of this section, assume that we are given a graph G = (V , E) and a layering partition T of G
for an arbitrary start vertex. We denote the largest diameter of all clusters of T as �, i.e., � := max

{
dG(x, y) |

x, y are in a cluster C of T
}

. For two vertices u and v of G contained in the clusters Cu and Cv of T , respectively, we 
define dT (u, v) := dT (Cu, Cv).

Lemma 1. For all vertices u and v of G, dT (u, v) ≤ dG(u, v) ≤ dT (u, v) + �.

Proof. Clearly, by construction of a layering partition, dT (u, v) ≤ dG(u, v) for all vertices u and v of G .
Next, let Cu and Cv be the clusters containing u and v , respectively. Note that T is a rooted tree. Let C ′ be the lowest 

common ancestor of Cu and Cv . Therefore, dT (u, v) = dT (u, C ′) + dT (C ′, v). By construction of a layering partition, C ′ con-
tains a vertex u′ and vertex v ′ such that dG (u, u′) = dT (u, u′) and dG (v, v ′) = dT (v, v ′). Since the diameter of each cluster 
is at most �, dG(u, v) ≤ dT (u, u′) + � + dT (v, v ′) = dT (u, v) + �. �

Theorem 2 below shows that we can use the layering partition T to compute an (r + �)-dominating set for G in linear 
time which is not larger than a minimum r-dominating set for G . This is done by finding a minimum r-dominating set of T
where, for each cluster C of T , r(C) is defined as minv∈C r(v).

Theorem 2. Let D be a minimum r-dominating set for a given graph G. An (r + �)-dominating set D ′ for G with |D ′| ≤ |D| can be 
computed in linear time.

Proof. First, create a layering partition T of G and, for each cluster C of T , set r(C) := minv∈C r(v). Second, find a minimum 
r-dominating set S for T , i.e., a set S of clusters such that, for each cluster C of T , dT (C, S) ≤ r(C). Third, create a set D ′
by picking an arbitrary vertex of G from each cluster in S . All three steps can be performed in linear time, including the 
computation of S (see [4]).

Next, we show that D ′ is an (r + �)-dominating set for G . By construction of S , each cluster C of T has distance at 
most r(C) to S in T . Thus, for each vertex u of G , S contains a cluster CS with dT (u, CS ) ≤ r(u). Additionally, by Lemma 1, 
dG(u, v) ≤ r(u) +� for any vertex v ∈ CS . Therefore, for any vertex u, dG(u, D ′) ≤ r(u) +�, i.e., D ′ is an (r +�)-dominating 
set for G .

It remains to show that |D ′| ≤ |D|. Let D be the set of clusters of T that contain a vertex of D . Because D is an 
r-dominating set for G , it follows from Lemma 1 that D is an r-dominating set for T . Clearly, since clusters are pairwise 
disjoint, |D| ≤ |D|. By minimality of S , |S| ≤ |D| and, by construction of D ′ , |D ′| = |S|. Therefore, |D ′| ≤ |D|. �

We now show how to construct a connected (r + 2�)-dominating set for G using T in such a way that the set created 
is not larger than a minimum connected r-dominating set for G . For the remainder of this section, let Dr be a minimum 
connected r-dominating set of G and let, for each cluster C of T , r(C) be defined as above. Additionally, we say that a 
subtree T ′ of some tree T is an r-dominating subtree of T if the nodes (clusters in case of a layering partition) of T ′ form a 
connected r-dominating set for T .

The first step of our approach is to construct a minimum r-dominating subtree Tr of T . Such a subtree Tr can be 
computed in linear time [16]. Lemma 3 below shows that Tr gives a lower bound for the cardinality of Dr .

Lemma 3. If Tr contains more than one cluster, each connected r-dominating set of G intersects all clusters of Tr . Therefore, |Tr | ≤ |Dr |.
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Proof. Let D be an arbitrary connected r-dominating set of G . Assume that Tr has a cluster C such that C ∩ D = ∅. Because 
D is connected, the subtree of T induced by the clusters intersecting D is connected, too. Thus, if D intersects all leafs 
of Tr , then it intersects all clusters of Tr . Hence, we can assume, without loss of generality, that C is a leaf of Tr . Because 
Tr has at least two clusters and by minimality of Tr , T contains a cluster C ′ such that dT (C ′, C) = dT (C ′, Tr) = r(C ′). Note 
that each path in G from a vertex in C ′ to a vertex in D intersects C . Therefore, by Lemma 1, there is a vertex u ∈ C ′ with 
r(u) = dT (u, C) < dT (u, D) ≤ dG (u, D). That contradicts with D being an r-dominating set.

Because any r-dominating set of G intersects each cluster of Tr and because these clusters are pairwise disjoint, it follows 
that |Tr | ≤ |Dr |. �

As we show later in Corollary 5, each connected vertex set S ⊆ V that intersects each cluster of Tr gives an (r +
�)-dominating set for G . It follows from Lemma 3 that, if such a set S has minimum cardinality, |S| ≤ |Dr |. However, 
finding a minimum cardinality connected set intersecting each cluster of a layering partition (or of a subtree of it) is as 
hard as finding a minimum Steiner tree.

The main idea of our approach is to construct a minimum (r + δ)-dominating subtree Tδ of T for some integer δ. 
We then compute a small enough connected set Sδ that intersects all cluster of Tδ . By trying different values of δ, we 
eventually construct a connected set Sδ such that |Sδ | ≤ |Tr | and, thus, |Sδ | ≤ |Dr |. Additionally, we show that Sδ is a 
connected (r + 2�)-dominating set of G .

For some non-negative integer δ, let Tδ be a minimum (r + δ)-dominating subtree of T . Clearly, T0 = Tr . The following 
two lemmas set an upper bound for the maximum distance of a vertex of G to a vertex in a cluster of Tδ and for the size 
of Tδ compared to the size of Tr .

Lemma 4. For each vertex v of G, dT (v, Tδ) ≤ r(v) + δ.

Proof. Let Cv be the cluster of T containing v and let C be the cluster of Tδ closest to Cv in T . By construction of Tδ , 
dT (v, C) = dT (Cv , C) ≤ r(Cv) + δ ≤ r(v) + δ. �

Because the diameter of each cluster is at most �, Lemma 1 and Lemma 4 imply the following.

Corollary 5. If a vertex set intersects all clusters of Tδ , it is an 
(
r + (δ + �)

)
-dominating set of G.

Lemma 6. |Tδ| ≤ |Tr | − δ · 	(Tδ).

Proof. First, consider the case when Tδ contains only one cluster, i.e., |Tδ | = 1. Then, 	(Tδ) = 1 and, thus, the statement 
clearly holds. Next, let Tδ contain more than one cluster, let Cu be an arbitrary leaf of Tδ , and let Cv be a cluster of Tr with 
maximum distance to Cu such that Cu is the only cluster on the shortest path from Cu to Cv in Tr , i.e., Cv is not in Tδ . 
Due to the minimality of Tδ , dTr (Cu, Cv) = δ. Thus, the shortest path from Cu to Cv in Tr contains δ clusters (including Cv ) 
which are not in Tδ . Therefore, |Tδ| ≤ |Tr | − δ · 	(Tδ). �

Now that we have constructed and analysed Tδ , we show how to construct Sδ . First, we construct a set of shortest paths 
such that each cluster of Tδ is intersected by exactly one path. Second, we connect these paths with each other to form a 
connected set using an approach which is similar to Kruskal’s algorithm for minimum spanning trees.

Let L = {
C1, C2, . . . , Cλ

}
be the leaf clusters of Tδ (excluding the root) with either λ = 	(Tδ) − 1 if the root of Tδ is a 

leaf, or with λ = 	(Tδ) otherwise. We construct a set P = {
P1, P2, . . . , Pλ

}
of paths as follows. Initially, P is empty. For 

each cluster Ci ∈ L, in turn, find the ancestor C ′
i of Ci which is closest to the root of Tδ and does not intersect any path 

in P yet. If we assume that the indices of the clusters in L represent the order in which they are processed, then C ′
1 is the 

root of Tδ . Then, select an arbitrary vertex v in Ci and find a shortest path Pi in G from v to C ′
i . Add Pi to P and continue 

with the next cluster in L. Fig. 2 gives an example.

Lemma 7. For each cluster C of Tδ , there is exactly one path Pi ∈P intersecting C . Additionally, C and Pi share exactly one vertex, i.e., 
|C ∩ Pi | = 1.

Proof. Observe that, by construction of a layering partition, each vertex in a cluster C is adjacent to some vertex in the 
parent cluster of C . Therefore, a shortest path P in G from C to any of its ancestors C ′ only intersects clusters on the path 
from C to C ′ in T and each cluster shares only one vertex with P . It remains to show that each cluster intersects exactly 
one path.

Without loss of generality, assume that the indices of clusters in L and paths in P represent the order in which they 
are processed and created, i.e., assume that the algorithms first creates P1 which starts in C1, then P2 which starts in C2, 
and so on. Additionally, let Li = {C1, C2, . . . , Ci} and Pi = {P1, P2, . . . , Pi}.

To prove that each cluster intersects exactly one path, we show by induction over i that, if a cluster Ci of Tδ satisfies the 
statement, then all ancestors of Ci satisfy it, too. Thus, if Cλ satisfies the statement, each cluster satisfies it.
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Fig. 2. Example for the set P for a subtree of a layering partition. Paths are shown in red. Each path Pi , with 1 ≤ i ≤ 5, starts in the leaf Ci and ends in 
the cluster C ′

i . For i = 2 and i = 5, Pi contains only one vertex. (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)

First, consider i = 1. Clearly, since P1 is the first path, P1 connects the leaf C1 with the root of Tδ and no cluster 
intersects more than one path at this point. Therefore, the statement is true for C1 and each of its ancestors.

Next, assume that i > 1 and that the statement is true for each cluster in Li−1 and their respective ancestors. Then, the 
algorithm creates Pi which connects the leaf Ci with the cluster C ′

i . Assume that there is a cluster C on the path from Ci
to C ′

i in T such that C intersects a path P j with j < i. Clearly, C ′
i is an ancestor of C . Thus, by induction hypothesis, C ′

i is 
also intersected by some path P �= Pi . This contradicts with the way C ′

i is selected by the algorithm. Therefore, each cluster 
on the path from Ci to C ′

i in T only intersects Pi and Pi does not intersect any other clusters.
Because i > 1, C ′

i has a parent cluster C ′′ in Tδ that is intersected by a path P j with j < i. By induction hypothesis, each 
ancestor of C ′′ is intersected by a path in Pi−1. Therefore, each ancestor of Ci is intersected by exactly one path in Pi . �

Next, we use the paths in P to create the set Sδ . As first step, let Sδ := ⋃
Pi∈P Pi . Later, we add more vertices into Sδ to 

ensure it is a connected set.
Now, create a partition V = {

V 1, V 2, . . . , Vλ

}
of V such that, for each i, Pi ⊆ V i , V i is connected, and dG (v, Pi) =

minP∈P dG (v, P ) for each vertex v ∈ V i . That is, V i contains the vertices of G which are not more distant to Pi in G than 
to any other path in P . Additionally, for each vertex v ∈ V , set P (v) := Pi if and only if v ∈ V i (i.e., P (v) is the path in P
which is closest to v) and set d(v) := dG

(
v, P (v)

)
. Such a partition as well as P (v) and d(v) can be computed by performing 

a BFS on G starting at all paths Pi ∈ P simultaneously. Later, the BFS also allows us to easily determine the shortest path 
from v to P (v) for each vertex v .

To manage the subsets of V , we use a Union-Find data structure such that, for two vertices u and v , Find(u) = Find(v)

if and only if u and v are in the same set of V . A Union-Find data structure additionally allows us to easily join two sets 
of V into one by performing a single Union operation. Note that, whenever we join two sets of V into one, P (v) and d(v)

remain unchanged for each vertex v .
Next, create an edge set E ′ = { uv | Find(u) �= Find(v) }, i.e., the set of edges uv such that u and v are in different sets 

of V . Sort E ′ in such a way that an edge uv precedes an edge xy only if d(u) + d(v) ≤ d(x) + d(y).
The last step to create Sδ is similar to Kruskal’s minimum spanning tree algorithm. Iterate over the edges in E ′ in 

increasing order. If, for an edge uv , Find(u) �= Find(v), i.e., if u and v are in different sets of V , then join these sets into one 
by performing Union(u, v), add the vertices on the shortest path from u to P (u) to Sδ , and add the vertices on the shortest 
path from v to P (v) to Sδ . Repeat this, until V contains only one set, i.e., until V = {V }.

Algorithm 1 below summarises the steps to create a set Sδ for a given subtree of a layering partition subtree Tδ .

Lemma 8. For a given graph G and a given subtree Tδ of some layering partition of G, Algorithm 1 constructs, in O
(
m α(n)

)
time, a 

connected set Sδ with |Sδ| ≤ |Tδ | + � · 	(Tδ) which intersects each cluster of Tδ .

Proof (Correctness). First, we show that Sδ is connected at the end of the algorithm. To do so, we show by induction that, 
at any time, Sδ ∩ V ′ is a connected set for each set V ′ ∈ V . Clearly, when V is created, for each set V i ∈ V , Sδ ∩ V i = Pi . 
Now, assume that the algorithm joins the set V u and V v in V into one set based on the edge uv with u ∈ V u and v ∈ V v . 
Let Su = Sδ ∩ V u and S v = Sδ ∩ V v . Note that P (u) ⊆ Su and P (v) ⊆ S v . The algorithm now adds all vertices to Sδ which 
are on a path from P (u) to P (v). Therefore, Sδ ∩ (V u ∪ V v) is a connected set. Because V = {V } at the end of the algorithm, 
Sδ is connected eventually. Additionally, since Pi ⊆ Sδ for each Pi ∈P , it follows that Sδ intersects each cluster of Tδ .

Next, we show that the cardinality of Sδ is at most |Tδ | + � · 	(Tδ). When first created, the set Sδ contains all vertices 
of all paths in P . Therefore, by Lemma 7, |Sδ | = ∑

Pi∈P |Pi | = |Tδ |. Then, each time two sets of V are joined into one set 
based on an edge uv , Sδ is extended by the vertices on the shortest paths from u to P (u) and from v to P (v). Therefore, 
the size of Sδ increases by d(u) + d(v), i.e., |Sδ | := |Sδ | + d(u) + d(v). Let X denote the set of all edges used to join two sets 
of V into one at some point during the algorithm. Note that |X | = |P| − 1 ≤ 	(Tδ). Therefore, at the end of the algorithm,

|Sδ| =
∑

|Pi| +
∑(

d(u) + d(v)
) ≤ |Tδ | + 	(Tδ) · max

uv∈X

(
d(u) + d(v)

)
.

Pi∈P uv∈X
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Algorithm 1: Computes a connected vertex set that intersects each cluster of a given layering partition.
Input: A graph G = (V , E) and a subtree Tδ of some layering partition of G .
Output: A connected set Sδ ⊆ V that intersects each cluster of Tδ and contains at most |Tδ | +

(
	(Tδ) − 1

) · � vertices.
1 Let L = {

C1, C2, . . . , Cλ

}
be the set of clusters excluding the root that are leaves of Tδ .

2 Create an empty set P .
3 foreach cluster Ci ∈ L do
4 Select an arbitrary vertex v ∈ Ci .
5 Find the highest ancestor C ′

i of Ci (i.e., the ancestor which is closest to the root of Tδ ) that is not flagged.
6 Find a shortest path Pi from v to an ancestor of v in C ′

i (i.e., a shortest path from Ci to C ′
i in G that contains exactly one vertex of each cluster 

of the corresponding path in Tδ ).
7 Add Pi to P .
8 Flag each cluster intersected by Pi .

9 Create a set Sδ := ⋃
Pi∈P Pi .

10 Perform a BFS on G starting at all paths Pi ∈ P simultaneously. This results in a partition V = {
V 1, V 2, . . . , Vλ

}
of V with Pi ⊆ V i for each Pi ∈ P . 

For each vertex v , set P (v) := Pi if and only if v ∈ V i and let d(v) := dG (v, P (v)).
11 Create a Union-Find data structure and add all vertices of G such that Find(v) = i if and only if v ∈ V i .
12 Determine the edge set E ′ = { uv | Find(u) �= Find(v) }.
13 Sort E ′ such that uv ≤ xy if and only if d(u) + d(v) ≤ d(x) + d(y). Let 〈e1, e2, . . . , e|E ′ |〉 be the resulting sequence.
14 for i := 1 to |E ′| do
15 Let uv = ei .
16 if Find(u) �= Find(v) then
17 Add the shortest path from u to P (u) to Sδ .
18 Add the shortest path from v to P (v) to Sδ .
19 Union(u, v)

20 Output Sδ .

Claim. For each edge uv ∈ X, d(u) + d(v) ≤ �.

Proof (Claim). To represent the relations between paths in P and vertex sets in V , we define a function f : P → V such 
that f (Pi) = V j if and only if Pi ⊆ V j . Directly after constructing V , f is a bijection with f (Pi) = V i . At the end of the 
algorithm, after all sets of V are joined into one, f (Pi) = V for all Pi ∈P .

Recall the construction of P and assume that the indices of the paths in P represent the order in which they are created. 
Assume that i > 1. By construction, the path Pi ∈ P connects the leaf Ci with the cluster C ′

i in Tδ . Because i > 1, C ′
i has a 

parent cluster in Tδ that is intersected by a path P j ∈ P with j < i. We define P j as the parent of Pi . By Lemma 7, this 
parent P j is unique for each Pi ∈P with i > 1. Based on this relation between paths in P , we can construct a rooted tree T
with the node set { xi | Pi ∈ P } such that each node xi represents the path Pi and x j is the parent of xi if and only if P j is 
the parent of Pi .

Because each node of T represents a path in P , f defines a colouring for the nodes of T such that xi and x j have 
different colours if and only if f (Pi) �= f (P j). As long as |V| > 1, T contains two adjacent nodes with different colours. Let 
xi and x j be these nodes with j < i and let Pi and P j be the corresponding paths in P . Note that x j is the parent of xi
in T and, hence, P j is the parent of Pi . Therefore, Pi ends in a cluster C ′

i which has a parent cluster C that intersects P j . 
By properties of layering partitions, it follows that dG(Pi, P j) ≤ � + 1. Recall that, by construction, d(v) = minP∈P dG (v, P )

for each vertex v . Thus, for each edge uv on a shortest path from Pi to P j in G (with u being closer to Pi than to P j), 
d(u) + d(v) ≤ dG(u, Pi) + dG(v, P j) ≤ �. Therefore, because f (Pi) �= f (P j), there is an edge uv on a shortest path from Pi

to P j such that f
(

P (u)
) �= f

(
P (v)

)
and d(u) + d(v) ≤ �. �

From the claim above, it follows that, as long as V contains multiple sets, there is an edge uv ∈ E ′ such that d(u) +d(v) ≤
� and Find(u) �= Find(v). Therefore, maxuv∈X

(
d(u) + d(v)

) ≤ � and |Sδ | ≤ |Tδ | +
(
	(Tδ) − 1

) · �. �
Proof (Complexity). First, the algorithm computes P (line 2 to line 8). If the parent of each vertex from the original BFS 
that was used to construct T is still known, P can be constructed in O(n) total time. After picking a vertex v in Ci , simply 
follow the parent pointers until a vertex in C ′

i is reached. Computing V as well as P (v) and d(v) for each vertex v of G
(line 10) can be done with single BFS and, thus, requires at most O(n + m) time.

Recall that, for a Union-Find data structure storing n elements, each operation requires at most O
(
α(n)

)
amortised 

time. Therefore, initialising such a data structure to store all vertices (line 11) and computing E ′ (line 12) requires at 
most O

(
m α(n)

)
time. Note that, for each vertex v , d(v) ≤ |V |. Thus, sorting E ′ (line 13) can be done in linear time using 

counting sort. When iterating over E ′ (line 14 to line 19), for each edge uv ∈ E ′ , the Find-operation is called twice and the 
Union-operation is called at most once. Thus, the total runtime for all these operations is at most O

(
m α(n)

)
.

Let Pu = {u, . . . , x, y, . . . , p} be the shortest path in G from a vertex u to P (u). Assume that y has been added to Sδ in a 
previous iteration. Thus, {y, . . . , p} ⊆ Sδ and, when adding Pu to Sδ , the algorithm only needs to add {u, . . . , x}. Therefore, 
by using a simple binary flag to determine if a vertex is contained in Sδ , constructing Sδ (line 9, line 17, and line 18) 
requires at most O(n) time.

In total, Algorithm 1 runs in O
(
m α(n)

)
time. �
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Because, for each integer δ ≥ 0, |Sδ | ≤ |Tδ | + � · 	(Tδ) (Lemma 8) and |Tδ | ≤ |Tr | − δ · 	(Tδ) (Lemma 6), we have the 
following.

Corollary 9. For each δ ≥ �, |Sδ | ≤ |Tr | and, thus, |Sδ| ≤ |Dr |.

To the best of our knowledge, there is no algorithm known that computes � in less than O(nm) time. Additionally, 
under reasonable assumptions, computing the diameter or radius of a general graph requires 


(
n2

)
time [1]. We conjecture 

that the runtime for computing � for a given graph has a similar lower bound.
To avoid the runtime required for computing �, we use the following approach shown in Algorithm 2 below. First, 

compute a layering partition T and the subtree Tr . Second, for a certain value of δ, compute Tδ and perform Algorithm 1
on it. If the resulting set Sδ is larger than Tr (i.e., |Sδ| > |Tr |), increase δ; otherwise, if |Sδ | ≤ |Tr |, decrease δ. Repeat the 
second step with the new value of δ.

One strategy to select values for δ is a classical binary search over the number of vertices of G . In this case, Algorithm 1
is called up-to O(log n) times. Empirical analysis [2], however, have shown that � is usually very small. Therefore, we use 
a so-called one-sided binary search.

Consider a sorted sequence 〈x1, x2, . . . , xn〉 in which we search for a value xp . We say the value xi is at position i. For 
a one-sided binary search, instead of starting in the middle at position n/2, we start at position 1. We then processes 
position 2, then position 4, then position 8, and so on until we reach position j = 2i and, next, position k = 2i+1 with 
x j < xp ≤ xk . Then, we perform a classical binary search on the sequence 〈x j+1, . . . , xk〉. Note that, because x j < xp ≤ xk , 
2i < p ≤ 2i+1 and, hence, j < p ≤ k < 2p. Therefore, a one-sided binary search requires at most O(log p) iterations to 
find xp .

Because of Corollary 9, using a one-sided binary search allows us to find a value δ ≤ � for which |Sδ| ≤ |Tr | by calling 
Algorithm 1 at most O(log �) times. Algorithm 2 below implements this approach.

Algorithm 2: Computes a connected (r + 2�)-dominating set for a given graph G .
Input: A graph G = (V , E) and a function r : V → N.
Output: A connected (r + 2�)-dominating set D for G with |D| ≤ |Dr |.

1 Create a layering partition T of G .
2 For each cluster C of T , set r(C) := minv∈C r(v).
3 Compute a minimum r-dominating subtree Tr for T (see [16]).
4 One-Sided Binary Search over δ, starting with δ = 0
5 Create a minimum δ-dominating subtree Tδ of Tr (i.e., Tδ is a minimum (r + δ)-dominating subtree for T ).
6 Run Algorithm 1 on Tδ and let the set Sδ be the corresponding output.
7 if |Sδ | ≤ |Tr | then
8 Decrease δ.

9 else
10 Increase δ.

11 Output Sδ with the smallest δ for which |Sδ | ≤ |Tr |.

Theorem 10. For a given graph G, Algorithm 2 computes a connected (r + 2�)-dominating set D with |D| ≤ |Dr | in O
(
m α(n) log �

)

time.

Proof. Clearly, the set D is connected because D = Sδ for some δ and, by Lemma 8, the set Sδ is connected. By Corollary 9, 
for each δ ≥ �, |Sδ| ≤ |Tr |. Thus, for each δ ≥ �, the binary search decreases δ and, eventually, finds some δ such that 
δ ≤ � and |Sδ | ≤ |Tr |. Therefore, the algorithm finds a set D with |D| ≤ |Dr |. Note that, because D = Sδ for some δ ≤ �

and because Sδ intersects each cluster of Tδ (Lemma 8), it follows from Lemma 4 that, for each vertex v of G , dT (v, D) ≤
r(v) + � and, by Lemma 1, dG(v, D) ≤ r(v) + 2�. Thus, D is an (r + 2�)-dominating set for G .

Creating a layering partition for a given graph and computing a minimum connected r-dominating set of a tree can be 
done in linear time [16]. The one-sided binary search over δ has at most O(log �) iterations. Each iteration of the binary 
search requires at most linear time to compute Tδ , O

(
m α(n)

)
time to compute Sδ (Lemma 8), and constant time to decide 

whether to increase or decrease δ. Therefore, Algorithm 2 runs in O
(
m α(n) log�

)
total time. �

4. Using a tree-decomposition

Theorem 2 and Theorem 10 respectively show how to compute an (r +�)-dominating set in linear time and a connected 
(r + 2�)-dominating set in O

(
m α(n) log �

)
time. It is known that the maximum diameter � of clusters of any layering 

partition of a graph approximates the tree-breadth and tree-length of this graph. Indeed, for a graph G with tl(G) = λ, 
� ≤ 3λ [14].
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Corollary 11. Let D be a minimum r-dominating set for a given graph G with tl(G) = λ. An (r + 3λ)-dominating set D ′ for G with 
|D ′| ≤ |D| can be computed in linear time.

Corollary 12. Let D be a minimum connected r-dominating set for a given graph G with tl(G) = λ. A connected (r + 6λ)-dominating 
set D ′ for G with |D ′| ≤ |D| can be computed in O

(
m α(n) log λ

)
time.

In this section, we consider the case when we are given a tree-decomposition with breadth ρ and length λ. We present 
algorithms to compute an (r + ρ)-dominating set as well as a connected 

(
r + min(3λ, 5ρ)

)
-dominating set in O(nm) time.

For the remainder of this section, assume that we are given a graph G = (V , E) and a tree-decomposition T of G with 
breadth ρ and length λ. We assume that ρ and λ are known and that, for each bag B of T , we know a vertex c(B) with 
B ⊆ Nρ

G [c(B)]. Let T be minimal, i.e., B � B ′ for any two bags B and B ′ . Thus, the number of bags is not exceeding the 
number vertices of G . Additionally, let each vertex of G store a list of bags containing it and let each bag of T store a list of 
vertices it contains. One can see this as a bipartite graph where one subset of vertices are the vertices of G and the other 
subset are the bags of T . Therefore, the total input size is in O(n + m + M) where M ≤ n2 is the sum of the cardinality of 
all bags of T .

4.1. Preprocessing

Before approaching the (Connected) r-Domination problem, we compute a subtree T ′ of T such that, for each vertex v
of G , T ′ contains a bag B with dG (v, B) ≤ r(v). We call such a (not necessarily minimal) subtree an r-covering subtree of T .

Let Tr be a minimum r-covering subtree of T . We do not know how to compute Tr directly. However, if we are given a 
bag B of T , we can compute the smallest r-covering subtree T B which contains B . Then, we can identify a bag B ′ in T B for 
which we know it is a bag of Tr . Thus, we can compute Tr by computing the smallest r-covering subtree which contains B ′ .

The idea for computing T B is to determine, for each vertex v of G , the bag B v of T for which dG(v, B v) ≤ r(v) and 
which is closet to B . Then, let T B be the smallest tree that contains all these bags B v . Algorithm 3 below implements this 
approach.

Additionally to computing the tree T B , we make it a rooted tree with B as the root, give each vertex v a pointer β(v) to 
a bag of T B , and give each bag B ′ a counter σ(B ′). The pointer β(v) identifies the bag B v which is closest to B in T B and 
intersects the r-neighbourhood of v . The counter σ(B ′) states the number of vertices v with β(v) = B ′ . Even though setting 
β and σ as well as rooting the tree are not necessary for computing T B , we use it when computing an (r + ρ)-dominating 
set later.

Algorithm 3: Computes the smallest r-covering subtree T B of a given tree-decomposition T that contains a given bag B
of T .
1 Make T a rooted tree with the bag B as the root.
2 Create a set B of bags and initialise it with B := {B}.
3 For each bag B ′ of T , set σ(B ′) := 0 and determine dT (B ′, B).
4 For each vertex u, determine the bag B(u) which contains u and has minimal distance to B .
5 foreach u ∈ V do
6 Determine a vertex v such that dG (u, v) ≤ r(u) and dT

(
B(v), B)

is minimal and let Bu := B(v).
7 Add Bu to B, set β(u) := Bu , and increase σ(Bu) by 1.

8 Output the smallest subtree T B of T that contains all bags in B.

Lemma 13. For a given tree-decomposition T and a given bag B of T , Algorithm 3 computes an r-covering subtree T B in O(nm) time 
such that T B contains B and has a minimal number of bags.

Proof (Correctness). Note that, by construction of the set B (line 5 to line 7), B contains a bag Bu for each vertex u of G
such that dG (u, Bu) ≤ r(u). Thus, each subtree of T which contains all bags of B is an r-covering subtree. To show the 
correctness of the algorithm, it remains to show that the smallest r-covering subtree of T which contains B has to contain 
each bag from the set B. Then, the subtree T B constructed in line 8 is the desired subtree.

By properties of tree-decompositions, the set of bags which intersect the r-neighbourhood of some vertex u induces a 
subtree Tu of T . That is, Tu contains exactly the bags B ′ with dG (u, B ′) ≤ r(u). Note that T is a rooted tree with B as the 
root. Clearly, the bag Bu ∈ B (determined in line 6) is the root of Tu since it is the bag closest to B . Hence, each bag B ′
with dG (u, B ′) ≤ r(u) is a descendant of Bu . Therefore, if a subtree of T contains B and does not contain Bu , then it also 
cannot contain any descendant of Bu and, thus, contains no bag intersecting the r-neighbourhood of u. �
Proof (Complexity). Recall that T has at most n bags and that the sum of the cardinality of all bags of T is M ≤ n2. Thus, 
line 3 and line 4 require at most O(M) time. Using a BFS, it takes at most O(m) time, for a given vertex u, to determine 
a vertex v such that dG (u, v) ≤ r(u) and dT

(
B(v), B

)
is minimal (line 6). Therefore, the loop starting in line 5 and, thus, 

Algorithm 3 run in at most O(nm) total time. �
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Lemma 14 and Lemma 15 below show that each leaf B ′ �= B of T B is a bag of a minimum r-covering subtree Tr of T . 
Note that both lemmas only apply if T B has at least two bags. If T B contains only one bag, it is clearly a minimum r-covering 
subtree.

Lemma 14. For each leaf B ′ �= B of T B , there is a vertex v in G such that B ′ is the only bag of T B with dG(v, B ′) ≤ r(v).

Proof. Assume that Lemma 14 is false. Then, there is a leaf B ′ such that, for each vertex v with dG(v, B ′) ≤ r(v), T B
contains a bag B ′′ �= B ′ with dG (v, B ′′) ≤ r(v). Thus, for each vertex v , the r-neighbourhood of v is intersected by a bag of 
the tree-decomposition T B − B ′ . This contradicts with the minimality of T B . �
Lemma 15. For each leaf B ′ �= B of T B , there is a minimum r-covering subtree Tr of T which contains B ′ .

Proof. Assume that Tr is a minimum r-covering subtree which does not contain B ′ . Because of Lemma 14, there is a 
vertex v of G such that B ′ is the only bag of T B which intersects the r-neighbourhood of v . Therefore, Tr contains only 
bags which are descendants of B ′ . Partition the vertices of G into the sets V ↑ and V ↓ such that V ↓ contains the vertices 
of G which are contained in B ′ or in a descendant of B ′ . Because Tr is an r-covering subtree and because Tr only contains 
descendants of B ′ , it follows from properties of tree-decompositions that, for each vertex v ∈ V ↑ , there is a path of length at 
most r(v) from v to a bag of Tr passing through B ′ and, thus, dG (v, B ′) ≤ r(v). Similarly, since T B is an r-covering subtree, 
it follows that, for each vertex v ∈ V ↓ , dG(v, B ′) ≤ r(v). Therefore, for each vertex v of G , dG (v, B ′) ≤ r(v) and, thus, B ′
induces an r-covering subtree Tr of T with |Tr | = 1. �

Algorithm 4 below uses Lemma 15 to compute a minimum r-covering subtree Tr of T .

Algorithm 4: Computes a minimum r-covering subtree Tr of a given tree-decomposition T .

1 Pick an arbitrary bag B of T .
2 Determine the subtree T B of T using Algorithm 3.
3 if |T B | = 1 then
4 Output Tr := T B .

5 else
6 Select an arbitrary leaf B ′ �= B of T B .
7 Determine the subtree T B ′ of T using Algorithm 3.
8 Output Tr := T B ′ .

Lemma 16. Algorithm 4 computes a minimum r-covering subtree Tr of T in O(nm) time.

Proof. Algorithm 4 first picks an arbitrary bag B and then uses Algorithm 3 to compute the smallest r-covering subtree T B
of T which contains B . By Lemma 15, for each leaf B ′ of T B , there is a minimum r-covering subtree Tr which contains B ′ . 
Thus, performing Algorithm 3 again with B ′ as input creates such a subtree Tr .

Clearly, with exception of calling Algorithm 3, all steps of Algorithm 4 require only constant time. Because Algorithm 3
requires at most O(nm) time (see Lemma 13) and is called at most two times, Algorithm 4 runs in at most O(nm) total 
time. �

Algorithm 4 computes Tr by, first, computing T B for some bag B and, second, computing T B ′ = Tr for some leaf B ′ of T B . 
Note that, because both trees are computed using Algorithm 3, Lemma 14 applies to T B and T B ′ . Therefore, we can slightly 
generalise Lemma 14 as follows.

Corollary 17. For each leaf B of Tr , there is a vertex v in G such that B is the only bag of Tr with dG(v, B) ≤ r(v).

4.2. r-Domination

In this subsection, we use the minimum r-covering subtree Tr to determine an (r + ρ)-dominating set S in O(nm)

time using the following approach. First, compute Tr . Second, pick a leaf B of Tr . If there is a vertex v such that v is not 
dominated and B is the only bag intersecting the r-neighbourhood of v , then add the center of B into S , flag all vertices u
with dG(u, B) ≤ r(u) as dominated, and remove B from Tr . Repeat the second step until Tr contains no more bags and each 
vertex is flagged as dominated. Algorithm 5 below implements this approach. Note that, instead of removing bags from Tr , 
we use a reversed BFS-order of the bags to ensure the algorithm processes bags in the correct order.

Theorem 18. Let D be a minimum r-dominating set for a given graph G. Given a tree-decomposition with breadth ρ for G, Algorithm 5
computes an (r + ρ)-dominating set S with |S| ≤ |D| in O(nm) time.
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Algorithm 5: Computes an (r + ρ)-dominating set S for a given graph G with a given tree-decomposition T with 
breadth ρ .

1 Compute a minimum r-covering subtree Tr of T using Algorithm 4.
2 Give each vertex v a binary flag indicating if v is dominated. Initially, no vertex is dominated.
3 Create an empty vertex set S0.
4 Let 〈B1, B2, . . . , Bk〉 be the reverse of a BFS-order of Tr starting at its root.
5 for i = 1 to k do
6 if σ(Bi) > 0 then
7 Determine all vertices u such that u has not been flagged as dominated and that dG(u, Bi) ≤ r(u). Add all these vertices into a new set Xi .
8 Let Si = Si−1 ∪ {

c(Bi)
}

.
9 For each vertex u ∈ Xi , flag u as dominated, and decrease σ (

β(u)
)

by 1.

10 else
11 Let Si = Si−1.

12 Output S := Sk .

Proof (Correctness). First, we show that S is an (r + ρ)-dominating set for G . Note that a vertex v is flagged as dominated 
only if Si contains a vertex c(B j) with dG (v, B j) ≤ r(v) (see line 7 to line 9). Thus, v is flagged as dominated only if 
dG(v, Si) ≤ dG

(
v, c(B j)

) ≤ r(v) + ρ . Additionally, by construction of Tr (see Algorithm 3), for each vertex v , Tr contains 
a bag B with β(v) = B , σ(B) states the number of vertices v with β(v) = B , and σ(B) is decreased by 1 only if such a 
vertex v is flagged as dominated (see line 9). Therefore, if G contains a vertex v with dG (v, Si) > r(v) + ρ , then v is not 
flagged as dominated and Tr contains a bag Bi with β(v) = Bi and σ(Bi) > 0. Thus, when Bi is processed by the algorithm, 
c(Bi) will be added to Si and, hence, dG (v, Si) ≤ r(v) + ρ .

Let V S
i = { u | dG(u, B j) ≤ r(u), c(B j) ∈ Si } be the set of vertices which are flagged as dominated after the algorithm 

processed Bi , i.e., each vertex in V S
i is (r + ρ)-dominated by Si . Similarly, for some set Di ⊆ D , let V D

i = { u | dG(u, Di) ≤
r(u) } be the set of vertices dominated by Di . To show that |S| ≤ |D|, we show by induction over i that, for each i, (i) there 
is a set Di ⊆ D such that V D

i ⊆ V S
i , (ii) |Si | = |Di |, and (iii) if, for some vertex v , β(v) = B j with j ≤ i, then v ∈ V S

i .
For the base case, let S0 = D0 = ∅. Then, V S

0 = V D
0 = ∅ and all three statements are satisfied. For the inductive step, first, 

consider the case when σ(Bi) = 0. Because σ(Bi) = 0, each vertex v with β(v) = Bi is flagged as dominated, i.e., v ∈ V S
i−1. 

Thus, by setting Si = Si−1 (line 11) and Di = Di−1, all three statements are satisfied for i. Next, consider the case when 
σ(Bi) > 0. Therefore, G contains a vertex u with β(u) = Bi and u /∈ V S

i−1. Then, the algorithm sets Si = Si−1 ∪ {
c(Bi)

}
and 

flags all such u as dominated (see line 7 to line 9). Thus, u ∈ V S
i and statement (iii) is satisfied. Let du be a vertex in 

D with minimal distance to u. Thus, dG (du, u) ≤ r(u), i.e., du is in the r-neighbourhood of u. Note that, because u /∈ V S
i−1

and V D
i−1 ⊆ V S

i−1, du /∈ Di−1. Therefore, by setting Di = Di−1 ∪ {du}, |Si| = |Si−1| + 1 = |Di−1| + 1 = |Di | and statement (ii) 
is satisfied. Recall that β(u) points to the bag closest to the root of Tr which intersects the r-neighbourhood of u. Thus, 
because β(u) = Bi , each bag B �= Bi with dG (u, B) ≤ r(u) is a descendant of Bi . Therefore, du is in Bi or in a descendant 
of Bi . Let v be an arbitrary vertex of G such that v /∈ V S

i−1 and dG (v, du) ≤ r(v), i.e., v is dominated by du but not by Si−1. 
Due to statement (iii) of the induction hypothesis, β(v) = B j with j ≥ i, i.e., B j cannot be a descendant of Bi . Partition the 
vertices of G into the sets V ↑

i and V ↓
i such that V ↓

i contains the vertices which are contained in Bi or in a descendant of Bi . 
If v ∈ V ↓

i , then there is a path of length at most r(v) from v to B j passing through Bi . If v ∈ V ↑
i , then, because du ∈ V ↓

i , 
there is a path of length at most r(v) from v to du passing through Bi . Therefore, dG(v, Bi) ≤ r(v). That is, each vertex 
r-dominated by du , is (r + ρ)-dominated by some c(B j) ∈ Si . Therefore, because Si = Si−1 ∪ {

c(Bi)
}

and Di = Di−1 ∪ {du}, 
v ∈ V S

i ∩ V D
i and, thus, statement (i) is satisfied. �

Proof (Complexity). Computing Tr (line 1) takes at most O(nm) time (see Lemma 16). Because Tr has at most n bags, 
computing a BFS-order of Tr (line 4) takes at most O(n) time. For some bag Bi , determining all vertices u with dG (u, Bi) ≤
r(u), flagging u as dominated, and decreasing σ

(
β(u)

)
(line 7 to line 9) can be done in O(m) time by performing a BFS 

starting at all vertices of Bi simultaneously. Therefore, because Tr has at most n bags, Algorithm 5 requires at most O(nm)

total time. �
4.3. Connected r-domination

In this subsection, we show how to compute a connected (r + 5ρ)-dominating set and a connected (r + 3λ)-dominating 
set for G . For both results, we use almost the same algorithm. To identify and emphasise the differences, we use the 
label (♥) for parts which are only relevant to determine a connected (r + 5ρ)-dominating set and use the label (♦) for 
parts which are only relevant to determine a connected (r + 3λ)-dominating set.

For the remainder of this subsection, let Dr be a minimum connected r-dominating set of G . For (♥) φ = 3ρ or (♦) φ =
2λ, let Tφ be a minimum (r + φ)-covering subtree of T as computed by Algorithm 4.

The idea of our algorithm is to, first, compute Tφ and, second, compute a small enough connected set Cφ such that Cφ

intersects each bag of Tφ . Lemma 19 below shows that such a set Cφ is an 
(
r + (φ + λ)

)
-dominating set.
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Lemma 19. Let Cφ be a connected set that contains at least one vertex of each leaf of Tφ . Then, Cφ is an 
(
r + (φ + λ)

)
-dominating set.

Proof. Clearly, since Cφ is connected and contains a vertex of each leaf of Tφ , Cφ contains a vertex of every bag of Tφ . 
By construction of Tφ , for each vertex v of G , Tφ contains a bag B such that dG (v, B) ≤ r(v) + φ. Therefore, dG(v, Cφ) ≤
r(v) + φ + λ, i.e., Cφ is an 

(
r + (φ + λ)

)
-dominating set. �

To compute a connected set Cφ which intersects all leaves of Tφ , we first consider the case when Tρ contains only one 
bag B . In this case, we can construct Cφ by simply picking an arbitrary vertex v ∈ B and setting Cφ = {v}. Similarly, if Tρ

contains exactly two bags B and B ′ , pick a vertex v ∈ B ∩ B ′ and set Cφ = {v}. In both cases, due to Lemma 19, Cφ is clearly 
an 

(
r + (φ + λ)

)
-dominating set with |Cφ | ≤ |Dr |.

Now, consider the case when Tφ contains at least three bags. Additionally, assume that Tφ is a rooted tree such that its 
root R is a leaf.

4.3.1. Notation
Based on its degree in Tφ , we refer to each bag B of Tφ either as leaf, as path bag if B has degree 2, or as branching 

bag if B has a degree larger than 2. Additionally, we call a maximal connected set of path bags a path segment of Tφ . Let L
denote the set of leaves, P denote the set of path segments, and B denote the set of branching bags of Tφ . Clearly, for any 
given tree T , the sets L, P, and B are pairwise disjoint and can be computed in linear time.

Let B and B ′ be two adjacent bags of Tφ such that B is the parent of B ′ . We call S = B ∩ B ′ the up-separator of B ′ , 
denoted as S↑(B ′), and a down-separator of B , denoted as S↓(B), i.e., S = S↑(B ′) = S↓(B). Note that a branching bag has 
multiple down-separators and that (with exception of R) each bag has exactly one up-separator. For each branching bag B , 
let S↓(B) be the set of down-separators of B . Accordingly, for a path segment P ∈ P, S↑(P ) is the up-separator of the bag 
in P closest to the root and S↓(P ) is the down separator of the bag in P furthest from the root. Let ν be a function that 
assigns a vertex of G to a given separator. Initially, ν(S) is undefined for each separator S .

4.3.2. Algorithm
Now, we show how to compute Cφ . We, first, split Tφ into the sets L, P, and B. Second, for each P ∈ P, we create a small 

connected set C P , and, third, for each B ∈ B, we create a small connected set C B . If this is done properly, the union Cφ of 
all these sets forms a connected set which intersects each bag of Tφ .

Note that, due to properties of tree-decompositions, it can be the case that there are two bags B and B ′ which have a 
common vertex v , even if B and B ′ are non-adjacent in Tφ . In such a case, either v ∈ S↓(B) ∩ S↑(B ′) if B is an ancestor 
of B ′ , or v ∈ S↑(B) ∩ S↑(B ′) if neither is ancestor of the other. To avoid problems caused by this phenomenon and to avoid 
counting vertices multiple times, we consider any vertex in an up-separator as part of the bag above. That is, whenever we 
process some segment or bag X ∈ L ∪ P ∪B, even though we add a vertex v ∈ S↑(X) to Cφ , v is not contained in C X .

Processing Path Segments. First, after splitting Tφ , we create a set C P for each path segment P ∈ P as follows. We determine 
S↑(P ) and S↓(P ) and then find a shortest path Q P from S↑(P ) to S↓(P ). Note that Q P contains exactly one vertex from 
each separator. Let x ∈ S↑(P ) and y ∈ S↓(P ) be these vertices. Then, we set ν

(
S↑(P )

) = x and ν
(

S↓(P )
) = y. Last, we add 

the vertices of Q P into Cφ and define C P as Q P \ S↑(P ). Let CP be the union of all sets C P , i.e., CP = ⋃
P∈P C P .

Lemma 20. |CP| ≤ |Dr | − φ · 	(
Tφ

)
.

Proof. Recall that Tφ is a minimum (r + φ)-covering subtree of T . Thus, by Corollary 17, for each leaf B ∈ L of Tφ , there is 
a vertex v in G such that B is the only bag of Tφ with dG(v, B) ≤ r(v) + φ. Because Dr is a connected r-dominating set, Dr

intersects the r-neighbourhood of each of these vertices v . Thus, by properties of tree-decompositions, Dr intersects each 
bag of Tφ . Additionally, for each such v , Dr contains a path D v with |D v | ≥ φ such that D v intersects the r-neighbourhood 
of v , intersects the corresponding leaf B of Tφ , and does not intersect S↑(B) (S↓(B) if B = R). Let DL be the union of all 
such sets D v . Therefore, |DL| ≥ φ · 	(

Tφ

)
.

Because Dr intersects each bag of Tφ , Dr also intersects the up- and down-separators of each path segment. For a path 
segment P ∈ P, let x and y be two vertices of Dr such that x ∈ S↑(P ), y ∈ S↓(P ), and for which the distance in G[Dr] is 
minimal. Let D P be the set of vertices on the shortest path in G[Dr] from x to y without x, i.e., x /∈ D P . Note that, by 
construction, for each P ∈ P, D P contains exactly one vertex in S↓(P ) and no vertex in S↑(P ). Thus, for all P , P ′ ∈ P, D P ∩
D P ′ = ∅. Let DP be the union of all such sets D P , i.e., DP = ⋃

P∈P D P . By construction, |DP| = ∑
P∈P |D P | and DL ∩ DP = ∅. 

Therefore, |Dr | ≥ |DP| + |DL| and, hence,

∑
|D P | ≤ |Dr | − |DL| ≤ |Dr | − φ · 	(

Tφ

)
.

P∈P
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Fig. 3. Construction of the set C B for a branching bag B .

Recall that, for each P ∈ P, the sets C P and D P are constructed based on a path from S↑(P ) to S↓(P ). Since C P is based 
on a shortest path in G , it follows that |C P | = dG

(
S↑(P ), S↓(P )

) ≤ |D P |. Therefore,

|CP| ≤
∑

P∈P
|C P | ≤

∑

P∈P
|D P | ≤ |Dr | − φ · 	(

Tφ

)
. �

Processing Branching Bags. After processing path segments, we process the branching bags of Tφ . Similar to path segments, 
we have to ensure that all separators are connected. Branching bags, however, have multiple down-separators. To connect 
all separators of some bag B , we pick a vertex s in each separator S ∈ S↓(B) ∪ {

S↑(B)
}

. If ν(S) is defined, we set s = ν(S). 
Otherwise, we pick an arbitrary s ∈ S and set ν(S) = s. Let S↓(B) = {S1, S2, . . .}, si = ν(Si), and t = ν

(
S↑(B)

)
. We then 

connect these vertices as follows. (See Fig. 3 for an illustration.)

(♥) Connect each vertex si via a shortest path Q i (of length at most ρ) with the center c(B) of B . Additionally, connect c(B)

via a shortest path Q t (of length at most ρ) with t . Add all vertices from the paths Q i and from the path Q t into Cφ

and let C B be the union of these paths without t .
(♦) Connect each vertex si via a shortest path Q i (of length at most λ) with t . Add all vertices from the paths Q i into Cφ

and let C B be the union of these paths without t .

Let CB be the union of all created sets C B , i.e., CB = ⋃
B∈B C B .

Before analysing the cardinality of CB in Lemma 22 below, we need an axillary lemma.

Lemma 21. For a tree T which is rooted in one of its leaves, let b denote the number of branching nodes, c denote the total number of 
children of branching nodes, and l denote the number of leaves. Then, c + b ≤ 3l − 1 and c ≤ 2l − 1.

Proof. Assume that we construct T by starting with only the root and then step by step adding leaves to it. Let Ti be the 
subtree of T with i nodes during this construction. We define bi , ci , and li accordingly. Now, assume by induction over i
that Lemma 21 is true for Ti . Let v be the leaf we add to construct Ti+1 and let u be its neighbour.

First, consider the case when u is a leaf of Ti . Then, u becomes a path node of Ti+1. Therefore, bi+1 = bi , ci+1 = ci , and 
li+1 = li . Next, assume that u is path node of Ti . Then, u is a branch node of Ti+1. Thus, bi+1 = bi + 1, ci+1 = ci + 2, and 
li+1 = li + 1. Therefore, ci+1 + bi+1 = ci + bi + 3 ≤ 3(li + 1) − 1 = 3li+1 − 1 and ci+1 = ci + 2 ≤ 2(li + 1) − 1 = 2li+1 − 1. It 
remains to check the case when u is a branch node of Ti . Then, bi+1 = bi , ci+1 = ci + 1, and li+1 = li + 1. Thus, ci+1 +bi+1 =
ci + bi + 1 ≤ 3li − 1 + 1 ≤ 3li+1 − 1 and ci+1 = ci + 1 ≤ 2li − 1 + 1 ≤ 2li+1 − 1. Therefore, in all three cases, Lemma 21 is true 
for Ti+1. �
Lemma 22. |CB| ≤ φ · 	(

Tφ

)
.

Proof. For some branching bag B ∈ B, the set C B contains (♥) a path of length at most ρ for each Si ∈ S↓(B) and a path 
of length at most ρ to S↑(B), or (♦) a path of length at most λ for each Si ∈ S↓(B). Thus, (♥) |C B | ≤ ρ · ∣∣S↓(B)

∣∣ + ρ or 
(♦) |C B | ≤ λ · ∣∣S↓(B)

∣∣. Recall that S↓(B) contains exactly one down-separator for each child of B in Tφ and that CB is the 
union of all sets C B . Therefore, Lemma 21 implies the following.

|CB| ≤
∑

B∈B
|C B |

(♥) ≤ ρ ·
∑ ∣∣S↓(B)

∣∣ + ρ · |B| ≤ 3ρ · 	(
Tφ

) − 1

B∈B
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(♦) ≤ λ ·
∑

B∈B

∣∣S↓(B)
∣∣ ≤ 2λ · 	(

Tφ

) − 1

≤ φ · 	(
Tφ

) − 1. �
Properties of Cφ . We now analyse the created set Cφ and show that Cφ is a connected (r + φ)-dominating set for G .

Lemma 23. Cφ contains a vertex in each bag of Tφ .

Proof. Clearly, by construction, Cφ contains a vertex in each path bag and in each branching bag. Now, consider a leaf L
of Tφ . L is adjacent to a path segment or branching bag X ∈ P ∩B. Whenever such an X is processed, the algorithm ensures 
that all separators of X contain a vertex of Cφ . Since one of these separators is also the separator of L, it follows that each 
leaf L and, thus, each bag of Tφ contains a vertex of Cφ . �
Lemma 24. |Cφ | ≤ |Dr |.

Proof. Note that, for each vertex u we add to Cφ , we also add u to a unique set C X for some X ∈ P ∩ B. The exception is 
the vertex v in S↓(R) which is added to no such set C X . It follows from our construction of the sets C X that there is only 
one such vertex v and that v = ν

(
S↓(R)

)
. Thus, |Cφ | = |CP| + |CB| + 1. Now, it follows from Lemma 20 and Lemma 22 that

|Cφ | ≤ |Dr | − φ · 	(
Tφ

) + φ · 	(
Tφ

) − 1 + 1 ≤ |Dr |. �
Lemma 25. Cφ is connected.

Proof. First, note that, by maximality, two path segments of Tφ cannot share a common separator. Also, note that, when 
processing a branching bag B , the algorithm first checks if, for any separator S of B , ν(S) is already defined; if this is the 
case, it will not be overwritten. Therefore, for each separator S in Tφ , ν(S) is defined and never overwritten.

Next, consider a path segment or branching bag X ∈ P ∪ B and let S and S ′ be two separators of X . Whenever such an 
X is processed, our approach ensures that Cφ connects ν(S) with ν(S ′). Additionally, observe that, when processing X , each 
vertex added to Cφ is connected via Cφ with ν(S) for some separator S of X .

Thus, for any two separators S and S ′ in Tφ , Cφ connects ν(S) with ν(S ′) and, additionally, each vertex v ∈ Cφ is 
connected via Cφ with ν(S) for some separator S in Tφ . Therefore, Cφ is connected. �

From Lemma 23, Lemma 24, Lemma 25, and from applying Lemma 19 it follows:

Corollary 26. Cφ is a connected 
(
r + (φ + λ)

)
-dominating set for G with |Cφ | ≤ |Dr |.

Implementation. Algorithm 6 below implements our approach described above. This also includes the case when Tφ contains 
at most two bags.

Theorem 27. Algorithm 6 computes a connected 
(
r + (φ + λ)

)
-dominating set Cφ with |Cφ | ≤ |Dr | in O(nm) time.

Proof. Since Algorithm 6 constructs a set Cφ as described above, its correctness follows from Corollary 26. It remains to 
show that the algorithm runs in O(nm) time.

Computing Tφ (line 2) can be done in O(nm) time (see Lemma 16). Picking a vertex u in the case when Tφ contains at 
most two bags (line 3 to line 6) can be easily done in O(n) time. Recall that Tφ has at most n bags. Thus, splitting Tφ in 
the sets L, P, and B can be done in O(n) time.

Determining all up-separators in Tφ can be done in O(M) time as follows. Process all bags of Tφ in an order such that 
a bag is processed before its descendants, e.g., use a preorder or BFS-order. Whenever a bag B is processed, determine a 
set S ⊆ B of flagged vertices, store S as up-separator of B , and, afterwards, flag all vertices in B . Clearly, S is empty for 
the root. Because a bag B is processed before its descendants, all flagged vertices in B also belong to its parent. Thus, by 
properties of tree-decompositions, these vertices are exactly the vertices in S↑(B). Clearly, processing a single bag B takes 
at most O(|B|) time. Thus, processing all bags takes at most O(M) time. Note that it is not necessary to determine the 
down-separators of a (branching) bag. They can easily be accessed via the children of a bag.

Processing a single path segment (line 11 and line 12) can be easily done in O(m) time. Processing a branching bag B
(line 13 to line 19) can be implemented to run in O(m) time by, first, determining ν(S) for each separator S of B and, 
second, running a BFS starting at v (defined in line 15) to connect v with each vertex ν(S). Because Tφ has at most n bags, 
it takes at most O(nm) time to process all path segments and branching bags of Tφ .

Therefore, Algorithm 6 runs in O(nm) total time. �
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Algorithm 6: Computes (♥) a connected (r + 5ρ)-dominating set or (♦) a connected (r + 3λ)-dominating set for a 
given graph G with a given tree-decomposition T with breadth ρ and length λ.

1 (♥) Set φ := 3ρ .
(♦) Set φ := 2λ.

2 Compute a minimum (r + φ)-covering subtree Tφ of T using Algorithm 4.
3 if Tφ contains only one bag B then
4 Pick an arbitrary vertex u ∈ B , output Cφ := {u}, and stop.

5 if Tφ contains exactly two bags B and B ′ then
6 Pick an arbitrary vertex u ∈ B ∩ B ′ , output Cφ := {u}, and stop.

7 Pick a leaf of Tφ and make it the root of Tφ .
8 Split Tφ into a set L of leaves, a set P of path segments, and a set B of branching bags.
9 Create an empty set Cφ .

10 foreach P ∈ P do
11 Find a shortest path Q P from S↑(P ) to S↓(P ) and add its vertices into Cφ .
12 Let x ∈ S↑(P ) be the start vertex and y ∈ S↓(P ) be the end vertex of Q P . Set ν(

S↑(P )
) := x and ν(

S↓(P )
) := y.

13 foreach B ∈ B do
14 If ν(

S↑(B)
)

is defined, let u := ν
(

S↑(B)
)
. Otherwise, let u be an arbitrary vertex in S↑(B) and set ν(

S↑(B)
) := u.

15 (♥) Let v := c(B) be the center of B .
(♦) Let v := u.

16 Find a shortest path from u to v and add its vertices into Cφ .
17 foreach Si ∈ S↓(B) do
18 If ν(Si) is defined, let wi := ν(Si). Otherwise, let wi be an arbitrary vertex in Si and set ν(Si) := wi .
19 Find a shortest path from wi to v and add the vertices of this path into Cφ .

20 Output Cφ .

5. Implications for the p-center problem

The (Connected) p-Center problem asks, given a graph G and some integer p, for a (connected) vertex set S with |S| ≤ p
such that S has minimum eccentricity, i.e., there is no (connected) set S ′ with eccG(S ′) < eccG(S). It is known (see, e.g., [4]) 
that the p-Center problem and r-Domination problem are closely related. Indeed, one can solve each of these problems by 
solving the other problem a logarithmic number of times. Lemma 28 below generalises this observation. Informally, it states 
that we are able to find a +φ-approximation for the p-Center problem if we can find a good (r + φ)-dominating set.

Lemma 28. For a given graph G, let Dr be an optimal (connected) r-dominating set and C p be an optimal (connected) p-center. If, for 
some non-negative integer φ , there is an algorithm to compute a (connected) (r + φ)-dominating set D with |D| ≤ |Dr | in O

(
T (G)

)

time, then there is an algorithm to compute a (connected) p-center C with eccG(C) ≤ eccG(C p) + φ in O
(
T (G) log n

)
time.

Proof. Let A be an algorithm which computes a (connected) (r + φ) dominating set D = A(G, r) for G with |D| ≤ |Dr | in 
O

(
T (G)

)
time. Then we can compute a (connected) p-center for G as follows. Make a binary search over the integers i ∈

[0, n]. In each iteration, set ri(u) = i for each vertex u of G and compute the set Di = A(G, ri). Then, increase i if |Di | > p
and decrease i otherwise. Note that, by construction, eccG(Di) ≤ i + φ. Let D be the resulting set, i.e., out of all computed 
sets Di , D is the set with minimal i for which |Di | ≤ p. It is easy to see that finding D requires at most O

(
T (G) log n

)
time.

Clearly, C p is a (connected) r-dominating set for G when setting r(u) = eccG(C p) for each vertex u of G . Thus, for 
each i ≥ eccG(C p), |Di | ≤ |C p| ≤ p and, hence, the binary search decreases i for next iteration. Therefore, there is an i ≤
eccG(C p) such that D = Di . Hence, |D| ≤ |C p | and eccG(D) ≤ eccG(C p) + φ. �

From Lemma 28, the results in Table 1 and Table 2 follow immediately.

Table 1
Implications of our results for the p-Center problem.

Approach Approx. Time

Layering Partition +� O(m logn)

Tree-Decomposition +ρ O(nm logn)

In what follows, we show that, when using a layering partition, we can achieve the results from Table 1 and Table 2
without the logarithmic overhead.

Theorem 29. For a given graph G, a +�-approximation for the p-Center problem can be computed in linear time.
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Table 2
Implications of our results for the Connected p-Center problem.

Approach Approx. Time

Layering Partition +2� O(m α(n) log� log n)

Tree-Decomposition +min(5ρ,3λ) O(nm logn)

Proof. First, create a layering partition T of G . Second, find an optimal p-center S for T . Third, create a set S by picking 
an arbitrary vertex of G from each cluster in S . All three steps can be performed in linear time, including the computation 
of S (see [20]).

Let C be an optimal p-center for G . Note that, by Lemma 1, C also induces a p-center for T . Therefore, because S
induces an optimal p-center for T , Lemma 1 implies that, for each vertex u of G ,

dG(u, C) ≤ dG(u, S) ≤ dT (u,S) + � ≤ dT (u, C) + � ≤ dG(u, C) + �. �
Theorem 30. For a given graph G, a +2�-approximation for the connected p-Center problem can be computed in
O

(
m α(n) log min(�, p)

)
time.

Proof. Recall Algorithm 2 for computing a connected (r +2�)-dominating set. We create Algorithm 2∗ by slightly modifying 
Algorithm 2 as follows. In line 3, instead of computing an r-dominating subtree Tr of T , compute an optimal connected 
p-center T p of T (see [28]). Accordingly, in line 5, compute a δ-dominating subtree of T p , check in line 7 if |Sδ | ≤ |T p | (i.e., 
if |Sδ| ≤ p), and output in line 11 the set Sδ with the smallest δ for which |Sδ | ≤ p.

Let S be the set computed by Algorithm 2∗ . As shown in the proof of Theorem 10, it follows from Lemma 8 and 
Corollary 9 that S is connected, |S| ≤ p, and S = Sδ for some δ ≤ �.

Now, let C be an optimal connected p-center for G . Clearly, by definition of C and by Lemma 1, eccG(C) ≤ eccG(Sδ) ≤
eccT (Tδ) + �. Because Tδ is a δ-dominating subtree of T p , eccT (Tδ) ≤ eccT (T p) + δ. Let TC be the subtree of T induced 
by C , i.e., the subtree of T induced by the clusters which contain vertices of C . Then, because T p is an optimal connected 
p-center for T and, clearly, |TC | ≤ p, eccT (T p) ≤ eccT (TC ). Therefore, since δ ≤ �, eccG(C) ≤ eccG(Sδ) ≤ eccT (TC ) + 2�

and, by Lemma 1, eccG(C) ≤ eccG(Sδ) ≤ eccG(C) + 2�.
As shown in the proof of Theorem 10, the one-sided binary search of Algorithm 2∗ has at most O(log �) iterations. 

Because |T p | ≤ p, T p contains a cluster with eccentricity at most �p/2� in T p . Therefore, for any δ ≥ �p/2�, |Tδ | = |Sδ | = 1
and, thus, the algorithm decreases δ. Hence, the one-sided binary search of Algorithm 2∗ has at most O(log p) iterations. 
Therefore, the algorithm runs in at most O

(
m α(n) log min(�, p)

)
total time. �
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