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A graph G = (V , E) is distance hereditary if every induced path of G is a shortest path. 
In this paper, we show that the eccentricity function e(v) = max{d(v, u) : u ∈ V } in any 
distance-hereditary graph G is almost unimodal, that is, every vertex v with e(v) >
rad(G) + 1 has a neighbor with smaller eccentricity. Here, rad(G) = min{e(v) : v ∈ V } is 
the radius of graph G . Moreover, we use this result to fully characterize the centers of 
distance-hereditary graphs. Several bounds on the eccentricity of a vertex with respect to 
its distance to the center of G or to the ends of a diametral path are established. Finally, we 
propose a new linear time algorithm to compute all eccentricities in a distance-hereditary 
graph.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The eccentricity e(v) of a vertex v is the length of a longest shortest path from v to any other vertex. In a distance-
hereditary graph G , the length of any induced path between two vertices equals their distance in G [16]. The diameter 
diam(G) (maximum eccentricity) and radius rad(G) (minimum eccentricity) of distance-hereditary graphs have been ex-
tensively studied. A close relationship between diameter and radius was discovered in [9,24], where it was shown that 
diam(G) ≥ 2rad(G) − 2. It was shown in [9] that with two sweeps of a Breadth-First Search (BFS) one can obtain a 
value that is very close to the diameter. In fact, any vertex v that is furthest from an arbitrary vertex u has eccentric-
ity e(v) ≥ diam(G) − 2. Later, Feodor Dragan and Falk Nicolai [14] showed that by using instead LexBFS (Lexicographic 
Breadth-First Search) one can get a vertex v (last visited by a LexBFS starting at any vertex u) with e(v) ≥ diam(G) − 1, and 
additionally if e(v) is even, then e(v) exactly realizes the diameter of G . This yielded a linear time algorithm to compute 
the diameter as well as a diametral pair of vertices [9,14], i.e., a pair x, y such that d(x, y) = diam(G). There is also a linear 
time algorithm to find a central vertex (a vertex with minimum eccentricity) and calculate the radius [9]. These results were 
very recently generalized in [5]; it follows from [5] that all vertex eccentricities of a distance-hereditary graph G can be 
computed in total linear time via a split decomposition of G .

Here, we establish further properties of the eccentricity function in distance-hereditary graphs. Understanding the eccen-
tricity function and being able to efficiently compute the diameter, radius, and all vertex eccentricities is of great importance. 
For example, in the analysis of social networks (e.g., citation networks or recommendation networks), biological systems 
(e.g., protein interaction networks), computer networks (e.g., the Internet or peer-to-peer networks), transportation networks 
(e.g., public transportation or road networks), etc., the eccentricity eG(v) of a vertex v is used to measure the importance of 
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v in the network: the eccentricity centrality index of v [18] is defined as 1
eG (v)

. A graph’s eccentricity function is unimodal if 
every non-central vertex v has an adjacent vertex u with e(u) < e(v). The unimodality of the eccentricity function has been 
studied in a variety of graph classes; for example, it is exactly unimodal in Helly graphs [8] and almost unimodal in (α1, �)-
metric graphs [13] (that includes all chordal graphs) and in hyperbolic graphs [1]. In particular, it was shown [13] that in 
a chordal graph G the unimodality of the eccentricity function can break for a (non-central) vertex v , i.e., all neighbors w
of v satisfy e(w) ≥ e(v), only under very specific conditions: that diam(G) = 2rad(G), that e(v) = rad(G) + 1, and that v is 
at distance 2 from a central vertex. We show in the main theorem of Section 3 that the same conditions hold for vertices 
of distance-hereditary graphs. This result, which is of independent interest, is a crucial intermediate step to establish the 
remaining results of this paper.

The center C(G) (all vertices of G with minimum eccentricity and the graph induced by those vertices) of a distance-
hereditary graph G is also of interest. Many graph classes have a well defined center. The center of a tree is either K1 or 
K2 [17], the center of a maximal outerplanar graph is one of seven special graphs [22], and more generally all possible 
centers of 2-trees are known [21]. Graph centers have also been characterized fully for chordal graphs [3]. In distance-
hereditary graphs it is known [24] that the diameter of the center is no more than 3. This was later improved by Hong-Gwa 
Yeh and Gerard Chang [23] that either diam(C(G)) = 3 and C(G) is connected or C(G) is a cograph (which may not be 
connected), i.e., a P4-free graph. Furthermore, any cograph is the center of some distance-hereditary graph. We complete 
the characterization of centers of distance-hereditary graphs by investigating the instance that C(G) is not a cograph (i.e., 
diam(C(G)) = 3), in which case C(G) takes the form of a graph H which is further described in Section 6, and moreover 
each such H is the center of some distance-hereditary graph. Finally, we obtain several bounds on the eccentricity of an 
arbitrary vertex v with respect to its distance to a mutually distant pair and also its distance to the center C(G). A simple 
dynamic programming algorithm is also presented which computes all eccentricities in a distance-hereditary graph in total 
linear time by utilizing a pruning sequence which is a characteristic property of distance-hereditary graphs.

The main contributions of this paper are summarized as follows.
• We show that the eccentricity function in distance-hereditary graphs is almost unimodal: for every vertex v /∈ C(G) there 

is a neighbor w such that e(w) < e(v) or diam(G) = 2rad(G), e(v) = rad(G) + 1, and d(v, C(G)) = 2. We present several 
consequences of this result for obtaining the eccentricity of a vertex in a distance-hereditary graph G .

• We propose certificates for the diameter, the radius and all eccentricities and show that the eccentricity of any vertex is 
closely bounded by its distances to just two mutually distant vertices.

• We fully characterize the centers of distance-hereditary graphs. The center of a distance-hereditary graph G is either a 
cograph or takes the form of a graph H described in Section 6. Moreover, every cograph and each such H is the center 
of some distance-hereditary graph.

• We present a new linear time algorithm to compute all eccentricities in a distance-hereditary graph.

2. Preliminaries

Let G = (V , E) be an undirected, simple (without loops or parallel edges), connected graph. Let n = |V | and m = |E|. 
A path P (v0, vk) is a sequence of vertices v0, ..., vk such that vi vi+1 ∈ E for all i ∈ [0, k − 1]; its length is k. A graph G
is connected if there is a path between every pair of vertices. Let dG (x, y) be the distance between two vertices x and y
in G , that is, the length of a shortest path from x to y. A subgraph H of a graph G is called isometric if the distance in 
H between any of its two vertices equals their distance in G . By G − {x} we denote an induced subgraph of G obtained 
from G by removing a vertex x ∈ V . The eccentricity eG(v) of a vertex v is the maximum distance from v to any vertex. The 
subindex is omitted if G is known by context. The diameter (diam(G)) and radius (rad(G)) of a graph G is the maximum 
and minimum eccentricity of a vertex, respectively. The center is the set of vertices whose eccentricities are minimum: 
C(G) = {v ∈ V : e(v) = rad(G)}. It will be convenient to denote by C(G) also the subgraph of G induced by set C(G). We 
define Ck(G) = {v ∈ V : e(v) ≤ rad(G) + k}. We denote the set of furthest vertices from v as F (v) = {u ∈ V : d(u, v) = e(v)}. 
Vertices x, y are considered to be mutually distant if x ∈ F (y) and y ∈ F (x); they are called a pair of mutually distant vertices. 
A pair {x, y} is called a diametral pair if d(x, y) = diam(G). The interval I(x, y) = {v ∈ V : d(x, v) + d(v, y) = d(x, y)} is the set 
of all vertices that are on shortest paths between x and y. An interval slice is defined as Sk(x, y) = {v ∈ I(x, y) : d(x, v) = k}
for some non-negative integer k. We denote by < S > the subgraph of G induced by the vertices S ⊂ V . Let also d(v, S) =
min{d(v, u) : u ∈ S} and diam(S) = max{dG (x, y) : x, y ∈ S}.

The neighborhood of v consists of all vertices adjacent to v , denoted by N(v), and the closed neighborhood of v is defined 
as N[v] = N(v) ∪ {v}. The kth neighborhood of a vertex v is the set of all vertices of distance k to v , that is, Nk(v) = {u ∈
V : d(u, v) = k}. Whereas a disk of radius k centered at a set S (or a vertex) is the set of vertices of distance at most k
to some vertex of S , that is, D(S, k) = {u ∈ V : d(u, S) ≤ k}. A vertex v is said to be universal to a set S if N(v) ⊇ S . Let 
V = {v1, ..., vn}. For an n-tuple of non-negative integers (r(v1), ..., r(vn)), a subset M ⊆ V is an r-dominating set for a set 
S ⊆ V in G if and only if for every v ∈ S there is a vertex u ∈ M with d(u, v) ≤ r(v). We also say that M r-dominates S in 
G . If r(vi) = 1 for all i, then we say that M dominates S in G . If S = V then we say that M r-dominates G . Two vertex sets 
A and B of G are said to be joined if each vertex of A is adjacent to every vertex of B . A vertex is pendant if |N(v)| = 1. Two 
vertices v and u are twins if they have the same neighborhood or the same closed neighborhood. True twins are adjacent; 
false twins are not. A graph is distance-hereditary if and only if each of its connected induced subgraphs is isometric [16], 
that is, the length of any induced path between two vertices equals their distance in G . These graphs are also characterized 
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Fig. 1. Forbidden induced subgraphs in a distance-hereditary graph.

by a pruning sequence [2]: they can be dismantled by repeatedly removing either a pendant vertex or one vertex from a 
pair of twin vertices.

The following propositions provide basic information on distance-hereditary graphs necessary for the next sections.

Proposition 1. [2,7] For a graph G, the following conditions are equivalent:
(i) G is distance-hereditary;

(ii) The house, domino, gem, and the cycles Ck of length k ≥ 5 are not induced subgraphs of G (see Fig. 1);
(iii) For an arbitrary vertex x of G and every pair of vertices v, u ∈ Nk(x), that are connected in the same component of the graph 

< V \ Nk−1(x) >, we have N(v) ∩ Nk−1(x) = N(u) ∩ Nk−1(x);
(iv) (4-point condition) For any four vertices u, v, w, x of G at least two of the following distance sums are equal: d(u, v) + d(w, x), 

d(u, w) + d(v, x), and d(u, x) + d(w, v). If the smaller sums are equal, then the largest one exceeds the smaller ones by at most 2.
(v) G can be reduced to one vertex graph by a pruning sequence of one-vertex deletions: removing a pendant vertex or a single vertex 

from a pair of twin vertices.

Proposition 2. [9] Let G be a distance-hereditary graph with n-tuple (r(v1), ..., r(vn)) of non-negative integers and M ⊆ V . If every 
vertex pair u, v ∈ M satisfies d(u, v) ≤ r(u) + r(v) + 1 then M has an r-dominating clique C. If every vertex pair u, v ∈ M satisfies 
d(u, v) ≤ r(u) + r(v) then there exists either a single vertex or a pair of adjacent vertices which r-dominates M.

Proposition 3. [9] For every vertex v of a distance-hereditary graph G, a furthest from v vertex u ∈ F (v) satisfies e(u) ≥ 2rad(G) − 3.

Proposition 4. Let G be a distance-hereditary graph and x, y ∈ V . Any vertex v ∈ Sk(x, y) has Sk+1(x, y) ⊆ N(v), i.e., neighboring 
interval slices are joined.

Proof. Consider a vertex u ∈ Sk+1(x, y) ∩ N(v) and any other vertex w ∈ Sk+1(x, y). Then u and w are connected in <
V \ Nk+1(x) > via shortest paths P (u, y) and P (w, y). By Proposition 1(iii), they share neighboring vertices in Sk(x, y). 
Hence, w ∈ N(v). �

Unless otherwise stated, the graph G is assumed to be distance-hereditary in all subsequent results.

3. Unimodality of the eccentricity function

Recall that the eccentricity function is unimodal in G if every non-central vertex v of G has a neighbor u such that e(u) <
e(v). Our main result of this section is that in distance-hereditary graphs any vertex with sufficiently large eccentricity 
does have a neighbor with strictly smaller eccentricity. Unimodality can break only at vertices with eccentricity equal to 
rad(G) + 1, but those vertices are close (within 2) to the center C(G). Moreover, this can only occur when diam(G) =
2rad(G). This property of the eccentricity function of distance-hereditary graphs aligns with known results for other graph 
classes, such as chordal graphs and the underlying graphs of 7-systolic complexes [13].

Our proof will be based on the following two lemmas.

Lemma 1. If a vertex x of G has e(x) = rad(G) + 1, then d(x, C(G)) ≤ 2.

Proof. Let c be a central vertex closest to x. Consider any vertex v ∈ S1(c, x) and vertex u ∈ F (v) furthest from v . As v is 
not central, d(v, u) = rad(G) + 1 and, by distance requirements, d(c, u) = e(c) = rad(G). Hence, u ∈ F (c) ∩ F (v).

First we claim that d(c, x) ≤ 3. Since c ∈ I(v, u) and v ∈ I(c, x), we have d(u, v) + d(c, x) = d(u, c) + d(v, x) + 2. Consider 
the 4-point condition on vertices u, x, v, c. As two distance sums must be equal, then either d(u, x) + d(c, v) = d(u, v) +
d(c, x) or d(u, x) + d(c, v) = d(u, c) + d(v, x). We have d(u, x) + d(c, v) ≤ e(x) + 1 = rad(G) + 2. In the first case we get 
d(u, x) + d(c, v) = d(u, v) + d(c, x) = d(u, c) + d(v, x) + 2 = rad(G) + d(v, x) + 2. Hence, d(v, x) ≤ 0 and, by the triangle 
inequality, d(x, C(G)) ≤ 1. In the second case we get d(u, x) +d(c, v) = d(u, c) +d(v, x) = rad(G) +d(v, x). Hence, d(v, x) ≤ 2
and, by the triangle inequality, d(x, C(G)) ≤ 3, establishing the claim.
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Assume now that d(c, x) = 3 and consider y ∈ S1(v, x). We next claim that e(y) = rad(G) +1. By the choice of c, vertex y
is non-central and so e(y) ≥ rad(G) + 1. Since y ∈ N(v) ∩ N(x) with e(v) = e(x) = rad(G) + 1, by distance requirements, 
e(y) ≤ rad(G) + 2. By way of contradiction assume that e(y) = rad(G) + 2. Consider a furthest vertex y∗ ∈ F (y). By distance 
requirements, d(v, y∗) = d(x, y∗) = rad(G) + 1 and d(c, y∗) = rad(G). Since there is a (v, x)-path via vertex y in < V \
Nrad(G)(y∗) >, by Proposition 1(iii), the neighbors of v and x in Nrad(G)(y∗) are shared. Therefore, cx ∈ E , contradicting with 
d(c, x) = 3. Thus, e(y) = rad(G) + 1 must hold.

We now obtain a general contradiction in two steps. Recall that e(y) = e(v) = e(x) = rad(G) + 1 and e(c) = rad(G). 
First, consider the 4-point condition on vertices y, y∗, c, v . Consider three sums: d(y, y∗) + d(c, v) = rad(G) + 2, d(y∗, c) +
d(y, v) ≤ rad(G) + 1, and d(y∗, v) + d(c, y) ≤ rad(G) + 3. Clearly, the first and the second sums are not equal. If the second 
and the third sums are equal, then d(y∗, v) = d(y∗, c) +d(y, v) −d(c, y) ≤ rad(G) −1, contradicting with d(y∗, y) = rad(G) +
1. Therefore, the first and the third sums are equal. Then d(y∗, v) = d(y, y∗) +d(c, v) −d(c, y) = rad(G). Let P (y∗, v) be any 
shortest path between y∗ and v . Its length is rad(G). Consider also the path Q = P (y∗, v), y, x (extension of P (y∗, v) that 
includes also y and x). In distance-hereditary graphs, every induced path is a shortest path. As d(x, y∗) ≤ e(x) = rad(G) + 1, 
Q cannot be induced. As d(y, y∗) = rad(G) +1, vertex x must be adjacent to some vertex on P (y∗, v). To avoid large induced 
cycles Ck of length k ≥ 5, x must be adjacent to a vertex z ∈ P (y∗, v) which is a neighbor of v . Thus, d(y∗, x) = rad(G). 
Necessarily, zc /∈ E since d(x, c) = 3. We also have that d(y∗, c) ≤ e(c) = rad(G).

Next, consider the 4-point condition on vertices y∗, c, x, v . We have d(y∗, c) + d(x, v) ≤ rad(G) + 2, d(y∗, v) + d(c, x) =
rad(G) + 3, and d(y∗, x) + d(c, v) = rad(G) + 1. Since at least two sums must be equal, necessarily d(y∗, c) = d(y∗, x) +
d(c, v) − d(x, v) = rad(G) − 1. Now all distances from y∗ are known. We have d(c, y∗) = d(z, y∗) = rad(G) − 1, d(v, y∗) =
d(x, y∗) = rad(G), and d(y, y∗) = rad(G) + 1. Since there is a (v, x)-path in < V \ Nrad(G)−1(y∗) >, by Proposition 1(iii), 
the neighbors of v and x in Nrad(G)−1(y∗) are shared. Therefore, vertices x and c must be adjacent, contradicting with 
d(x, c) = 3.

Obtained contradiction proves the lemma. �
Lemma 2. If there is a non-central vertex v of G such that each vertex w ∈ N(v) has e(w) ≥ e(v), then e(v) = rad(G) + 1 and 
diam(G) = 2rad(G).

Proof. Consider a vertex u ∈ F (v), a vertex x ∈ S1(v, u) with minimal |F (x)|, and let y ∈ F (x). By assumption, e(x) ≥ e(v)

and v is non-central. If d(v, y) = d(x, y) + 1, then e(v) ≥ d(v, y) = d(x, y) + 1 = e(x) + 1 ≥ e(v) + 1, a contradiction. Thus, 
d(x, y) − 1 ≤ d(v, y) ≤ d(x, y).

Consider the 4-point condition on vertices u, v, x, y. We have d(u, v) + d(x, y) = e(v) + e(x) ≥ 2rad(G) + 2, d(u, y) +
d(x, v) ≤ 2rad(G) + 1, and d(u, x) + d(v, y) = e(v) − 1 + d(v, y) ≤ e(v) + e(x) − 1. Since two sums must be equal, necessarily 
d(u, y) + d(x, v) = d(u, x) + d(v, y). Hence 2rad(G) + 1 ≥ d(u, y) + d(x, v) = d(u, x) + d(v, y) ≥ (e(v) − 1) + (e(x) − 1) ≥
2e(v) − 2 ≥ 2rad(G). Therefore, 2rad(G) ≥ d(u, y) ≥ 2rad(G) − 1 and e(v) ≤ rad(G) + 3/2. Since eccentricity is an integer 
and v is non-central, e(v) = rad(G) + 1 must hold.

It remains only to show that diam(G) = 2rad(G). If d(u, y) = 2rad(G), we are done. So, assume that d(u, y) = 2rad(G) −1. 
We get d(y, v) = d(u, y) + d(x, v) − d(u, x) = rad(G), and so e(x) = rad(G) + 1. Furthermore, v ∈ I(x, y). The length of path 
Q = P (u, v) ∪ P (v, y) (the concatenation of P (u, v) with P (v, y)) is 2rad(G) + 1. As d(u, y) = 2rad(G) − 1, Q is not an 
induced path. Hence, there are vertices s ∈ P (v, u) and w ∈ P (v, y) such that sw ∈ E . To avoid large induced cycles Ck
of length k ≥ 5, necessarily s ∈ S1(x, u) and w ∈ S1(v, y) must hold. Then, w belongs to S1(v, u) as well as x. Since 
y ∈ F (x) \ F (w) (note that e(w) ≥ e(v) = rad(G) +1 by assumption), by minimality of |F (x)|, there is a vertex t ∈ F (w) \ F (x). 
Hence, d(t, x) < rad(G) + 1 and d(t, w) = e(w) ≥ rad(G) + 1.

Now consider the 4-point condition on vertices x, y, w, t . We have d(x, y) +d(w, t) = e(x) + e(w) ≥ 2rad(G) + 2, whereas 
d(t, y) + d(w, x) ≤ 2rad(G) + 2 and d(x, t) + d(w, y) ≤ 2rad(G) − 1. As d(x, y) + d(w, t) − d(x, t) − d(w, y) ≥ 3, then only 
the two largest sums are equal: d(x, y) + d(w, t) = d(t, y) + d(w, x). Hence, diam(G) ≥ d(t, y) = d(x, y) + d(w, t) − d(w, x) ≥
2rad(G). That is, diam(G) = d(t, y) = 2rad(G). �

We are ready to prove the main result of this section.

Theorem 1. Every vertex v /∈ C(G) either has an adjacent vertex w with e(w) < e(v) or e(v) = rad(G) + 1, diam(G) = 2rad(G), and 
d(v, C(G)) = 2.

Proof. If a non-central vertex v has no neighbors with smaller eccentricity then d(v, C(G)) > 1 and, by Lemma 2, e(v) =
rad(G) + 1 and diam(G) = 2rad(G). Thus, by Lemma 1, d(v, C(G)) = 2. �
4. Certificates for eccentricities

We obtain as a consequence of Theorem 1 several new results for distance-hereditary graphs on lower and upper cer-
tificates for eccentricities, which were introduced in [12] as a way to compute exactly or approximately eccentricities in a 
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graph by maintaining upper and lower bounds. A set L (set U ) of vertices is a lower certificate (respectively, an upper certifi-
cate) for eccentricities of G if it is used to obtain lower bounds (respectively, upper bounds) of eccentricities in G . Given all 
distances from a vertex v to all vertices in L ∪ U as well as the eccentricities of vertices in U , we have the following lower 
and upper bounds for the eccentricity of any vertex v [12]:

eL(v) ≤ e(v) ≤ eU (v), where

{
eU (v) = minx∈U d(v, x) + e(x),

eL(v) = maxx∈L d(v, x).

A lower certificate L (an upper certificate U ) is said to be tight if eL(v) = e(v) (eU (v) = e(v), respectively) for all v ∈
V . A diameter certificate is a set U such that eU (v) ≤ diam(G) for all v ∈ V , and therefore the diameter is realized by 
maxv∈V eU (v). A radius certificate is a set L such that eL(v) ≥ rad(G) for all v ∈ V , and therefore the radius is realized by 
minv∈V eL(v). In what follows, we define the set of all diametral vertices of G as D(G) = {v ∈ V : e(v) = diam(G)}.

In this section we show that all eccentricities can exactly be determined in distance-hereditary graphs by computing 
distances from vertices of C1(G) to all vertices, since C1(G) forms a tight upper certificate. We also show that in distance-
hereditary graphs the set C(G) is a diameter certificate and the set D(G) is a radius certificate (a kind of duality between 
C(G) and D(G)). This agrees with radius and diameter certificates in chordal graphs [12] but, as we show later, this does 
not hold for arbitrary graphs.

We use the following corollary to Theorem 1.

Corollary 1. Let G be a distance-hereditary graph.
(i) If diam(G) < 2rad(G) then, for every pair of vertices v ∈ V and u ∈ F (v), there is a vertex w ∈ I(v, u) ∩C(G) such that u ∈ F (w).

(ii) For every pair of vertices v ∈ V \ C(G) and u ∈ F (v), there is a vertex w ∈ I(v, u) ∩ C1(G) such that u ∈ F (w).

Proof. Consider any vertex v ∈ V and u ∈ F (v) and proceed by induction on k := e(v). If k = rad(G), then w = v and we 
are done. If k = rad(G) + 1 and diam(G) = 2rad(G) then again w = v and we are done. If k > rad(G) + 1 or k = rad(G) + 1
and diam(G) < 2rad(G) then, by Theorem 1, a neighbor z of v with e(z) = k − 1 satisfies u ∈ F (z), and we can apply the 
induction hypothesis. �
Lemma 3. The set C1(G) is a tight upper certificate for all eccentricities of G.

Proof. The statement follows from Corollary 1 and the definition of a tight upper certificate. �
Lemma 4. The center C(G) is a diameter certificate of G.

Proof. This is clear by Corollary 1 if diam(G) < 2rad(G). Additionally, in any graph G with diam(G) = 2rad(G) all central 
vertices c ∈ C(G) and every diametral pair of vertices x, y satisfy d(x, y) = d(x, c) + d(c, y) = d(x, c) + rad(G) = rad(G) +
d(y, c) = 2rad(G). �
Lemma 5. The set D(G) is a radius certificate of G.

Proof. We first show that D(G) is a radius certificate for any graph G if diam(G) ≥ 2rad(G) − 1. If D(G) is not a radius 
certificate, then there is a vertex u ∈ V such that maxv∈D(G)d(u, v) < rad(G). Thus, for any diametral pair x, y, d(x, y) ≤
d(x, u) + d(u, y) ≤ (rad(G) − 1) + (rad(G) − 1) = 2rad(G) − 2, a contradiction with d(x, y) = diam(G) ≥ 2rad(G) − 1.

As in a distance-hereditary G , diam(G) ≥ 2rad(G) − 2 holds [9,24], it remains to consider only the case when diam(G) =
2rad(G) − 2. Let S be the set of vertices u such that d(u, t) ≤ rad(G) − 1 for all t ∈ D(G). By contradiction assume D(G) is 
not a radius certificate and therefore S is not empty. Let u ∈ S be a vertex which minimizes |F (u)|. Consider any diametral 
pair x, y and furthest from u vertex v ∈ F (u). Necessarily v /∈ D(G) by the choice of u. Since d(x, y) = 2rad(G) − 2, d(u, x) ≤
rad(G) − 1 and d(u, y) ≤ rad(G) − 1, clearly d(u, x) = d(u, y) = rad(G) − 1.

Consider the 4-point condition on vertices v, u, x, y. We have that the largest distance sum is d(v, u) +d(x, y) = d(v, u) +
2rad(G) − 2 ≥ 3rad(G) − 2, given that d(v, x) + d(u, y) ≤ d(x, y) − 1 + rad(G) − 1 = 3rad(G) − 4 and that d(v, y) + d(u, x) ≤
d(x, y) − 1 + rad(G) − 1 = 3rad(G) − 4. Therefore, the smaller sums are equal, establishing d(v, x) = d(v, y). Moreover, since 
the difference between the largest sum and the other sums is at most 2, we get d(v, u) = rad(G) and d(v, x) = d(v, y) =
2rad(G) − 3. So, u ∈ C(G).

We claim that there is a vertex w such that d(w, x) = rad(G) − 1, d(w, y) = rad(G) − 1 and v /∈ F (w). Fix arbitrary 
shortest path P (x, u), P (y, u) and P (u, v). Since d(v, x) < d(v, u) + d(u, x) = diam(G) + 1, path Q = P (x, u) ∪ P (u, v) is 
not induced. Hence, there must exist a chord between shortest path P (x, u) and shortest path P (u, v). Define vertices 
t, w ∈ P (u, v), s, z ∈ P (x, u), q, p ∈ P (y, u), as shown in Fig. 2. Since d(v, x) = 2rad(G) − 3, we must have the chord zt ∈ E or 
the chord sw ∈ E . By the same argument, there must exist a chord between shortest path P (y, u) and shortest path P (u, v)

which is realized by chord pt ∈ E or qw ∈ E . We note that if zt ∈ E then pt /∈ E since d(x, y) = 2rad(G) −2. Up to symmetry, 
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Fig. 2. Illustration to the proof of Lemma 5.

Fig. 3. A (non-distance-hereditary) graph G where D(G) is not a radius certificate and C(G) is not a diameter certificate.

we have two cases as shown in Fig. 2. In case (a) we have zt, qw ∈ E , and in case (b) we have sw, qw ∈ E . In either case 
vertex w satisfies the desired properties, establishing the claim.

We next claim that there is a vertex w such that d(w, w) ≥ rad(G) and d(u, w) ≤ rad(G) − 1. On one hand, if w /∈ S
then, by definition of S , there exists a vertex w ∈ D(G) such that d(w, w) ≥ rad(G) and, by the choice of u ∈ S , we have 
d(u, w) ≤ rad(G) − 1. On the other hand, if w ∈ S then, by minimality of |F (u)| and since v /∈ F (w), there exists a vertex 
w ∈ F (w) \ F (u). As w /∈ F (u), d(u, w) ≤ rad(G) − 1 and, as w ∈ F (w), d(w, w) ≥ rad(G), establishing the claim.

Consider now the 4-point condition on vertices v, u, w, w . Since v /∈ D(G) we have d(v, w) +d(w, u) ≤ 2rad(G) −3 +2 =
2rad(G) − 1. We also have d(v, w) + d(w, u) ≤ rad(G) − 2 + rad(G) − 1 = 2rad(G) − 3 and d(v, u) + d(w, w) ≥ rad(G) +
rad(G) = 2rad(G). Given that d(v, u) + d(w, w) is strictly larger than the other sums, it must differ from them by at most 
2. However, it differs by at least 3, giving a contradiction. �

As a consequence of these results, if the set C1(G) of a distance-hereditary graph G is known, then all vertex eccentrici-
ties in G can straightforwardly be found by performing a BFS from each vertex of C1(G). Similarly, if the set C(G) (D(G)) is 
known, then the entire set D(G) (C(G), respectively) of G can be found. However, as we will discuss in Section 7, there is 
a more efficient approach to compute all eccentricities of a distance-hereditary graph.

We note that Lemma 4 and Lemma 5 do not hold for general graphs, as illustrated in Fig. 3 by a graph G with diam(G) =
6 and rad(G) = 4. Here D(G) = {x, y} and C(G) = {u}, and all other vertices have eccentricity 5. However, D(G) is not a 
radius certificate since eD(G)(u) = 3 < rad(G). Moreover, C(G) is not a diameter certificate since eC(G)(v) = d(v, u) + e(u) =
8 > diam(G).

One aims also to minimize the size of a certificate. In trees, for example, a single diametral pair is a sufficient radius 
certificate rather than the full set of diametral vertices. Unfortunately this is not true for distance-hereditary graphs. The 
graph G in Fig. 4 illustrates that every diametral vertex is necessary to establish a radius certificate. Graph G consists of a 
clique of vertices {u1, ..., u�} and a clique of vertices {v1, ..., v�}, where each ui is adjacent to all vertices v j �=i , and each 
ui and vi has a pendant vertex xi and yi , respectively. G is distance-hereditary as it can be dismantled via a sequence 
of pendant and twin vertex eliminations. All vertices xi and yi are pendant, each ui vertex is a false twin to vi , and the 
remaining vi vertices are true twins (as they form a clique in the remaining graph). Here D(G) consists of all xi and yi
vertices and C(G) consists of all ui and vi vertices, where diam(G) = d(xi, yi) = 4 and rad(G) = d(vi, xi) = d(ui, yi) = 3. 
However, any xi ∈ D(G) has a vertex vi such that d(vi, t) < rad(G) for all t ∈ D(G) \ {xi}. By symmetry, the same is true for 
yi and its counterpart ui . Hence, all vertices of D(G) are necessary to form a radius certificate. One can also show that all 
vertices of C(G) are necessary to form a diameter certificate.

5. Eccentricities, mutually distant pairs and distances to the center

In this section, we show that the eccentricity of any vertex of a distance-hereditary graph is bounded by its distances to 
just two mutually distant vertices. Furthermore, the distance between any two mutually distant vertices is bounded by their 
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Fig. 4. A distance-hereditary graph G for which D(G) \ {t} is not a radius certificate for any t ∈ D(G) and for which C(G) \ {c} is not a diameter certificate 
for any c ∈ C(G).

distances to an arbitrary peripheral vertex (a vertex which is furthest for some other vertex). The unimodality behavior of 
the eccentricity function described in Theorem 1 gives also a relation between the eccentricity of a vertex and its distance 
to C1(G).

Lemma 6. Let x, y be a mutually distant pair of G, and let u ∈ V and v ∈ F (u) be a furthest vertex from u. Let also α := d(u, x) and 
β := d(u, y). Then,

max{α,β} ≤ e(u) ≤ max{max{α,β}, min{α,β} + 2} ≤ max{α,β} + 2.

Moreover, if e(u) = max{α, β} + 2, then α = β = e(u) − 2 and d(v, x) = d(v, y) = d(x, y).

Proof. Let v ∈ F (u). By the choice of v , we have e(u) = d(u, v) ≥ max{d(u, x), d(u, y)}. Consider the 4-point condition 
on vertices u, v, x, y. As x, y is a mutually distant pair, we have for the three distance sums that d(u, v) + d(x, y) =
e(u) + d(x, y), d(u, x) + d(v, y) ≤ d(u, x) + d(x, y) ≤ e(u) + d(x, y), and d(u, y) + d(v, x) ≤ d(u, y) + d(x, y) ≤ e(u) + d(x, y). 
Clearly the first sum is largest.

We first consider the case when the first sum equals one of the latter. Suppose that d(u, v) + d(x, y) = d(u, x) + d(v, y). 
Then, e(u) + d(x, y) = d(u, x) + d(v, y) ≤ e(u) + d(x, y). Hence, e(u) = d(u, x) = max{d(u, x), d(u, y)}. Suppose now that 
d(u, v) + d(x, y) = d(u, y) + d(v, x). Then, e(u) + d(x, y) = d(u, y) + d(v, x) ≤ e(u) + d(x, y). Hence, e(u) = d(u, y) =
max{d(u, x), d(u, y)}. In either case, e(u) = max{d(u, x), d(u, y)}.

We next consider the case when the two smaller sums are equal and differ from the largest one by at most 2. 
We have e(u) = d(u, v) ≤ d(v, y) + d(u, x) − d(x, y) + 2 = d(v, x) + d(u, y) − d(x, y) + 2. Since d(x, y) is not smaller 
than d(v, y) and d(v, x), we obtain e(u) ≤ d(u, x) + 2 and e(u) ≤ d(u, y) + 2, i.e., e(u) ≤ min{d(u, x), d(u, y)} + 2. More-
over, if e(u) = max{d(u, x), d(u, y)} + 2, we must be in the latter case when the two smaller sums are equal (other-
wise, e(u) = max{d(u, x), d(u, y)} as shown previously), and so d(u, v) = e(u) = min{d(u, x), d(u, y)} + 2. Hence, d(u, x) =
d(u, y) = d(u, v) − 2 and, since d(u, x) + d(v, y) = d(u, y) + d(x, v), d(v, y) = d(x, v) holds too. Combining this with the 
fact that d(u, v) + d(x, y) − d(u, x) − d(y, v) ≤ 2, we obtain d(x, y) ≤ d(v, y) and, since x, y are mutually distant, necessarily 
d(x, y) = d(v, y) = d(x, v), completing the proof. �
Lemma 7. Let x, y be a mutually distant pair of G, and let u ∈ V and v ∈ F (u) be a furthest vertex from u. Let also α := d(v, x) and 
β := d(v, y). Then,

max{α,β} ≤ d(x, y) ≤ max{max{α,β}, min{α,β} + 2} ≤ max{α,β} + 2.

Moreover, if d(x, y) = max{α, β} + 2 then α = β = d(x, y) − 2 and d(u, x) = d(u, y) = d(u, v).

Proof. The proof is analogous to that of Lemma 6 and is omitted. The only difference is that now we argue from the 
perspective of d(x, y) and not of e(u). �

Fig. 5(a) illustrates that the upper bounds of Lemma 6 and Lemma 7 are sharp using vertices z and w for two opposing 
purposes. First, e(z) = d(z, w) = max{d(x, z), d(y, z)} + 2, whereas w ∈ F (z) has d(x, y) = max{d(x, w), d(y, w)}. Secondly, 
e(w) = d(z, w) = max{d(x, w), d(y, w)}, whereas z ∈ F (w) has d(x, y) = max{d(x, z), d(y, z)} + 2. Recall the implications of 
Lemma 6 and Lemma 7 which state that for a mutually distant pair x, y and fixed vertices u ∈ V and v ∈ F (u), if either 
e(u) or d(x, y) is realized by its upper bound as given in the above inequalities, then the other value is realized by its 
lower bound. So, it is not possible to obtain for the same u ∈ V and v ∈ F (u) that both e(u) = max{d(x, u), d(y, u)} + 2
and d(x, y) = max{d(x, v), d(y, v)} + 2 are true (Fig. 5(a) uses a different starting vertex u to illustrate both upper bounds -
with u := z and then with u := w). However, we show in Fig. 5(b) an example when for fixed vertices u and v ∈ F (u), both 
e(u) = max{d(x, u), d(y, u)} + 1 and d(x, y) = max{d(x, v), d(y, v)} + 1 are true.

In the case when x and y form a diametral pair, Lemma 7 yields a result known from [23]. We have diam(G) = d(x, y) ≤
max{d(v, x), d(v, y)} + 2 ≤ e(v) + 2.
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Fig. 5. Illustration to the sharpness of Lemma 6 and Lemma 7.

Corollary 2. [23] If vertex v of G is a furthest vertex from any u ∈ V , then e(v) ≥ diam(G) − 2.

Corollary 2 can be used to find a pair of mutually distant vertices of a distance-hereditary graph in linear time. Pick an 
arbitrary start vertex v0. With at most five BFSs find vertices v1, . . . , vk (2 ≤ k ≤ 5) such that vi ∈ F (vi−1) and d(vk, vk−1) =
d(vk−1, vk−2). Since, by Corollary 2, e(v1) ≥ diam(G) − 2, there are at most two improvements on e(v1) to get a required 
mutually distant pair vk−1, vk−2.

Now, by Lemma 6, the obtained distances from vk−1 and vk−2 to all vertices u ∈ V already yield good lower bounds for 
vertex eccentricities in G (they are within 2 from exact eccentricities). We next show that, in some cases, they are even 
closer.

Corollary 3. Let x, y be a mutually distant pair of G and let u ∈ V .
(i) If |d(x, u) − d(y, u)| ≥ 2, then e(u) = max{d(x, u), d(y, u)}.

(ii) If |d(x, u) − d(y, u)| = 1 or u ∈ C(G), then max{d(x, u), d(y, u)} ≤ e(u) ≤ max{d(x, u), d(y, u)} + 1.

Proof. By Lemma 6, max{d(x, u), d(y, u)} ≤ e(u) ≤ max{max{d(x, u), d(y, u)}, min{d(x, u), d(y, u)} +2}. If |d(x, u) −d(y, u)| ≥
2, then max{d(x, u), d(y, u)} ≥ min{d(x, u), d(y, u)} + 2 and therefore e(u) = max{d(x, u), d(y, u)}. If |d(x, u) − d(y, u)| = 1, 
then e(u) ≤ max{d(x, u), d(y, u)} +1. By contradiction assume now that u ∈ C(G), d(x, u) = d(y, u) and e(u) = d(x, u) +2. By 
Proposition 3, we have d(x, y) = e(x) ≥ 2rad(G) − 3. By the triangle inequality, d(x, y) ≤ d(x, u) + d(u, y) = 2(rad(G) − 2) =
2rad(G) − 4, a contradiction. �

In what follows, we analyze deeper the case when d(u, x) = d(u, y). As the graph on Fig. 5 showed, in this case, e(u) =
max{d(x, u), d(y, u)} + 2 may happen. However, we demonstrate that it happens not very often. First we show that if d(x, y)

is odd, then still e(u) ≤ max{d(x, u), d(y, u)} + 1. For this we will need one auxiliary lemma.

Lemma 8. Let u, x, y be vertices of G. If d(u, x) = d(u, y) and d(x, y) = 2k + 1 for some integer k, then all vertices s ∈ Sk(x, y) satisfy 
d(u, x) = d(u, s) + k.

Proof. Let s ∈ Sk(x, y) and d(u, x) = d(u, y). Necessarily, d(s, y) = k + 1. Consider the 4-point condition on vertices x, y, u, s. 
We have d(u, s) + d(x, y) = d(u, s) + 2k + 1, d(u, x) + d(s, y) = d(u, x) + k + 1, and d(u, y) + d(x, s) = d(u, x) + k. Since at 
least two sums must be equal and the latter two sums are not, we consider the two remaining cases. If d(u, s) + d(x, y) =
d(u, x) +d(s, y), then d(u, x) = d(u, s) + (2k +1) − (k +1) = d(u, s) +k, and we are done. If d(u, s) +d(x, y) = d(u, y) +d(x, s), 
then d(u, x) = d(u, y) = d(u, s) + (2k +1) −k = d(u, s) +k +1. However, by the triangle inequality, d(u, x) ≤ d(u, s) +d(s, x) =
d(u, s) + k, a contradiction. �

Next lemma handles the case when d(x, y) is odd.

Lemma 9. Let x, y be a mutually distant pair of G. If d(x, y) is odd, then any vertex u ∈ V has e(u) ≤ max{d(x, u), d(y, u)} + 1.

Proof. Let d(x, y) = 2k + 1 for some integer k. By contradiction assume that e(u) = max{d(x, u), d(y, u)} + 2. Consider a 
vertex v ∈ F (u). By Lemma 6, when e(u) = max{d(x, u), d(y, u)} + 2, we have d(u, x) = d(u, y) = e(u) − 2, and d(x, y) =
d(x, v) = d(y, v). Let s ∈ Sk(x, y). By Lemma 8 applied to vertex u and to vertex v , we have d(u, x) = d(u, s) + k and 
d(v, x) = d(v, s) + k. By the triangle inequality, e(u) = d(u, v) ≤ d(u, s) + d(s, v) = (d(u, x) − k) + (d(v, x) − k) = d(u, x) +
d(v, x) − 2k = d(u, x) + d(x, y) − 2k = d(u, x) + 1, contradicting with e(u) = d(u, x) + 2. �

The following theorem summarizes the obtained bounds on the eccentricity of any vertex u ∈ V . The distances from u
to a selected pair of vertices is very close to the eccentricity of u, and in some cases, measures it exactly.
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Fig. 6. A distance-hereditary graph in which every spanning tree is eccentricity 2-approximating.

Theorem 2. Let x, y be mutually distant vertices of G. For every vertex u ∈ V , the following holds:

max{d(x, u),d(y, u)} ≤ e(u) ≤ max{d(x, u),d(y, u)} +

⎧⎪⎨
⎪⎩

0, if |d(x, u) − d(y, u)| ≥ 2,

1, if |d(x, u) − d(y, u)| = 1 or d(x, y) is odd,

2, otherwise.

As a consequence of Theorem 2, in distance-hereditary graphs, all eccentricities with an additive one-sided error of at 
most 2 can be computed in linear time. We further investigated the case in which d(x, u) = d(y, u) and d(x, y) is even, but 
this case proved to be difficult and did not lead to any improvements on the upper bounds for e(u).

We remark that a 2-approximation of eccentricities is known for distance-hereditary graphs. One common approach to 
approximating eccentricities in a graph G is via an eccentricity k-approximating spanning tree T [4,10,13,20], i.e., a spanning 
tree T of G such that eT (v) − eG(v) ≤ k holds for each vertex v of G . Note that every additive tree k-spanner (a spanning 
tree T of G such that dT (x, y) ≤ dG(x, y) +k holds for every vertex pair x, y) is eccentricity k-approximating. However, there 
are graph families which do not admit any additive tree k-spanners and yet they have very good eccentricity approximating 
spanning trees. The introduction of eccentricity approximating spanning trees is an attempt to weaken the restriction of 
additive tree spanners and instead closely approximate only distances to most distant vertices, the eccentricities. This is 
fruitful especially for those graphs for which additive tree k-spanners with small k do not exist. For example, for every k
there is a chordal graph without an additive tree k-spanner, though every chordal graph has an eccentricity 2-approximating 
spanning tree [13,20] computable in linear time [10]. More generally, all so-called δ-hyperbolic graphs (note that chordal 
graphs are 1-hyperbolic) have an eccentricity (4δ +1)-approximating spanning tree [4,11]. As distance-hereditary graphs are 
also 1-hyperbolic, that general result for δ-hyperbolic graphs implies that all distance-hereditary graphs have an eccentricity 
5-approximating spanning tree. In fact, the situation with distance-hereditary graphs is even simpler. They have additive 
tree 2-spanners [19] (computable in linear time) and therefore eccentricity 2-approximating spanning trees. Furthermore, in 
general, the additive error 2 in an eccentricity approximating spanning tree cannot be improved. A distance-hereditary graph 
in Fig. 6 has no eccentricity 1-approximating spanning tree. Consider any edge uv of the inner C4 which is not present in 
T ; either eT (u) = eG(u) + 2 or eT (v) = eG(v) + 2. So, another approach is needed to efficiently compute all eccentricities 
in a distance-hereditary graph. In Section 7, we present a new linear time algorithm for that which utilizes a characteristic 
pruning sequence.

We turn now to a relation between the eccentricity of a vertex and its distance to C(G) or C1(G).

Lemma 10. Let v ∈ V be any vertex of an arbitrary graph G and let k be an integer. If e(v) = d(v, Ck(G)) + rad(G) + k, then e(v) =
d(v, Ck+1(G)) + rad(G) + k + 1.

Proof. Suppose e(v) = d(v, Ck(G)) + rad(G) + k and let u ∈ F (v). Let c ∈ Ck(G) be a closest vertex to v in Ck(G). 
Consider an adjacent vertex z ∈ S1(c, v). By the choice of c, e(z) = rad(G) + k + 1 and therefore z ∈ Ck+1(G). Then, 
e(v) = d(v, c) + rad(G) + k = d(v, z) + d(z, c) + rad(G) + k ≥ d(v, Ck+1(G)) + rad(G) + k + 1. By the triangle inequality, 
also e(c) ≤ d(v, Ck+1(G)) + rad(G) + k + 1. �
Lemma 11. Let G be a distance-hereditary graph.
(i) If diam(G) < 2rad(G), then all vertices v ∈ V satisfy e(v) = d(v, C(G)) + rad(G).

(ii) All vertices v ∈ V \ C(G) satisfy e(v) = d(v, C1(G)) + rad(G) + 1.

Proof. The statements follow from Theorem 1 and Lemma 10 (see also Corollary 1). �
Lemma 12. Let v be an arbitrary vertex of G and v ′ be an arbitrary vertex of C(G) closest to v. Then, d(v, C(G)) + rad(G) − 1 ≤
e(v) ≤ d(v, C(G)) + rad(G).
Furthermore, all shortest paths P := (v ′ = x0, x1, ..., x� = v), connecting v with v ′ , satisfy the following:
(a) if e(v) = d(v, C(G)) + rad(G), then e(xi) = d(xi, C(G)) + rad(G) = i + rad(G) for each i ∈ {0, ..., �};
(b) if e(v) = d(v, C(G)) + rad(G) − 1, then e(xi) = d(xi, C(G)) − 1 + rad(G) = i − 1 + rad(G) for each i ∈ {3, ..., �} and e(x1) =

e(x2) = rad(G) + 1.

Proof. Let r := rad(G). By the triangle inequality, e(v) ≤ d(v, C(G)) + r. Let e(v) ≥ r + 1 and w be a vertex of C1(G) closest 
to v . By the triangle inequality and Lemma 1, d(v, v ′) = d(v, C(G)) ≤ d(v, w) + d(w, C(G)) ≤ d(v, C1(G)) + 2. Combining 
with Lemma 11, one obtains e(v) = d(v, C1(G)) + r + 1 ≥ d(v, C(G)) + r − 1.
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Consider an arbitrary shortest path P := (v ′ = x0, x1, ..., x� = v) connecting v with v ′ . As adjacent vertices can have 
eccentricities which differ by at most one, e(v) = d(v, C(G)) + r implies e(xi) = d(xi, C(G)) + r = i + r for each i ∈ {0, ..., �}. 
If e(v) = d(v, C(G)) + r − 1, there must exist an index i ∈ {1, ..., � − 1} such that e(xi) = e(xi+1) = r + i and e(x j) = r + j for 
j ≤ i. We claim that i = 1 must hold.

We first establish that i ≤ 2. By Theorem 1, there is a shortest path Q ∗ := (w = u2, ..., uρ = v) connecting v to a 
vertex w ∈ C1(G) closest to v , where d(w, C(G)) ≤ 2 and e(uk) = r + k − 1 for all k ∈ 2, ..., ρ . Let c be a vertex of C(G)

closest to w . We have that d(v, C(G)) ≤ d(v, c) ≤ d(v, w) + d(w, c) ≤ e(v) − e(w) + 2 = (d(v, C(G)) + r − 1) − (r + 1) +
2 = d(v, C(G)). Therefore, vertex c is also a closest to v central vertex, d(w, C(G)) = 2, and ρ = �. Let now Q := (c =
u0, u1, u2, ..., u� = v) be a shortest path which joins shortest paths Q ∗ and any shortest path connecting u2 to c. As c is 
a closest to v central vertex, necessarily e(u1) = e(u2) = r + 1. We claim that central vertices u0 and x0 are connected in 
< V \ Nd(v,C(G))−1(v) > by respective paths to a vertex t ∈ F (v). Let u∗ ∈ I(u0, t), u∗ �= u0. We have d(u0, t) ≥ d(u∗, t) +
1. Assume that d(u∗, v) ≤ d(v, C(G)) − 1. Then, e(v) = d(v, t) ≤ d(v, u∗) + d(u∗, t) ≤ (d(v, C(G)) − 1) + (d(u0, t) − 1) ≤
d(v, C(G)) + r − 2, a contradiction with e(v) = d(v, C(G)) + r − 1. Therefore, any vertex u∗ on a shortest (u0, t)-path satisfies 
d(v, u∗) ≥ d(v, C(G)) and, by symmetry, any vertex x∗ on a shortest (x0, t)-path also satisfies d(v, x∗) ≥ d(v, C(G)). The 
combined paths connect vertices u0 and x0 in < V \ Nd(v,C(G))−1(v) >. As a result, for each k ∈ {0, ..., � − 1}, vertices uk and 
xk are connected in < V \ Nd(v,C(G))−k−1(v) >. Then, by Proposition 1(iii), ukxk+1 ∈ E and uk+1xk ∈ E . In particular, u2x3 ∈ E , 
u2x1 ∈ E , u1x2 ∈ E , and x0u1 ∈ E . Recall that e(u2) = r + 1. If i ≥ 3, then e(x3) = r + 3; however, e(x3) ≤ 1 + e(u2) = r + 2, a 
contradiction.

Assume now that i = 2. Hence, e(x2) = e(x3) = r +2. Recall that e(u2) = e(u1) = e(x1) = r +1 and e(x0) = r. Let z ∈ F (x2); 
then z is also furthest from vertices u1, x1, and x0. Denote by Z a shortest path connecting x0 and z, and let z0 ∈ Z be the 
vertex adjacent to x0. By distance requirements from each vertex x2, x1, and u1 to furthest vertex z, necessarily z0x2 /∈ E , 
z0x1 /∈ E , and u1z0 /∈ E . Since d(x3, x0) = 3, z0x3 /∈ E . As d(u2, z) ≤ e(u2) = r + 1, the path obtained by joining shortest 
paths Z and (x0, u1, u2) by their common end-vertex x0 is not induced. The only possible chord is u2z0. As u2 and x2 are 
connected in < V \ N(x0) >, by Proposition 1(iii), z0x2 ∈ E , a contradiction. �

Lemma 11 and Lemma 12 establish a close relationship between the eccentricity of a vertex and its distance to a closest 
vertex of C(G) or of C1(G). We now use the following section to fully describe the structure of centers of distance-hereditary 
graphs.

6. Centers of distance-hereditary graphs

In this section, we investigate the structure of centers of distance-hereditary graphs and provide their full characteri-
zation. A subset S ⊆ V is called m3-convex if and only if S contains every induced path of length at least three between 
vertices of S . It is known from [15] that the centers of HHD-free graphs are m3-convex. As every distance-hereditary graph 
is HHD-free, the centers of distance-hereditary graphs are m3-convex, too. It is also known from [23] that C(G) is either a 
cograph or a connected graph with diam(C(G)) = 3. As every connected subgraph of a distance-hereditary graph is isomet-
ric, when diam(C(G)) = 3, C(G) is isometric and a distance-hereditary graph. We remark that if the diameter of a set S in a 
distance-hereditary graph is no more than 2 then, by definition, it induces a cograph (or, equivalently, a distance-hereditary 
graph of diameter at most 2).

To prove our main result of this section, we will need the following auxiliary lemmas.

Lemma 13. Let x, y be a diametral pair of G, diam(G) = 2rad(G), and S := Srad(G)(x, y). Then, S and C(G) are cographs with C(G) ⊆
S, any vertex of Srad(G)+1(x, y) ∪ Srad(G)−1(x, y) is universal to S, and C1(G) ⊆ D(S, 1).

Proof. Any central vertex c ∈ C(G) has d(x, c) ≤ rad(G) and d(y, c) ≤ rad(G), therefore, by distance requirements, C(G) ⊆ S . 
By Proposition 4, any vertex w ∈ Srad(G)+1(x, y) ∪ Srad(G)−1(x, y) is universal to slice S and therefore universal to C(G). 
Moreover, since the diameters of S and C(G) are no more than 2, both are cographs.

Let now c ∈ C1(G) and by contradiction assume c /∈ D(S, 1). Necessarily d(x, c) ≤ rad(G) + 1 and d(y, c) ≤ rad(G) + 1. If 
d(x, c) < rad(G) then, by distance requirements, d(y, c) = rad(G) + 1 and c ∈ Srad(G)−1(x, y). By Proposition 4, c ∈ D(S, 1), 
a contradiction. If d(x, c) = d(y, c) = rad(G) then c ∈ S , a contradiction. Hence, we can assume, without loss of generality, 
that d(x, c) = rad(G) + 1. Consider vertex u �= c on a shortest path P (c, y) closest to x, and let b ∈ Srad(G)+1(x, y). Then, 
d(y, u) ≤ rad(G) as d(y, c) ≤ rad(G) + 1. If d(x, u) ≥ rad(G) + 1, then vertices b and c are connected in < V \ Nrad(G)(x) >
and therefore, by Proposition 1 (iii), share common neighbors in S . So, c ∈ D(S, 1), a contradiction. If d(x, u) ≤ rad(G), then 
d(x, u) = d(y, u) = d(y, c) − 1 = rad(G) as d(x, y) = 2rad(G). Hence, u ∈ S ∩ N(c), a contradiction. �
Lemma 14. Let x, y be a diametral pair of G, diam(G) = 2rad(G) − 1, and let A := Srad(G)−1(x, y) and B := Srad(G)−1(y, x). Then, 
C(G) is a cograph and any edge ab ∈ E, where a ∈ A and b ∈ B, satisfies C(G) ⊆ D({a, b}, 1). Moreover, there is a vertex a ∈ A ∩ C(G)

and a vertex b ∈ B ∩ C(G).

Proof. By Proposition 4, slices A and B are joined. Consider any c ∈ C(G) and edge ab ∈ E for any vertex pair a ∈ A and b ∈
B . As d(x, y) = 2rad(G) −1 and e(c) = rad(G), d(x, c) < rad(G) implies d(x, c) = rad(G) −1 and d(y, c) = rad(G). Hence, c ∈ A. 
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By symmetry, if d(y, c) < rad(G) then c ∈ B . Assume now that d(x, c) = d(y, c) = rad(G). Then, b, c ∈ Nrad(G)(x). Consider 
vertex u �= c on a shortest path P (c, y) closest to x. We have d(y, u) ≤ rad(G) − 1 by the choice of u. If d(x, u) ≤ rad(G) − 1, 
then d(x, y) ≤ d(x, u) + d(u, y) ≤ 2rad(G) − 2, a contradiction. Thus, d(x, u) ≥ rad(G). Vertices b and c are connected in 
< V \ Nrad(G)−1(x) > by shortest paths to y. By Proposition 1 (iii), b and c share neighbors in A. Therefore, a ∈ N(c) and, 
by symmetry, b ∈ N(c). Hence, any central vertex either belongs to A ∪ B or is universal to A ∪ B . Thus, C(G) ⊆ D({a, b}, 1). 
Additionally, since any pair of vertices in C(G) is at most distance 2 apart, C(G) is a cograph.

We now show the existence of vertices a ∈ A and b ∈ B such that a, b ∈ C(G). Consider the family of disks D(v, r(v))

centered at each vertex v , where r(v) = 1 for all central vertices v ∈ C(G) and r(v) = rad(G) −1 for all others. Any two non-
central vertices u, v ∈ V \ C(G) have distance no more than the diameter, therefore d(u, v) ≤ 2rad(G) − 1 = r(u) + r(v) + 1. 
Any two central vertices u, v ∈ C(G) have distance no more than the diameter of the center, therefore d(u, v) ≤ 2 = r(u) +
r(v). By definition, any central vertex u ∈ C(G) sees any vertex v ∈ V within rad(G), and therefore d(u, v) ≤ rad(G) =
r(u) + r(v). Hence, by Proposition 2, there is an r-dominating clique K . As any non-central vertex has distance rad(G) − 1
to a vertex of K , we have K ⊆ C(G). Let a ∈ K be closest to x and let b ∈ K be closest to y. By distance requirements, ab
must be an edge with d(x, a) = rad(G) − 1 and d(b, y) = rad(G) − 1. Therefore, a ∈ A and b ∈ B . �
Corollary 4. If diam(G) ≥ 2rad(G) − 1 then C(G) is a cograph.

It remains now to investigate the case when diam(G) = 2rad(G) − 2.

Lemma 15. Let diam(G) = 2rad(G) − 2, and let M ⊆ C(G). If all u, v ∈ M satisfy d(u, v) = 2, then there is a vertex c ∈ C(G) that is 
universal to M.

Proof. Consider a disk of radius 1 centered at each s ∈ M and a disk of radius rad(G) − 1 centered at each v ∈ V \ M . Any 
two vertices u, v ∈ V \ M satisfy d(u, v) ≤ diam(G) = 2rad(G) − 2 = r(u) + r(v). Since M ⊆ C(G), any s ∈ M and v ∈ V satisfy 
d(s, v) ≤ rad(G) = r(s) + r(v). By assumption, any two s, t ∈ M satisfy d(s, t) = 2 = r(s) + r(t). By Proposition 2, there is a 
single vertex or a pair of adjacent vertices r-dominating G . In the former case, we are done. Thus, consider the case when 
there is an r-dominating edge ab ∈ E . We have a, b ∈ C(G) since all vertices v ∈ V see some end-vertex of edge ab within 
rad(G) − 1. We claim that at least one end-vertex of edge ab is universal to M . By contradiction assume there exist vertices 
u, v ∈ M which are adjacent to opposite ends of edge ab. Without loss of generality, let u ∈ N(a) \ N(b) and v ∈ N(b) \ N(a). 
Since d(u, v) = 2, we get in G either an induced C5, or an induced house, or an induced gem. A contradiction obtained 
proves the lemma. �
Lemma 16. Let x, y be a diametral pair of G, diam(G) = 2rad(G) − 2, and let A := Srad(G)−2(x, y), S := Srad(G)−1(x, y), and B :=
Srad(G)−2(y, x). Then A ∪ B ∪ (S ∩ C(G)) ⊆ C(G) and there is a vertex c ∈ S ∩ C(G). Moreover, C(G) ⊆ D(S ∩ C(G), 1).

Proof. Consider any s ∈ A. By Lemma 6, e(s) ≤ max{max{d(s, x), d(s, y)}, min{d(s, x), d(s, y)} + 2} = d(s, y) = rad(G). Hence, 
s ∈ C(G) and, by symmetry, A ∪ B ⊆ C(G).

By contradiction assume there is no central vertex in S . Let w be a vertex from S minimizing |F (w)|, and let v ∈
F (w). Since w /∈ C(G), d(w, v) ≥ rad(G) + 1. Denote by s1 ∈ S1(w, x) and s2 ∈ S1(w, y) two adjacent to w vertices on a 
shortest path from x to y. As previously established, both s1 and s2 are central since they belong to A and B , respectively. 
Thus, d(s1, v) ≤ rad(G) and d(s2, v) ≤ rad(G). Therefore, d(s1, v) = d(s2, v) = rad(G) and d(w, v) = rad(G) + 1. Since s1, s2 ∈
Nrad(G)(v) and are connected via w in the graph < V \ Nrad(G)−1(v) >, by Proposition 1(iii), there is a vertex t ∈ Nrad(G)−1(v)

adjacent to s1 and s2. As t ∈ Srad(G)−1(y, x) and v ∈ F (w) \ F (t), by minimality of |F (w)|, there is a vertex u ∈ F (t) \ F (w). By 
our assumption, u /∈ C(G), i.e., d(u, t) ≥ rad(G) + 1. Consider the 4-point condition on vertices t, w, v, u. We have d(v, u) +
d(w, t) = d(v, u) + 2, d(v, t) + d(u, w) ≤ rad(G) − 1 + rad(G), and d(v, w) + d(u, t) ≥ rad(G) + 1 + rad(G) + 1 = 2rad(G) + 2. 
Since the latter two sums differ by more than 2, necessarily, d(v, u) +d(w, t) = d(v, w) +d(u, t). Hence, d(v, u) = d(v, w) +
d(u, t) − d(w, t) ≥ 2rad(G), a contradiction with diam(G) = 2rad(G) − 2. Thus, there is a vertex c ∈ S ∩ C(G).

Next, we establish an intermediate claim that C(G) ⊆ D(M, 1), where M := A ∪ B ∪ (S ∩ C(G)). By contradiction suppose 
there is a vertex w ∈ C(G) with w /∈ D(M, 1). Consider arbitrary vertices a ∈ A and b ∈ B . Thus, d(a, b) = 2, and a, b ∈ M and, 
by the choice of w , necessarily d(w, a) ≥ 2 and d(w, b) ≥ 2. If d(w, a) = d(w, b) = 2 then, by Lemma 15 applied to the set 
{w, a, b}, there is a central vertex u adjacent to w, a, b. In this case u ∈ S ∩C(G) and therefore u ∈ M , contradicting with w /∈
D(M, 1). Assume now, without loss of generality, that d(w, a) ≥ 3. Consider the 4-point condition on vertices w, x, y, a. We 
have d(x, y) +d(w, a) ≥ 2rad(G) + 1 is the largest sum since d(x, w) +d(y, a) ≤ 2rad(G) and d(x, a) +d(w, y) ≤ 2rad(G) − 2. 
Since the smaller two sums must be equal and differ from the larger one by at most two, inequality d(x, y) + d(w, a) ≥
d(x, a) + d(y, w) + 3 gives a contradiction which establishes the claim that C(G) ⊆ D(M, 1).

Finally, we establish that C(G) ⊆ D(S ∩ C(G), 1). By contradiction assume there is a central vertex w ∈ C(G) \ S which is 
not adjacent to any vertex of S ∩ C(G). By the previous claim, w is adjacent to some vertex from A or B . Without loss of 
generality, let wa ∈ E for some vertex a ∈ A. Since d(a, y) = rad(G), necessarily, d(w, y) ≥ rad(G) −1. If d(w, y) = rad(G) −1
then w ∈ S , a contradiction. So, d(w, y) = rad(G) must hold. Now, vertices w and a are connected in < V \ Nrad(G)−1(y) >. 
By Proposition 1 (iii), N(w) ∩ Nrad(G)−1(y) = N(a) ∩ Nrad(G)−1(y). By Proposition 4, also S ∩ C(G) ⊆ N(a) ∩ Nrad(G)−1(y). Thus, 
w is universal to S ∩ C(G), a contradiction. �
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Fig. 7. Any cograph H (left), and any connected distance-hereditary graph H with diameter 3 where C(H) is a connected cograph with radius 2 (right), is 
the center of some distance hereditary graph.

We are ready to prove the main result of this section.

Theorem 3. Let H be a subgraph of a distance-hereditary graph G induced by C(G). Either
(i) H is a cograph, or

(ii) H is a connected distance-hereditary graph with diam(H) = 3 and C(H) is a connected cograph with rad(C(H)) = 2.
Furthermore, any such graph H is the center of some distance-hereditary graph.

Proof. If diam(G) ≥ 2rad(G) −1 then, by Lemma 13 and Lemma 14, H is a cograph. Assume now that diam(G) = 2rad(G) −2
and diam(H) = 3 (if diam(H) ≤ 2 then, by definition, H is a cograph). Then, H is a connected distance-hereditary 
graph [23], and so 2rad(H) − 2 ≤ diam(H) ≤ 2rad(H). On one hand, rad(H) ≥ 
(diam(H)/2)� = 2. On the other hand, 
rad(H) ≤ �(diam(H) + 2)/2� = 2. Hence, rad(H) = 2.

So, H is a connected distance-hereditary graph with diam(H) = 3 and rad(H) = 2. Consider the center C(H) of H . First 
we show that C(H) is connected. Let r(u) = 1 for each vertex u ∈ H . Then, any pair u, v ∈ H satisfies dH (u, v) ≤ diam(H) =
r(u) + r(v) + 1. By Proposition 2, there is a clique K in H dominating H . Since each vertex of K is at most distance 
2 = rad(H) from every vertex of H , K ⊆ C(H) holds. Moreover, every two vertices of C(H) are connected through vertices 
of K ⊆ C(H), implying that C(H) is connected in H . In distance-hereditary graphs every connected subgraph is isometric. 
Hence, C(H) is an isometric subgraph of H . As rad(H) = 2, every two vertices of C(H) are at distance at most 2 from each 
other, implying diam(C(H)) = 2. Thus, C(H) is a connected cograph with rad(C(H)) ≤ 2.

We will show next that rad(C(H)) = 2, i.e., for any c ∈ C(H) there is a vertex z ∈ C(H) such that cz /∈ E . Consider 
a vertex t ∈ F (c) furthest from c in G . We have dG (c, t) = rad(G). Let z ∈ H be a closest vertex to t which is central 
in G . Since diam(G) = 2rad(G) − 2, by Lemma 11, we have dG (t, z) = dG (t, C(G)) = eG(t) − rad(G) ≤ diam(G) − rad(G) =
rad(G) − 2. Moreover, vertices z and c are not adjacent since dG (c, t) = rad(G) and dG (t, z) ≤ rad(G) − 2. But, since c ∈ C(H), 
dG(c, z) = dH (c, z) ≤ 2. Therefore, dH (c, z) = 2 and dG (t, z) = rad(G) − 2. We next establish that z belongs to C(H). By 
contradiction, assume that there is a vertex u ∈ H such that dH (z, u) > rad(H) = 2. Then, dH (z, u) = diam(H) = 3 and, 
by the choice of c (c ∈ C(H)), necessarily dH (c, u) ≤ 2. Consider the 4-point condition on vertices c, u, z, t . We have that 
d(c, t) + d(u, z) = rad(G) + 3 is the largest sum since d(c, z) + d(u, t) ≤ rad(G) + 2 and d(c, u) + d(z, t) ≤ rad(G). However, 
d(c, t) + d(u, z) ≥ d(c, u) + d(z, t) + 3, giving a contradiction since the smaller two sums must be equal and differ from the 
larger one by at most two. Hence, z belongs to C(H) showing that every c ∈ C(H) has a non-adjacent vertex z ∈ C(H).

Finally, we show that any such graph H is the center of some distance-hereditary graph G . In what follows, we refer 
to Fig. 7 for an illustration. If H is a cograph, then one can construct a graph G by simply adding to H four new vertices 
x, x∗, y, y∗ . Vertices x and y are universal to H , and vertices x∗, y∗ are pendant to x and y, respectively. Now graph H
is the center of G as any vertex u of the cograph H is at most distance 2 to any vertex of G , whereas dG (x, y∗) = 3 and 
dG(y, x∗) = 3. Suppose now that H is a connected distance-hereditary graph with diam(H) = 3 and C(H) is a connected 
cograph with rad(C(H)) = 2. One can construct a graph G by adding to H (with C(H) = {c1, c2, ..., c�}) � new vertices 
x1, x2, ..., x� such that each xi is pendant to ci ∈ C(H). Each ci ∈ C(H) has dG (ci, u) ≤ 2 for all u ∈ H . Since rad(C(H)) = 2, 
each ci has a non-adjacent vertex ck ∈ C(H), and therefore dG (ci, xk) = 3. Any vertex u ∈ H \ C(H) has a vertex v ∈ H \ C(H), 
for which dG (u, v) = 3. Furthermore, any such u satisfies dG (u, xi) = dG(u, ci) + 1 ≤ 3 for each xi . Since rad(C(H)) = 2, for 
any pendant xi , vertex ci has a non-adjacent vertex ck ∈ C(H) and therefore dG (xi, xk) = 4. Hence, H is the center of G . �
7. Computing all eccentricities

Recall that Theorem 2 yields a linear time 2-approximation of all eccentricities. We also used ideas from Section 6 to 
find in linear time a set S ⊆ C(G) sufficient for an additive 1-approximation of all eccentricities. However, it proved to be 
challenging to get exact computation of all eccentricities using that approach. Instead, we found it more fruitful to use a 
characteristic pruning sequence of G . We provide in this section a simple linear time algorithm to compute all eccentricities 
of a distance-hereditary graph G using a weight function and a special pruning sequence produced by processing layers of 
a breadth-first search tree of G (see [6]).
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For a given graph G = (V (G), E(G)) and an n-tuple (p(v1), p(v2), ..., p(vn)) of non-negative vertex weights, we define 
the p-weighted eccentricity of each vertex v ∈ V (G) as eG,p(v) = maxu∈V (G){dG(v, u) + p(u)}. We refer to the set of furthest 
vertices from a vertex v under weight function p in G as FG,p(v) = {u ∈ V (G) : eG,p(v) = dG(v, u) + p(u)}. Clearly, when 
p(v) = 0 for all v ∈ V (G), we have eG,p(v) = eG(v) and FG,p(v) = FG(v) agreeing with earlier definitions.

Lemma 17. Let x, y ∈ V be twins with p(x) ≤ p(y). Set G ′ = G −{x} and p′(v) = p(v) for all v ∈ V (G ′). Then, eG,p(v) = eG ′,p′(v) for 
all v ∈ V (G ′) \ {y}, eG,p(y) = max{p(x) +dG (x, y), eG ′,p′(y)}, and eG,p(x) = max{p(y) +dG (x, y), eG,p(y)}. Moreover, if FG,p(y) \
{x} �= ∅, then eG,p(y) = eG ′,p′(y).

Proof. Let v ∈ V (G ′) \ {y}. As x and y are twins, dG(v, y) = dG (v, x). Since G ′ is isometric in G , dG(v, u) + p(u) =
dG ′ (v, u) + p′(u) for any u ∈ V (G ′). Then, by definition of eccentricity, eG ′,p′(v) = maxu∈V (G ′){dG ′ (v, u) + p′(u)} =
maxu∈V (G)\{x}{dG (v, u) + p(u)}. As p(x) ≤ p(y), dG(v, y) + p(y) ≥ dG(v, x) + p(x). Thus, eG ′,p′(v) = max{dG(v, x) +
p(x), maxu∈V (G)\{x}{dG(v, u) + p(u)}} = maxu∈V (G){dG(v, u) + p(u)} = eG,p(v). Similarly, eG,p(y) = max{dG(x, y) + p(x),
maxu∈V (G ′){dG(y, u) + p(u)}} = max{dG(x, y) + p(x), eG ′,p′(y)}. Moreover, if FG,p(y) \ {x} �= ∅, then eG,p(y) = eG ′,p′ (y) as 
realized by the weighted distance in G ′ from y to any v ∈ FG,p(y) \ {x}.

As d(x, y) ≥ 1 and p(x) ≤ p(y), dG(x, y) + p(y) ≥ max{dG (x, y) + p(x), p(y)}. Again, by definition of eccentricity,

eG,p(x) = max{p(x),dG (x, y) + p(y),maxu∈V (G)\{x,y}{dG(x, u) + p(u)}}
= max{dG(x, y) + p(y),maxu∈V (G)\{x,y}{dG(y, u) + p(u)},dG(x, y) + p(x), p(y)}
= max{dG(x, y) + p(y), eG,p(y)}. �

Lemma 18. Let x be a vertex pendant to y. Set G ′ = G − {x}, p′(y) = max{1 + p(x), p(y)}, and p′(v) = p(v) for all v ∈ V (G ′) \ {y}. 
Then, eG,p(v) = eG ′,p′(v) for all v ∈ V (G ′). If FG,p(y) \ {x} �= ∅, then eG,p(x) = max{p(x), eG ′,p′(y) + 1}.

Proof. Let v ∈ V (G ′). As x is pendant to y, dG(v, x) = dG(v, y) + 1. Since G ′ is isometric in G , dG ′ (v, y) + p′(y) =
max{dG(v, y) + 1 + p(x), dG(v, y) + p(y)} = max{dG(v, x) + p(x), dG(v, y) + p(y)}. Then, by definition of eccentricity,

eG ′,p′(v) = max{dG ′(v, y) + p′(y),maxu∈V (G ′)\{y}{dG ′(v, u) + p′(u)}}
= max{dG(v, x) + p(x),dG(v, y) + p(y),maxu∈V (G ′)\{y}{dG(v, u) + p(u)}}
= maxu∈V (G){dG(v, u) + p(u)} = eG,p(v).

Assume now that FG,p(y) \ {x} �= ∅. Hence, eG ′,p′(y) = eG,p(y) = maxu∈V (G)\{x}{dG(y, u) + p(u)}. Thus, by definition of 
eccentricity,

eG,p(x) = max{p(x), p(y) + 1,maxu∈V (G)\{x,y}{dG(x, u) + p(u)}}
= max{p(x), p(y) + 1,maxu∈V (G)\{x,y}{dG(y, u) + p(u)} + 1}
= max{p(x),maxu∈V (G)\{x}{dG(y, u) + p(u)} + 1} = max{p(x), eG ′,p′(y) + 1}. �

We use the pruning sequence (the vertex elimination ordering) σ = (v1, ..., vn) that can be constructed in linear time 
via ρ iterations of a systematic removal of pendants/twins from each layer Lρ , ..., L1 of a breadth-first search tree rooted 
at vn (see [6]). Iteration k, where k = ρ, ..., 1, consists of four consecutive steps:

(a) remove any x ∈ Lk twin to some y ∈ Lk of the same connected component in Lk (i.e., x and y belong to the same 
connected component of the subgraph of G induced by vertices of Lk),

(b) remove any x ∈Lk pendant to some y ∈ Lk−1,
(c) remove any x ∈Lk−1 twin to some y ∈ Lk−1 belonging to the same neighborhood N(z) ∩Lk−1 of some z ∈Lk , and
(d) remove any x ∈Lk pendant to some y ∈ Lk−1.

Note that we move to the next step only when no vertex remains satisfying the condition of the previous step. At the end 
of iteration k, all vertices of Lk have been removed (see [6]). By this ordering, any u ∈ Lk satisfies that if u is a pendant to 
v , then v ∈Lk−1, and if u is a twin to v , then v ∈Lk . Let Gi denote the graph induced by {vi, ..., vn} for each i = 1, ..., n.

Theorem 4. There is a linear time algorithm to compute all eccentricities in a distance-hereditary graph.

Proof. Let σ = (v1, ..., vn) be the pruning sequence constructed as described above by each iteration k = rad(G), ..., 1 of 
removing vertices from layer Lk of a BFS tree rooted at a central vertex vn . Denote by v y ∈ L2 the first pendant vertex of 
σ encountered in step (d) of iteration 2 (or in step (b) if L2 becomes empty after steps (a) and (b)). Denote by vz the first 
vertex of σ encountered in iteration 1. Thus, the graph Gz consists of vn and some twins/pendants in L1 adjacent to vn . 
The algorithm is summarized as follows. We process vertices vi , i < z, from v1 to vz (from left to right along σ ). We denote 
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by pi the weight function of each vertex immediately before vertex vi is processed. For each vertex v j ∈ σ , set p1(v j) = 0. 
As each vi is processed, pi+1 is invariant (that is, pi+1(v j) = pi(v j) for every v j) with the exception of one case: if vi is 
a pendant to v j in Gi , then let pi+1(v j) = max{pi(vi) + 1, pi(v j)}. We can assume that if vi is a twin to vertex v j in Gi , 
then pi(vi) ≤ pi(v j), since otherwise, their positions as twins can be swapped in σ . Observe that the weight function of a 
vertex v j ∈ Lk can only increase when a vertex vi ∈ Lk+1 is pendant to v j , where i < j. Hence, if any vertex vi belongs to 
layer Lk , then for any integer �, p�(vi) ≤ rad(G) −k. Additionally, every vertex vi and integers � < κ satisfy p�(vi) ≤ pκ (vi). 
After all vertices vi , i < z, are processed (along σ from left to right), we next compute all pz-weighted eccentricities in Gz . 
Then, we compute all p y -weighted eccentricities in G y . Finally, we process each vertex vi , i < y, along the reverse direction 
of σ . The pi+1-weighted eccentricities in Gi+1 are used to obtain the pi -weighted eccentricities in Gi .

Backward phase 1: Compute all pz-weighted eccentricities in Gz. Denote by V ∗ and N∗
i the vertex lists ordered by decreasing 

weight pz from the respective vertex sets V (Gz) and N(vi) ∩ V (Gz) for each vi ∈ V (Gz). The lists are ordered in total 
linear time with a bucket sort. The first vertex w of N∗

i has maximum pz(w) among neighbors of vi in Gz , and the first 
vertex u of V ∗ \ N∗

i has maximum pz(u) among non-neighbors of vi . By definition, the weighted eccentricity of each vi is 
eGz,pz (vi) = max{pz(vi), 1 + pz(w), 2 + pz(u)} if there exists a non-neighbor u ∈ V ∗ \ N∗

i , and eGz,pz (vi) = max{pz(vi), 1 +
pz(w)} otherwise.

Backward phase 2: Compute all p y-weighted eccentricities in G y. By choice of y, each vertex vi for y ≤ i < z satisfies 
vi ∈ L2 and vi is pendant to a vertex v j ∈ L1 in G y . Hence, for M = {vz, ..., vn} and S = {v y, ..., vz−1}, maxm∈M pz(m) =
max{maxm∈M p y(m), maxu∈S p y(u) + 1} holds. Therefore, we may again use ideas from the previous phase. For each vertex 
vi , y ≤ i < z, pendant to v j , we have a vertex w ∈ N(v j) in Gz with maximum pz(w) among neighbors of v j in Gz and 
a vertex u /∈ N(v j) in Gz with maximum pz(u) among non-neighbors of v j in Gz . By definition, the weighted eccentricity 
of each vi is eG y ,p y (vi) = max{pi(vi), pi(v j) + 1, pz(w) + 2, pz(u) + 3} if there exists in Gz a non-neighbor u /∈ N(v j), and 
eG y ,p y (vi) = max{pi(vi), pz(v j) + 1, pz(w) + 2} otherwise. Additionally, by Lemma 18, each vertex v� for � ≥ z has equal pz

and p y weighted eccentricities, that is, eG y ,p y (v�) = eGz,pz (v�).
Backward phase 3: Compute all pi -weighted eccentricities in Gi for i < y along a reverse direction of σ . If vi is a twin to v j in 

Gi , by Lemma 17, eGi ,pi (v j) = max{pi(vi) + dG(vi, v j), eGi+1,pi+1 (v j)}, eGi ,pi (vi) = max{pi(v j) + dG(vi, v j), eGi ,pi (v j)}, and 
for all u ∈ V (Gi) \ {vi, v j} eGi ,pi (u) = eGi+1,pi+1 (u). We consider now the case that vi is a pendant to v j . By Lemma 18, each 
u ∈ V (Gi) \ {vi} satisfy eGi ,pi (u) = eGi+1,pi+1 (u). We claim that eGi ,pi (vi) = max{pi(vi), eGi+1,pi+1 (v j) + 1}. It remains only to 
show that any pendant vi , where i < y, satisfies FGi ,pi (v j) \ {vi} �= ∅; applying Lemma 18 then proves the claim.

By contradiction, let vi ∈ Lγ pendant to v j ∈ Lγ −1 be the earliest vertex in σ with i < y and FGi ,pi (v j) = {vi}. Hence, 
eGi ,pi (v j) = dGi (v j, vi) + pi(vi) > maxi+1≤t≤n{dGi (v j, vt) + pi(vt)}. As i < y and v y ∈L2, then γ ≥ 2. Thus, pi(vi) ≤ rad(G) −
2 and eGi ,pi (v j) = dG (v j, vi) + pi(vi) ≤ rad(G) −1. If eGi ,pi (v j) = eG(v j), we obtain a contradiction with eG(v j) ≤ rad(G) −1. 
Therefore, eGi ,pi (v j) < eG(v j). Let v� ∈ σ be the earliest vertex such that eG�,p�

(v j) > eG�+1,p�+1(v j), where � < i < j. By 
Lemma 17 and Lemma 18, v� is a twin to v j in G� such that FG�,p�

(v j) = {v�} and p�(v�) ≤ p�(v j). Then, rad(G) ≤ eG(v j) =
eG�,p�

(v j) = dG(v�, v j) + p�(v�). Hence, pi(v j) ≥ p�(v j) ≥ p�(v�) ≥ rad(G) − dG(v�, v j). If pi(v j) = rad(G) − 1 or if v� is a 
true twin to v j , then pi(v j) ≥ rad(G) − 1, and a contradiction arises with pi(v j) < dG(v j, vi) + pi(vi) ≤ rad(G) − 1 (recall 
that FGi ,pi (v j) = {vi}). Necessarily, v� is a false twin to v j and pi(v j) = rad(G) − 2. As rad(G) − 2 = pi(v j) < eGi ,pi (v j) =
dG(vi, v j) + pi(vi) ≤ 1 + rad(G) − γ , we obtain γ < 3. Hence, vi ∈ L2 and v� ∈ L1. As � < i, necessarily v� is removed in 
iteration 2 step (c) of σ construction. However, this implies that vi is removed in iteration 2 step (d); therefore, i ≥ y, a 
contradiction that proves the claim. �
8. Concluding remarks

We have shown that the eccentricity function in distance-hereditary graphs is almost unimodal. We used this result to 
fully characterize centers of distance-hereditary graphs and to provide several bounds on the eccentricity of a vertex. Finally, 
a new linear time algorithm to calculate all eccentricities is presented.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

We are very grateful to anonymous referees for many useful suggestions and to Guillaume Ducoffe for informing us 
about the relevant results from [5].

References

[1] Hend Alrasheed, Feodor F. Dragan, Core–periphery models for graphs based on their δ-hyperbolicity: An example using biological networks, J. Algo-
rithms Comput. Technol. 11 (1) (Sep 2016) 40–57.

[2] Hans-Jürgen Bandelt, Henry Martyn Mulder, Distance-hereditary graphs, J. Comb. Theory, Ser. B 41 (2) (October 1986) 182–208.

http://refhub.elsevier.com/S0304-3975(20)30260-7/bib68419F30C559AE86BA5963B4D5A25E61s1
http://refhub.elsevier.com/S0304-3975(20)30260-7/bib68419F30C559AE86BA5963B4D5A25E61s1
http://refhub.elsevier.com/S0304-3975(20)30260-7/bib1D6748F5E753361612FDB1E2704B1380s1


40 F.F. Dragan, H.M. Guarnera / Theoretical Computer Science 833 (2020) 26–40
[3] V.D. Chepoi, Centers of triangulated graphs, Math. Notes Acad. Sci. USSR 43 (1) (Jan 1988) 82–86.
[4] Victor Chepoi, Feodor F. Dragan, Michel Habib, Yann Vaxès, Hend Alrasheed, Fast approximation of eccentricities and distances in hyperbolic graphs, J. 

Graph Algorithms Appl. 23 (2) (2019) 393–433.
[5] David Coudert, Guillaume Ducoffe, Alexandru Popa, Fully polynomial FPT algorithms for some classes of bounded clique-width graphs, ACM Trans. 

Algorithms 15 (3) (Jun 2019) 1–57.
[6] Guillaume Damiand, Michel Habib, Christophe Paul, A simple paradigm for graph recognition: application to cographs and distance hereditary graphs, 

Theor. Comput. Sci. 263 (1) (2001) 99–111.
[7] A. D’Atri, M. Moscarini, Distance-hereditary graphs, steiner trees, and connected domination, SIAM J. Comput. 17 (3) (1988) 521–538.
[8] Feodor F. Dragan, Centers of Graphs and the Helly Property, (in Russian), PhD thesis, Moldava State University, Chişinău, 1989.
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