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In this paper, we propose a new compact and low delay routing labeling scheme for Unit Disk
Graphs (UDGs) which often model wireless ad hoc networks. We show that one can assign
each vertex of an n-vertex UDG G a compact O (log2 n)-bit label such that, given the label
of a source vertex and the label of a destination, it is possible to compute efficiently, based
solely on these two labels, a neighbor of the source vertex that heads in the direction
of the destination. We prove that this routing labeling scheme has a constant hop route-
stretch (= hop delay), i.e., for each two vertices x and y of G , it produces a routing path
with h(x, y) hops (edges) such that h(x, y) � 3 · dG (x, y) + 12, where dG (x, y) is the hop
distance between x and y in G . To the best of our knowledge, this is the first compact
routing scheme for UDGs which not only guaranties delivery but has a low hop delay.
Furthermore, our routing labeling scheme has a constant length route-stretch and a constant
power route-stretch.
To obtain this result, we establish a novel balanced separator theorem for UDGs, which
mimics the well-known Lipton and Tarjan’s planar balanced shortest paths separator
theorem. We prove that, in any n-vertex UDG G , one can find two hop-shortest paths
P (s, x) and P (s, y) such that the removal of the 3-hop-neighborhood of these paths
(i.e., N3

G [P (s, x) ∪ P (s, y)]) from G leaves no connected component with more than 2/3n
vertices. This new balanced shortest-paths–3-hop-neighborhood separator theorem allows us
to build, for any n-vertex UDG G , a system T (G) of at most 2 log 3

2
n + 2 spanning trees

of G such that, for any two vertices x and y of G , there exists a tree T in T (G) with
dT (x, y) � 3 · dG (x, y) + 12. That is, the distances in any UDG can be approximately
represented by the distances in at most 2 log 3

2
n + 2 of its spanning trees.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A common assumption for wireless ad hoc networks is that all nodes have the same maximum transmission range. By
proper scaling, one can model these networks with Unit Disk Graphs (UDGs), which are defined as the intersection graphs
of equal sized circles in the plane [3]. In other words, there is an edge between two vertices in a UDG if and only if their
Euclidean distance is no more than one.

Communications in networks are performed using routing schemes, i.e., mechanisms that can deliver packets of informa-
tion from any vertex of a network to any other vertex. In most strategies, each vertex v of a graph has full knowledge of its
neighborhood and uses a piece of global information available to it about the graph topology – some “sense of direction”

✩ Part of these results is presented at WADS 2009 Conference (Yan et al., 2009 [29]).
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to each destination – stored locally at v . Based only on this information and the address of a destination vertex, vertex v
needs to decide whether the packet has reached its destination, and if not, to which neighbor of v to forward the packet.
The efficiency of a routing scheme is measured in terms of its multiplicative route-stretch (or additive route-stretch), namely,
the maximum ratio (or surplus) between the cost (which could be the hop-count, the length or the power-consumption) of a
route, produced by the scheme for a pair of vertices, and the cost of an optimal route available in graph for that pair. Here,
the hop-count of a route is defined as the number of edges on it, the length of a route is defined as the sum of the Euclidean
length of its edges, the power-consumption of a route is defined as the sum of the β-powers of the Euclidean length of its
edges (for some β ∈ [2,5] depending on the routing environment). Using different cost functions, for a given graph G and
a given routing scheme on G , one can define three different notions of route-stretch: hop route-stretch, length route-stretch,
and power route-stretch.

The most popular strategy in wireless networks is the geographic routing (sometimes called also the greedy geographic
routing), where each vertex forwards the packet to the neighbor geographically closest to the destination (see survey [12]
for this and many other strategies). Each vertex of the network knows its position (e.g., Euclidean coordinates) in the
underlying physical space and forwards messages according to the coordinates of the destination and the coordinates of
neighbors. Although this greedy method is effective in many cases, packets may get routed to where no neighbor is closer
to the destination than the current vertex. Many recovery schemes have been proposed to route around such voids for
guaranteed packet delivery as long as a path exists [4,15,17]. These techniques typically exploit planar subgraphs (e.g.,
Gabriel graph, Relative Neighborhood graph), and packets traverse faces on such graphs using the well-known right-hand
rule. Although these techniques guarantee packet delivery, none of them give any guaranties on how the routing path
traveled is “close” to an optimal path; the worst-case route-stretch can be linear in the network size.

All earlier papers assumed that vertices are aware of their physical location, an assumption which is often violated
in practice for various of reasons (see [7,16,25]). In addition, implementations of recovery schemes are either based on
non-rigorous heuristics or on non-trivial planarization procedures. To overcome these shortcomings, recent papers [7,16,
25] propose routing algorithms which assign virtual coordinates to vertices in a metric space X and forward messages
using geographic routing in X . In [25], the metric space is the Euclidean plane, and virtual coordinates are assigned using
a distributed version of Tutte’s “rubber band” algorithm for finding convex embeddings of graphs. In [7], the graph is
embedded in Rd for some value of d much smaller than the network size, by identifying d beacon vertices and representing
each vertex by the vector of distances to those beacons. The distance function on Rd used in [7] is a modification of the �1
norm. Both [7] and [25] provide substantial experimental support for the efficacy of their proposed embedding techniques –
both algorithms are successful in finding a route from the source to the destination more than 95% of the time – but neither
of them has a provable guarantee. Unlike embeddings of [7] and [25], the embedding of [16] guarantees that the geographic
routing will always be successful in finding a route to the destination, if such a route exists. Algorithm of [16] assigns
to each vertex of the network a virtual coordinate in the hyperbolic plane, and performs greedy geographic routing with
respect to these virtual coordinates. However, although the experimental results of [16] confirm that the greedy hyperbolic
embedding yields routes with low route-stretch when applied to typical unit-disk graphs, the worst-case route-stretch is
still linear in the network size.

In this paper, we propose a new compact and low delay routing labeling scheme for Unit Disk Graphs. We show that one
can assign each vertex of an n-vertex UDG G a compact O (log2 n)-bit label such that, given the label of a source vertex and
the label of a destination, it is possible to compute efficiently, based solely on these two labels, a neighbor of the source
vertex that heads in the direction of the destination. We prove that this O (log2n)-bit routing labeling scheme has a constant
hop route-stretch (= hop delay), i.e., for each two vertices x and y of G , it produces a routing path with h(x, y) hops such
that h(x, y) � 3 · dG(x, y) + 12, where dG(x, y) is the hop distance between x and y in G . To the best of our knowledge,
this is the first compact routing scheme for UDGs which not only guaranties delivery but has a low hop delay. Furthermore,
our routing labeling scheme has a constant length route-stretch and a constant power route-stretch. Note also that, unlike
geographic routing or any other strategies discussed in [4,7,12,15–17,25], our routing scheme is degree-independent. That is,
each current vertex makes routing decision based only on its label and the label of destination, does not involve any labels
of neighbors. The label assigned to a vertex in our scheme can be interpreted as its virtual coordinates. To assign those
labels to vertices, we need to know only the topology of the input unit disk graph and relative Euclidean lengths of its
edges.

To obtain our routing scheme, we establish a novel balanced separator theorem for UDGs, which mimics the well-known
Lipton and Tarjan’s planar balanced shortest paths separator theorem. We prove that, in any n-vertex UDG G , one can
find two hop-shortest paths P (s, x) and P (s, y) such that the removal of the 3-hop-neighborhood of these paths (i.e.,
N3

G [P (s, x)∪ P (s, y)]) from G leaves no connected component with more than 2/3n vertices. The famous Lipton and Tarjan’s
planar balanced separator theorem has two variants (see [23]). One variant (called planar balanced

√
n-separator theorem)

states that any n-vertex planar graph G has a set S of vertices such that |S| = O (
√

n ) and the removal of S from G leaves no
connected component with more than 2/3n vertices. Another variant (called planar balanced shortest-paths separator theorem)
states that any n-vertex planar graph G has two shortest paths removal of which from G leaves no connected component
with more than 2/3n vertices. Although the first variant of the planar balanced separator theorem has an extension to
the class of disk graphs (which includes UDGs) (see [1]), the second variant of the theorem proved to be more useful
in designing compact routing (and distance) labeling schemes for planar graphs (see [13,26]). For example, it allows (see
[13]) to design, for each n-vertex planar graph G , a compact O (log2 n)-bit routing (and distance) labeling scheme which
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routes messages along paths that are at most 3 times longer than the shortest paths. To the date, there was not known any
extension of the planar balanced shortest-paths separator theorem to unit disk graphs. The paper [11] notes that

“Unfortunately, Thorup’s algorithm uses balanced shortest-path separators in planar graphs which do not obviously extend to the
unit-disk graphs”

and uses the well-separated pair decomposition to get fast approximate distance computations in UDGs. We do not know
how to use the well-separated pair decomposition of a UDG G to design a compact and low delay routing labeling scheme
for G . Application of the balanced

√·-separator theorem of [1] to UDGs can result only in routing (and distance) labeling
schemes with labels of size no less than O (

√
n logn)-bits per vertex. Our separator theorem allows us to get O (log2 n)-bit

labels which is more suitable for the wireless ad hoc and sensor networks where the issues of memory size and power-
conservation are critical.

Our new balanced shortest-paths–3-hop-neighborhood separator theorem allows us to build, for any n-vertex UDG G =
(V , E), a system T (G) of at most 2 log 3

2
n + 2 spanning trees of G such that, for any two vertices x and y of G , there exists

a tree T in T (G) with dT (x, y) � 3 · dG(x, y) + 12. That is, the distances in any UDG can be approximately represented
by the distances in at most 2 log 3

2
n + 2 of its spanning trees. An earlier version of these results has appeared in [28] (see

Section 3.4 and pages 124 and 125 of Section 3.5.5) and in [29]. Taking the union of all these spanning trees of G , we obtain
a hop (3,12)-spanner H of G (i.e., a spanning subgraph H of G with dH (x, y) � 3 ·dG(x, y)+12 for any x, y ∈ V ) with at most
O (n log n) edges. There is a number of papers describing different types of power-spanners, length-spanners and hop-spanners
for UDGs (see [2,8,10,18–20,22] and literature cited therein). Many of those spanners have nice properties of being planar
or sparse, or having bounded maximum degree or bounded length (or power or hop) spanner-stretch, or having localized
construction. Unfortunately, neither of those papers develops or discusses any routing schemes which could translate the
constant spanner-stretch bounds into some constant route-stretch bounds.

Finally, we would like to note that since the construction of our compact and low delay routing labeling scheme is
centralized and time consuming (its complexity in worst case is O (m2 log n) for an n-vertex m-edge UDG), it is best suited
for static or less mobile wireless ad hoc or sensor networks.

1.1. Organization of the paper

The paper is organized as follows. In Section 2, we give necessary definitions and notations. In Section 3, we prove few
simple auxiliary lemmas which are used in the next two sections. In Sections 4 and 5, we prove the central result of the
paper that, in any n-vertex UDG G , one can find two hop-shortest paths such that the removal of the 3-hop-neighborhood
of these paths from G leaves no connected component with more than 2/3n vertices. The proof goes roughly as follows.
Given a UDG G , we transform G into a planar graph G p by replacing intersections with imaginary or null points. Then we
find a balanced shortest path separator in G p and reconstruct from it a balanced separator for the original graph G . As a
warm up, in Section 4, we describe the details of these constructions in special UDGs, where each edge crosses at most one
other edge. This allows to concentrate on main idea and avoid many technical difficulties arising in general UDGs. After that,
in Section 5, we describe our constructions for arbitrary UDGs in full details. Dealing with edges with multiple crossings
is technically more difficult. In Section 6, we show how to use the balanced separator theorem for UDGs in developing a
compact and low delay routing labeling scheme for them. Section 7 concludes the paper.

2. Notions and notations

Let V be a set of n = |V | nodes on the Euclidean plane and let G = (V , E) be the unit disk graph (UDG) induced by
those nodes. Let also m = |E|. For each edge (a,b) of G , by (a,b) we denote also the open straightline segment representing
it, and by |ab| the Euclidean length of the edge/segment (a,b). For simplicity, in what follows, we will assume that any two
edges in G can intersect at no more than one point (i.e., no two intersecting edges are on the same straight line), and no
three edges intersect at the same point.

For a path P of G , the hop-count of P is defined as the number of edges on P , the length of P is defined as the sum of
the Euclidean length of its edges and the power-consumption of P is defined as the sum of the β-powers of the Euclidean
length of its edges. For any two vertices x and y of G , we denote by

– dG(x, y), the hop-distance (or simply distance) in G between x and y, i.e., the minimum hop-count of any path connect-
ing x and y in G ,

– lG(x, y), the length-distance in G between x and y, i.e., the minimum length of any path connecting x and y in G ,
– pG(x, y), the power-distance in G between x and y, i.e., the minimum power-consumption of any path connecting x and

y in G .

A graph family Γ is said (see [24]) to have an l(n)-bit (s, r)-approximate distance labeling scheme if there is a func-
tion L labeling the vertices of each n-vertex graph in Γ with distinct labels of up to l(n) bits, and there exists an
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algorithm/function f , called distance decoder, that given two labels L(v), L(u) of two vertices v, u in a graph G from Γ ,
computes, in time polynomial in the length of the given labels, a value f (L(v), L(u)) such that dG(v, u) � f (L(v), L(u)) �
s · dG(v, u) + r. Note that the algorithm is not given any additional information, other that the two labels, regarding the
graph from which the vertices were taken. Similarly, a family Γ of graphs is said (see [24]) to have an l(n)-bit routing la-
beling scheme if there exist a function L, labeling the vertices of each n-vertex graph in Γ with distinct labels of up to l(n)

bits, and an efficient algorithm/function, called the routing decision or routing protocol, that given the label L(v) of a current
vertex v and the label L(u) of the destination vertex u (the header of the packet), decides in time polynomial in the length
of the given labels and using only those two labels, whether this packet has already reached its destination, and if not, to
which neighbor of v to forward the packet.

Let R be a routing scheme and R(x, y) be a route (path) produced by R for a pair of vertices x and y in a graph G . We
say that R has

– hop (α,β)-route-stretch if hop-count of R(x, y) is at most α · dG(x, y) + β , for any x, y ∈ V ,
– length (α,β)-route-stretch if length of R(x, y) is at most α · lG(x, y) + β , for any x, y ∈ V ,
– power (α,β)-route-stretch if power-consumption of R(x, y) is at most α · pG(x, y) + β , for any x, y ∈ V .

Let H = (V , E ′) be a spanning subgraph of a graph G = (V , E). We say that H is

– hop (α,β)-spanner of G if dH (x, y) � α · dG(x, y) + β , for any x, y ∈ V ,
– length (α,β)-spanner of G if lH (x, y) � α · lG(x, y) + β , for any x, y ∈ V ,
– power (α,β)-spanner of G if pH (x, y) � α · pG(x, y) + β , for any x, y ∈ V .

In Section 6, we will need also the notion of collective tree spanners from [6]. It is said that a graph G admits a system
of μ collective tree (α,β)-spanners if there is a system T (G) of at most μ spanning trees of G such that for any two
vertices x, y of G a spanning tree T ∈ T (G) exists such that dT (x, y) � α · dG(x, y) + β .

For a vertex v of G = (V , E), the kth neighborhood of v in G is the set Nk
G [v] = {u ∈ V : dG(v, u) � k}. For a vertex v of G ,

the sets NG [v] = N1
G [v] and NG(v) = NG [v] \ {v} are called the neighborhood and the open neighborhood of v , respectively.

For a set S ⊆ V , by Nk
G [S] = ⋃

v∈S Nk
G [v] we denote the kth neighborhood of S in G . A set of vertices M ⊂ V is called a

balanced separator of G if the removal of M from G leaves no connected component with more than 2
3 |V | vertices.

3. Intersection lemmas

In this section we present few auxiliary lemmas. From the definition of unit disk graphs, we immediately conclude the
following.

Lemma 1. In a UDG G = (V , E), if edges (a,b), (c,d) ∈ E intersect, then G must have at least one of (a, c), (b,d) and at least one of
(a,d), (c,b) in E.

Proof. Let o be the intersection point of (a,b) and (c,d). We know that |ab| � 1 and |cd| � 1. According to the triangle
inequality, |ao| + |co| > |ac| and |bo| + |do| > |bd|. Combining these inequalities, we get 2 � |ab| + |cd| = |ao| + |ob| + |co| +
|od| > |ac| + |bd|. The latter implies that |ac| � 1 or |bd| � 1, i.e., (a, c) or (b,d) must be in E . Similarly, one can show that
(a,d) or (c,b) must be in E . �

Let r be an arbitrary but fixed vertex of a UDG G = (V , E), and L0, L1, . . . , Lq be the layering of G with respect to r,
where Li = {u ∈ V : dG(r, u) = i}. For G , using this layering, we construct a layering tree Torig rooted at r as follows: each
vertex v ∈ Li (i ∈ {1, . . . ,q}) chooses a neighbor u in Li−1 such that |vu| is minimum (closest neighbor in Li−1) to be
its father in Torig (breaking ties arbitrarily). Let E(Torig) be the edge set of Torig . This tree Torig will help us to construct
a balanced separator for G . It will be convenient, for each vertex v ∈ V , by L(v) to denote the layer index of v , i.e.,
L(v) = dG(r, v) = dTorig (r, v). In what follows, we will also adopt the following agreements (unless otherwise is specified).
When we refer to any edge (a,b) of Torig , we assume L(a) = L(b) − 1. When we refer to any two intersecting edges (a,b)

and (c,d) of Torig (in that order), we assume that L(a) � L(c).

Lemma 2. In Torig , no two edges (a,b) and (c,d) with L(a) = L(c) and L(b) = L(d) can cross.

Proof. We prove by contradiction. Assume that edges (a,b) and (c,d) cross. Let the crossing point be o, as shown in Fig. 1.
By the triangle inequality, |ao| + |do| > |ad| and |bo| + |co| > |bc|. Combining the two inequalities, we get |ab| + |cd| =
|ao|+ |ob|+ |co|+ |od| > |ad|+ |bc|, which implies 2 max{|ab|, |cd|} � |ab|+ |cd| > |ad|+ |bc| � 2 min{|ad|, |bc|}. Without loss
of generally, assume |bc| � |ad|. Then, |bc| < max{|ab|, |cd|}. If |bc| < |ab|, then according to our layering tree construction
rule, b would choose c rather than a as its father, a contradiction. Assume now that |bc| � |ab|. Then 	 bac � 	 bca, which
implies 	 oac > 	 oca and hence |oc| > |oa|. By the triangle inequality, |ad| < |do| + |ao|. Since |oc| > |oa|, we get |ad| <

|do| + |oc| = |dc|. By the layering tree construction rule, d would choose a rather than c as its father, a contradiction. �
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Fig. 1. A crossing of two edges (a,b) and (c,d), where a, c belong to layer Li and b, d belong to layer Li+1.

Fig. 2. A crossing of two tree-edges (a,b) and (c,d) implies that (c,b) is an edge in G and (a,d) is not an edge in G .

Lemma 3. Let (a,b), (c,d) be two edges in Torig that intersect. If L(a) = L(b) − 1, L(c) = L(d) − 1 and L(a) � L(c), then L(a) =
L(c) − 1, (a,d) /∈ E and (b, c) ∈ E.

Proof. By Lemma 2, L(a) 	= L(c), i.e., L(a) < L(c). By Lemma 1, (a.d) or (c,b) is an edge of G . Hence, L(a) � L(c) − 2.
Similarly, by Lemma 1, L(a) � L(d) − 2. Thus, L(a) = L(c) − 1 = L(d) − 2 must hold. Now, because L(a) = L(d) − 2, (a,d)

cannot be an edge of G . Then, by Lemma 1, (c,b) ∈ E . Fig. 2 is an illustration. �
For a UDG G = (V , E), in what follows, by G p = (V p, E p) we denote the planar graph obtained from G by turning

each edge intersection point in G into a vertex in G p . The vertices of Torig (i.e. vertices of G) will be called real vertices, to
differentiate them from imaginary and null points that will be defined later. In the following, we will use the term “element”
as a general name for real vertices, imaginary points and null points. For any graph G , we will use E(G) to denote the set
of its edges and V (G) to denote the set of its vertices (or elements, if V (G) contains imaginary or null points). Below,
we will create an imaginary point (details will be given later) at the point where two edges (a,b) and (c,d) from Torig
intersect. Recall that we agreed to assume that L(a) = L(b) − 1, L(c) = L(d) − 1 and L(a) � L(c). By Lemma 3, we know that
L(a) = L(c) − 1. Now, assuming that the imaginary point is m, we define a(m) = a, b(m) = b, c(m) = c and d(m) = d.

4. Balanced separator for restricted UDGs

In this section, we consider a special unit disk graph, a simple-crossing UDG. On this simple case, we demonstrate our
idea of construction of a balanced separator. It may help the reader to follow the much more complicated case, where we
construct a balanced separator for an arbitrary UDG. We define a simple-crossing UDG to be a UDG G = (V , E) with each
edge crossing at most one other edge.

In what follows, we will transform tree Torig into a special spanning tree T for the planar graph G p . Let T = Torig initially.
For each two intersecting edges (a,b) and (c,d) of Torig (by Lemma 3, we know L(a) = L(c) − 1), we do the following (see
Fig. 3 for an illustration). Create a vertex ma,b,c,d at the point where (a,b) and (c,d) intersect. We call ma,b,c,d an imaginary
point. Remove edges (a,b), (c,d) from T and add vertex ma,b,c,d and edges (ma,b,c,d,d), (a,ma,b,c,d) and (b,ma,b,c,d) into T .
One can see that all the descendants of b and d in T find their way to the root via a.
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Fig. 3. Handling an intersection between two edges (a,b) and (c,d) of Torig by creating an imaginary point ma,b,c,d .

Fig. 4. (Left) Handling an intersection between a tree-edge and a non-tree-edge. (Right) Handing an intersection between two non-tree-edges.

There are two other kinds of edge intersections in G: the intersection between a tree-edge and a non-tree-edge and the
intersection between two non-tree-edges. We handle them separately (see Fig. 4 for an illustration). Here, by a tree-edge we
mean an edge of tree Torig and by a non-tree-edge we mean an edge of G which is not in Torig .

– Assume a tree-edge (u, w) intersects a non-tree-edge (s, t). We create a new vertex, called a null point, say o, at the
point where (u, w) and (s, t) intersect. We remove edge (u, w) from T and add vertex o and edges (u,o), (o, w) into T .
Since we modify the tree T here and edge (s, t) is not in T , we do nothing with (s, t).

– Assume two non-tree-edges (a,b) and (c,d) intersect. We create a new vertex, called a null point, say o, at the point
where (a,b) and (c,d) intersect. We add vertex o (as a pendant vertex) and edge (a,o) into T .

It is easy to see that T is a spanning tree for the planar graph G p . We will need the Lipton and Tarjan’s Planar Separator
Theorem [23] in the following form.

Theorem 1 (Planar Separator Theorem). (See [23].) Let G be any planar graph with non-negative vertex weights and W be the total
weight of G (which is the sum of the weights of its vertices). Let T be any spanning tree of G rooted at a vertex r. Then, there exist
two vertices x and y in G such that if one removes from G the tree-paths connecting r with x and r with y in T , then each connected
component of the resulting graph has total weight at most 2/3W . Vertices x and y can be found in linear time.

We can apply Theorem 1 to T and G p by letting the weight of each real vertex be 1 and the weight of each imaginary
or null point be 0 in G p . Then, there must exist in T two paths P1 = P T (r, x) and P2 = P T (r, y) such that removal of them
from G p leaves no connected component with more than 2/3n real vertices.

Using paths P1 = (x0 = r, x1, . . . , xk−1, xk = x) and P2 = (y0 = r, y1, . . . , yl−1, yl = y) of G p (of T ), we can create a
balanced separator for G as follows.
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(1) Skip all the null points in P1 and P2. Clearly, each inner (i.e., different from x and y) null point of Pi is collinear with
its two neighbors in Pi (i = 1,2), and those neighbors must be real vertices of G .

(2) Skip every imaginary point in Pi which is collinear with its two neighbors in Pi (i = 1,2).
(3) For any inner (i.e., different from x and y) imaginary point ma,b,c,d of Pi (i = 1,2) which is not collinear with its two

neighbors in Pi (the only possible case is shown in Fig. 3, where L(a) = L(c) − 1 and imaginary point ma,b,c,d connects
a and d in Pi ), replace the subpath (a,ma,b,c,d,d) by either (a, c,d) (if (a, c) ∈ E) or (a,b,d) (if (b,d) ∈ E). By Lemma 1,
(a, c) or (b,d) is in E . Additionally, if the last element (x in P1 or y in P2) of Pi is an imaginary point ma,b,c,d , then
replace the subpath (a,ma,b,c,d) by (a,b) in Pi .

Let P ′
i be the resulting path obtained from Pi (i = 1,2). It is easy to check that P ′

1 is a shortest path of G connecting
vertices r and x′ , where x′ is either x, if x is a real vertex, or the neighbor xk−1 of x in P1, if x is a null point, or b(x), if x is
an imaginary point ma,b,c,d with a = xk−1. Analogously, P ′

2 is a shortest path of G connecting vertices r and y′ , where y′ is
either y or yl−1 or b(y). Here and in what follows, by a shortest path we mean a hop-shortest path. We can show that the
union of N2

G [P ′
1] and N2

G [P ′
2] is a balanced separator for G , i.e., removal of N2

G [P ′
1] ∪ N2

G [P ′
2] from G leaves no connected

component with more that 2/3n vertices. Assume that removal of P1 and P2 from G p = (V p, E p) results in removing a set
of edges E ′

p from E p , and removal of N2
G [P ′

1] and N2
G [P ′

2] from G = (V , E) results in removing a set of edges E ′ from E .
Edges in E ′

p are precisely those edges of G p which are incident to elements of P1 and P2. Edges in E ′ are precisely those

edges of G which are incident to vertices in N2
G [P ′

1] ∪ N2
G [P ′

2]. To prove that the union of N2
G [P ′

1] and N2
G [P ′

2] is a balanced
separator for G , it is enough to show that for any edge e′

p ∈ E ′
p there exists an edge e′ ∈ E ′ that covers e′

p (i.e., the line
segment e′ contains the line segment e′

p).
First note that each edge of G p is evidently covered by an edge of G . Consider an edge (v, z) in E ′

p , where v is a
real vertex, say from P1. Then, (v, z) is covered by an edge (v, u) of G for some u ∈ NG(v). Clearly, (v, u) ∈ E ′ as v ∈ P ′

1.
Consider an edge (m, z) in E ′

p , where m is an imaginary point, say from P1. Assume that m is the intersection point of edges
(a,b) and (c,d) of G , where a(m) = a, b(m) = b, c(m) = c and d(m) = d (see paragraph before Section 4 for these notations).
Clearly m has only four neighbors in G p and the edge (m, z) must be covered by (a,b) or (c,d). By construction of P ′

1 from
P1, either (a,b) or (a, c,d) or (a,b,d) is a subpath of P ′

1. If (a, c,d) or (a,b,d) is a subpath of P ′
1, then edges (a,b) and

(c,d) of G are incident to vertices of P ′
1. If (a,b) is a subpath of P ′

1, then a,b ∈ P ′
1 and c ∈ N1

G [P ′
1] as, by Lemma 3, (b, c)

is an edge of G . Thus, in all three cases both edges (a,b) and (c,d) of G are incident to vertices of N1
G [P ′

1], and therefore
they belong to E ′ .

Consider now an edge (o, z) in E ′
p , where o is a null point, say from P1. Assume that o is the intersection point of edges

(a,b) and (c,d) of G . Again, o has only four neighbors in G p and the edge (o, z) must be covered by (a,b) or (c,d). If o is
an inner null point of P1 (i.e., o 	= x), then it is collinear with its two neighbors in P1, and those two neighbors must be
real vertices of G . Assume. without loss of generality, that a and b are those neighbors. By Lemma 1, (d,b) or (a, c) must
be an edge of G . Hence, we have a,b ∈ P ′

1 and {c,d} ∩ N1
G [P ′

1] 	= ∅. Thus, both edges (a,b) and (c,d) of G are incident to
vertices of N1

G [P ′
1], and therefore they belong to E ′ . Finally, let o = x and let a be the neighbor xk−1 of null point o in P1.

Then, a ∈ P ′
1, b ∈ N1

G [P ′
1] and, by Lemma 1, c,d ∈ N2

G [P ′
1]. That is, the edge (o, z) is covered by one of the edges (a,b) or

(c,d) from E ′ .

5. Balanced separator for arbitrary UDGs

In an arbitrary unit disk graph G = (V , E), an edge may cross any number of other edges. Our basic strategy for building
a balanced separator for G is similar to one we used in the case of a simple-crossing UDG, but details are more complicated.
Let T = Torig initially. We will revise T to create a special spanning tree for the planar graph G p obtained from G (Fig. 5
illustrates the process; the details are given in Section 5.1). Then, we will apply the Planar Separator Theorem from [23]
(Theorem 1 above) to G p and T to get a balanced separator S for G p . Finally, we will recover from S the required separator
for G .

5.1. Building a special spanning tree of G p

In what follows, the edges of the tree Torig will be called original tree-edges. By Lemma 3, for any two intersecting
original tree-edges (a,b) and (c,d) (for which we assumed that L(a) = L(b) − 1, L(c) = L(d) − 1 and L(a) � L(c)), we have
L(a) = L(c) − 1, (a,d) /∈ E(G) and (b, c) ∈ E(G). We handle this kind of intersections (between original tree-edges) using
PROCEDURE 1. Fig. 6 gives a running example.

Unlike the situation in simple-crossing UDGs, in arbitrary UDGs each tree-edge can have multiple imaginary points.
Moreover, two crossing tree-edges may not create an imaginary point at all. PROCEDURE 1 takes as input (embedded on
the plane) tree Torig with possible edge crossings, and transforms this tree to a new tree T without any edge crossings by
incorporating some new imaginary points in T and redefining the edges involved in original crossings of Torig . Some original
tree-edge crossings become imaginary points in T , some others get omitted for T because of edge redefinitions (see Fig. 6).
PROCEDURE 1 gives a formal description of this transformation.
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Fig. 5. (a) Graph G and its spanning tree T = Torig rooted at r. (b) Graph G p and its subtree Tsub obtained from T . Graph G p has new vertices: imaginary
points (intersections of edges of T ) and null points (other edge intersections). (c) Graph G p and its spanning tree Tspan (as an extension of Tsub to span all
null points).

Fig. 6. A running example for PROCEDURE 1.

In what follows, the process of eliminating an edge crossing, by incorporating a new element at point of crossing and/or
redefining the edges involved in this crossing, is referred to as handling an intersection or as resolving an intersection.

PROCEDURE 1. Handle original tree-edge intersections

Input: A layering tree Torig rooted at r.
Output: A tree T where all original tree-edge intersections resolved.
Method: /* Break ties arbitrarily */

(1) Let Li = {v: L(v) = i} and T = Torig;
(2) Let q be the maximum layer number of T ;
(3) FOR i = 1 to q DO
(4) FOR each vertex v j ∈ Li DO
(5) FOR each vertex vk ∈ Li+1 adjacent to v j in T DO
(6) IF there is an original tree-edge intersection on (v j, vk) such that L(v j) is the SECOND smallest

layer index among the layer indices of all four end-vertices of the two edges giving the intersection
THEN DO

(7) Choose such an original tree-edge intersection closest to vk and assume it is the intersection
between (v j, vk) and (x, y) in T and between (v j, vk) and (v p, vh) in Torig (i.e., (x, y) ⊆ (v p, vh));

(8) Create an imaginary point m j,k,p,h at the point where (v j, vk) and (x, y) intersect;
(9) Update T by removing edges (v j, vk) and (x, y), and adding vertex m j,k,p,h and

edges (m j,k,p,h, x), (m j,k,p,h, y), (m j,k,p,h, vk);
(10) ENDIF
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(11) ENDFOR
(12) ENDFOR
(13) ENDFOR
(14) RETURN T

Lemma 4. PROCEDURE 1 returns a tree T with all original tree-edge intersections resolved (i.e., edges of T do not cross each other).

Proof. First, T contains no tree-edge intersections. This is because, in steps (3)–(13) of PROCEDURE 1, each tree-edge inter-
section, with v j as the second smallest layer index among the layer indices of all four end-vertices of the two edges giving
the intersection, has been eliminated or converted to an imaginary point. Second, one can easily check that each vertex in
T has the father except the root. Therefore, T is still a tree. �

In addition, there are two other kinds of intersections remaining: the intersection between an edge in E(T ) (T -edge) and
an edge of G which was not in Torig (non-T -edge); and intersection between two non-T -edges.

First we handle intersections between T -edges and non-T -edges. They are resolved the same way as in Section 4. Here,
we rephrase the rule. Assume (u, w) is a T -edge, (s, t) is a non-T -edge. Add a null point, say o, at the point where
(u, w) and (s, t) intersect. Remove edge (u, w) from T and add vertex o and edges (u,o), (o, w) into T . Evidently, any
null point o added here is adjacent to two and only two elements that are collinear with point o on T . After resolving all
intersections of this kind, T becomes a subgraph of G p . Note that it is possible that T does not span yet all elements of
V (G p). Some null points of G p representing intersections between non-Tsub-edges may not be yet in V (T ). Let name this T
as Tsub .

Now, we deal with intersections between two non-Tsub-edges. This is more complicated than it was in Section 4 for
restricted UDGs. We will grow Tsub to a spanning tree Tspan for G p (extension Tspan of Tsub will cover all elements of
V (G p)). We use a procedure similar to one of Dijkstra for building a shortest path tree from a set of vertices. We assign to
each vertex in Tsub a weight according to the following formula. In formula, if v is an imaginary point or a null point, we
assume v is at the intersection between edges (a,b) and (c,d) of G .

weight(v) =
{

0, if v is a real vertex,

min{|av|, |bv|, |cv|, |dv|}, if v is an imaginary or a null point.

To build our spanning tree for G p , we use PROCEDURE 2. At the beginning, for any v ∈ V (G p)\V (Tsub), distance[v] = ∞ and
father of v is undefined.

PROCEDURE 2. Build a spanning tree for G p from T sub

Input: A tree T = Tsub;
Output: A tree Tspan as a spanning tree for G p .
Method: /* Break ties arbitrarily */

(1) FOR each i in V (T ) DO
(2) FOR each neighbor j ∈ V (G p)\V (T ) of i DO
(3) tmp := weight[i] + |i j|;
(4) IF tmp < distance[ j] DO
(5) distance[ j] := tmp;
(6) father[ j] := i;
(7) ENDIF
(8) ENDFOR
(9) ENDFOR

(10) Q := V (G p)\V (T );
(11) WHILE Q is not empty DO
(12) u := node in Q with smallest distance[·];
(13) remove u from Q and add u into T ;
(14) FOR each neighbor v ∈ Q of u DO
(15) tmp := distance[u] + |uv|;
(16) IF tmp < distance[v] DO
(17) distance[v] := tmp;
(18) father[v] := u;
(19) ENDIF
(20) ENDFOR
(21) ENDWHILE
(22) RETURN Tspan := T .

It is easy to check that Tspan is a spanning tree of the planar graph G p .
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Fig. 7. Obtaining P ′ from P , P ′′ from P ′ , and P ′′′ from P ′′ for graph G from Fig. 5.

5.2. Finding a balanced 2 × shortest-paths–3-hop-neighborhood separator for G

Now we can apply Theorem 1 to G p and Tspan by letting the weight of each real vertex be 1 and the weight of each
imaginary or null point be 0, and get a balanced separator S of G p . Assume that S is the union of paths P1 = P Tspan(r, x)
and P2 = P Tspan(r, y). There are three kinds of elements on P1 and P2: real vertices, imaginary points and null points.
Generally, each imaginary point or null point is adjacent to at most four elements in G p , and each element in P1 or P2 has
the previous element and the next element, except for the root r (it has only the next element) and elements x and y (they
have only the previous element). Let u be the last real or imaginary point in P1 (or P2). We name all null points after u in
P1 (or P2) as the tail null points. Note that in the case of simple-crossing UDGs, each path Pi (i = 1,2) had at most one tail
null point. In the case of arbitrary UDGs, each path Pi (i = 1,2) may have multiple tail null points. For any element z in P1
or P2, there are two possible relations between z, its previous element z′ and its next element z′′:

– the element z, its previous element z′ and its next element z′′ are on the same line, which means z′ and z′′ are on the
same edge of G (according to our general assumption that no two edges of G are on the same line);

– the element z, its previous element z′ and its next element z′′ are not on the same line, which means z′ and z are on
one edge of G , and z and z′′ are on another edge of G .

Using paths P1 = (x0 = r, x1, . . . , xk−1, xk = x) and P2 = (y0 = r, y1, . . . , yl−1, yl = y) of G p (of Tspan), we will find the
corresponding balanced separator for G using the following steps (see Fig. 7 for an illustration):

(1) We skip all null points in P1 and P2. Let the resulting paths be P ′
1 and P ′

2, respectively. From construction of Tsub , it
is easy to see that any null point in Pi (i ∈ {1,2}), which is not a tail null point, is collinear with its next and previous
elements in Pi . Thus, P ′

1 and P ′
2 are valid paths in Tsub .

(2) We skip in P ′
1 and P ′

2 each imaginary point whose previous element and next element are on the same edge of Torig .
For example, let (x f , xi, x j) be a fragment of path P ′

1 or P ′
2, where xi is an imaginary point and {x f , xi, x j} are collinear,

then (x f , xi, x j) will be replaced with (x f , x j). Let the resulting paths be P ′′
1 and P ′′

2 , respectively.
(3) Replace each remaining imaginary point m in P ′′

1 and P ′′
2 with two vertices: b(m) followed by c(m) (see end of Section 3

for these notations). For example, let (x f , xi, x j) be a fragment of path P ′′
1 or P ′′

2 , where xi is an imaginary point and x f
is closest to the root r among {x f , xi, x j}. Then, (x f , xi, x j) will be replaced with (x f ,b(xi), c(xi), x j). Let the resulting
paths be P ′′′

1 and P ′′′
2 , respectively. By Lemma 3, the edge (b(xi), c(xi)) exists in G . It is easy to check that P ′′′

1 and P ′′′
2

are valid paths in G .

Fig. 8 demonstrates what happens at the ends of paths P1, P2 during their transformation to paths P ′′′
1 , P ′′′

2 , when many
tail null points are present in P1, P2.

In what follows we will prove that P ′′′
1 and P ′′′

2 are 2 × shortest paths of G . We define 2 × shortest paths of G as follows.

Definition 1. A path P of G is a 2 × shortest path iff for any two vertices x, y in P , dP (x, y) � 2dG(x, y).

We will need the following lemma.

Lemma 5. For any element v ∈ P ′′
1 , dP ′′

1
(v, r) = dTorig (v, r) = dG(v, r) if v is a real vertex, and dP ′′

1
(v, r) = dTorig (c(v), r) =

dTorig (b(v), r) = dG(c(v), r) = dG(b(v), r) if v is an imaginary point.
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Fig. 8. (a) Paths P1, P2. (b) The corresponding paths P ′′′
1 , P ′′′

2 .

Proof. P ′′
1 contains real vertices and imaginary points but no null points. For two adjacent elements x and y in P ′′

1 , where
x is y’s previous vertex, there are four possible cases.

– x is a real vertex and y is a real vertex: We immediately have dTorig (x, r) = dTorig (y, r) − 1 by the construction of Torig .
– x is an imaginary point and y is an imaginary point: We have dTorig (c(x), r) = dTorig (c(y), r) − 1 by PROCEDURE 1. One can

also refer to Fig. 12 (as an example), where x = vi and y = vi+1.
– x is an imaginary point and y is a real vertex: In this case, y can only be d(x) but not b(x). If y is b(x), x should be removed

in step (2) because it is collinear with its previous and next elements. Thus, we have dTorig (c(x), r) = dTorig (y, r) − 1.
– x is a real vertex and y is an imaginary point: In this case, x can only be a(y) and we have dTorig (x, r) = dTorig (c(y), r) − 1

by Lemma 3.

Note also that, for any real vertex v , dTorig (v, r) = dG(v, r) because Torig is a layering tree, and, for any imaginary point
m, dTorig (c(m), r) = dTorig (b(m), r) = dTorig (d(m), r) − 1 according to Lemma 3.

Now, we can show that the lemma is correct by mathematical induction. For the root r and its next element v in P ′′
1 ,

the above first or last case applies and the lemma is true. Suppose the lemma is true for the subpath of P ′′
1 from r to vi .

Then, it is easy to check that it is also true for the subpath of P ′′
1 from r to vi+1, by applying the above four cases. �

Clearly, similar statement is true for path P ′′
2 . Now we are ready to prove that P ′′′

1 and P ′′′
2 are 2 × shortest paths of G .

Theorem 2. P ′′′
1 and P ′′′

2 are 2 × shortest paths in G.

Proof. We will show the proof only for path P ′′′
1 . Since each imaginary point in P ′′

1 is replaced by two vertices in step (3),
for any two vertices u and w in P ′′′

1 , we have dP ′′′
1
(u, w) � 2dP ′′

1
( f (u), f (w)), where f (·) is defined as follows: for a real

vertex v in P ′′
1 , since it is still available in P ′′′

1 , f (v) = v; for an imaginary point m in P ′′
1 , since it is replaced by real vertices

c(m) and b(m) in P ′′′
1 , f (c(m)) = m and f (b(m)) = m.

By Lemma 5, we have dP ′′
1
( f (u), f (w)) = |dP ′′

1
( f (u), r) − dP ′′

1
( f (w), r)| = |dG(u, r) − dG(w, r)|. By the triangle inequality,

dG(u, r) − dG(w, r) � dG(u, w). Combining all this, we get dP ′′′
1
(u, w) � 2dG(u, w). �

Finally, we have the following separator theorem for a UDG G .

Theorem 3. The union of N3
G [P ′′′

1 ] and N3
G [P ′′′

2 ], where P ′′′
1 and P ′′′

2 are 2× shortest paths of G described above, is a balanced separator
for G with 2/3-split, i.e., removal of N3

G [P ′′′
1 ] ∪ N3

G [P ′′′
2 ] from G leaves no connected component with more than 2/3n vertices.

Proof. We know that the union of P1 and P2 is a balanced separator (with 2/3-split) for G p = (V p, E p). Recall that G p

is the planar graph obtained from G by turning each edge intersection in G = (V , E) into a graph vertex in G p . Therefore,
according to our general assumption, for any edge ep ∈ E p , there exists one and only one edge e ∈ E such that e covers ep .
We say e covers ep if ep ⊆ e as geometric segments. The removal of P1 and P2 from G p will result in removing a set of
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elements and a set of edges (say E ′
p , E ′

p ⊆ E p) from G p . Edges in E ′
p are precisely those edges of G p which are incident

to elements of P1 and P2. Meanwhile, the removal of N3
G [P ′′′

1 ] and N3
G [P ′′′

2 ] from G will also result in removing a set of
vertices and a set of edges (say E ′ , E ′ ⊆ E) from G . An edge e from G belongs to E ′ if and only if e is incident to a vertex
from N3

G [P ′′′
1 ] ∪ N3

G [P ′′′
2 ]. We have the following claim.

Claim 1. If for any edge e′
p ∈ E ′

p there exists an edge e′ ∈ E ′ that covers e′
p , then the union of N3

G [P ′′′
1 ] and N3

G [P ′′′
2 ] is a balanced

separator for G with 2/3-split.

Proof. Since erasing edges E ′
p from G p results in no connected component of G p with more than 2/3n real vertices, and

any edge in E ′
p is covered by an edge in E ′ , erasing edges E ′ from G will also result in no connected component of G with

more than 2/3n vertices. �
In what follows, we will prove that for any edge e′

p ∈ E ′
p there exists an edge e′ ∈ E ′ that covers e′

p .
We can classify edges in E ′

p into four classes: class A is all edges for which at least one end is a real vertex from P ′′′
1

or P ′′′
2 ; class B is all edges in E ′

p\A for which at least one end is an imaginary point from P ′′
1 or P ′′

2 ; class C is all edges
in E ′

p\(A ∪ B) for which at least one end is an imaginary point from P ′
1 or P ′

2; class D is all edges in E ′
p\(A ∪ B ∪ C) (all

remaining edges). One can conclude that each edge in D has at least one end as a null point from P1 or P2.
It is easy to check that edges in A, B and C are covered by edges in E ′ . First note that each edge of G p is evidently

covered by an edge of G . Consider an edge (v, z) in A, where v is a real vertex, say from P ′′′
1 . Then, (v, z) is covered by an

edge (v, u) of G for some u ∈ NG(v). Clearly, (v, u) ∈ E ′ . Consider an edge (m, z) in B ∪ C , where m is an imaginary point,
say from P ′

1. Assume that m is the intersection point of edges (a,b) and (c,d) of G . Clearly m has only four neighbors in G p
and the edge (m, z) must be covered by (a,b) or (c,d). By construction of P ′′′

1 from P1, at least one of the vertices a,b, c,d
must belong to P ′′′

1 . Assuming, without loss of generality, that a is in P ′′′
1 , by Lemma 1, we conclude b, c,d ∈ N2

G(a). Hence,
both edges (a,b) and (c,d) are in E ′ .

Consider now an edge e ∈ D . If e has an end as a null point on the edge between two real vertices in P ′′′
1 or P ′′′

2 , then
one can infer, by Lemma 1, that e must be covered by an edge in E ′ , too. Any other edge e ∈ D has an end which is
a tail null point in P1 or P2 (see PROCEDURE 2). To facilitate our discussion, for a tail null point o corresponding to an
intersection between two non-Tsub-edges, assume the two edges are (r1(o), r2(o)) and (r3(o), r4(o)) from E(G). We know
that {r1(o), r2(o), r3(o), r4(o)} ⊆ V (Tsub). Recall that the tree Tsub is a subtree of Tspan and a subgraph of G p . Tsub contains
all real vertices, all imaginary points and each null point which is an intersection of a tree-edge and a non-tree-edge (for
the construction of Tsub , see the second paragraph after the proof of Lemma 4).

Claim 2. If u is the last real or imaginary point in P1 (or P2), then for any tail null point o (at the intersection between
edges (r1(o), r2(o)) and (r3(o), r4(o))) in P1 (or P2), we have {r1(o), r2(o), r3(o), r4(o)} ⊆ N3

G [u] if u is a real vertex, and
{r1(o), r2(o), r3(o), r4(o)} ⊆ N3

G [c(u)] if u is an imaginary point.

Proof. Suppose w is the last Tsub element in P1. w could be a real vertex, an imaginary point or a null point. There are
four cases (see Fig. 9).

(1) w = u and u is a real vertex. Then we claim |ur1(o)| � 1, |ur2(o)| � 1, |ur3(o)| � 1, |ur4(o)| � 1. This claim can be proved
by observing that the length lTspan (u,o) (and, hence, |uo|) is not larger than |r1(o)o|, |r2(o)o|, |r3(o)o| and |r4(o)o|,
according to PROCEDURE 2. Since |r1(o)r2(o)| = |r1(o)o| + |r2(o)o| � 1 and |r3(o)r4(o)| = |r3(o)o| + |r4(o)o| � 1, we have
|ur1(o)| � 1, |ur2(o)| � 1, |ur3(o)| � 1, |ur4(o)| � 1. Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N1

G [u].
(2) w = u and u is an imaginary point (at the intersection of edges (a(u),b(u)) and (c(u),d(u)) in G). Then, similarly as in

case (1), we have that at least one of a(u), b(u), c(u) and d(u) is within unit distance from r1(o), r2(o), r3(o), r4(o). In
addition, we know {a(u),b(u), c(u),d(u)} ⊆ N2

G [c(u)] by Lemma 1. Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G [c(u)].

(3) w is a null point (at the intersection between edges (r1(w), r2(w)) and (r3(w), r4(w)) in G) and u is a real vertex. Since
w is the last Tsub element in P1 and u is the last real vertex or imaginary point in P1, it is easy to see that u
and w are on the same edge of G . Then, similarly as in case (2), we have that at least one of r1(w), r2(w), r3(w)

and r4(w) is within unit distance from r1(o), r2(o), r3(o), r4(o) and {r1(w), r2(w), r3(w), r4(w)} ⊆ N2
G [u]. Therefore,

{r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G [u].

(4) w is a null point (at the intersection between edges (r1(w), r2(w)) and (r3(w), r4(w)) in G) and u is an imaginary point.
Since w is the last Tsub element in P1 and u is the last real or imaginary point in P1, it is easy to see that u
and w are on the same edge of G . Then, similarly as in case (2), we have that at least one of r1(w), r2(w), r3(w)

and r4(w) is within unit distance from r1(o), r2(o), r3(o), r4(o) and {r1(w), r2(w), r3(w), r4(w)} ⊆ N2
G [c(u)]. Therefore,

{r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G [c(u)]. �

Since there are only null points after u in Pi (i ∈ {1,2}), u is the last element (i.e., without next element) in P ′
i and

u is also the last element in P ′′ . Thus, b(u) and c(u) will replace u and become elements of P ′′′ (see constructions of
i i
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Fig. 9. Illustrations to the second claim in the proof of Theorem 3.

P ′
i, P ′′

i , P ′′′
i before Definition 1). Since u ∈ P ′′′

i , if u is a real vertex, and c(u) ∈ P ′′′
i , if u is an imaginary point, we conclude

{r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G [P ′′′

i ], and hence both edges (r1(o), r2(o)) and (r3(o), r4(o)) must be in E ′ . One of these edges
covers e ∈ D .

Thus, for any edge e′
p ∈ E ′

p there exists an edge e′ ∈ E ′ that covers e′
p , and the theorem is proven. �

Theorems 2 and 3 tell us that there exist two paths P ′′′
1 and P ′′′

2 in G such that they are 2 × shortest paths and the union
of N3

G [P ′′′
1 ] and N3

G [P ′′′
2 ] is a balanced separator for G .

5.3. Finding a balanced shortest-paths–3-hop-neighborhood separator for G

In this section, we will improve the result of Section 5.2. We will show that any UDG G has two shortest paths P ′′′
1 and

P ′′′
2 such that the union of N3

G [P ′′′
1 ] and N3

G [P ′′′
2 ] forms a balanced separator for G . Recall that, by a shortest path we mean

a hop-shortest path.
Let P1, P2, P ′

1, P ′
2, P ′′

1 and P ′′
2 be the paths defined in Section 5.2. Analogs of paths P ′′′

1 and P ′′′
2 of Section 5.2 will be

obtained from P ′′
1 and P ′′

2 in a more careful way (than in Section 5.2). We use PROCEDURE 3 for this. See Fig. 10 for an
illustration. In a path P = (r = z0, z1, . . . , zi−1, zi, zi+1, . . . , zt), let prevP (zi) be zi−1 and nextP (zi) be zi+1. Let [v1, . . . , vk]
be the imaginary points in P ∈ {P ′′

1, P ′′
2} in the order from r. PROCEDURE 3 processes those imaginary points in P from v1

to vk and updates the path P . For each vi in that order, it checks if c(vi) is adjacent in G to prevP (vi) in the current P and
replaces vi either with c(vi), if (c(vi),prevP (vi)) ∈ E(G), or with b(vi), otherwise (i.e., in both cases vi is replaced with a
real vertex of G). PROCEDURE 3 gives a formal description.

PROCEDURE 3. Constructing a shortest path of G from path P ′′
i , i ∈ {1,2}.

Input: Path P ∈ {P ′′
1 , P ′′

2} (containing still some imaginary points).
Output: Path P as a shortest path of G .
Method: /* Break ties arbitrarily */ /* The first vertex in P is the root r, a real vertex */

(1) Let [v1, . . . , vk] be the imaginary points in P in the order from r;
(2) FOR i = 1 to k DO
(3) IF vertex c(vi) is adjacent to prevP (vi) in G (c(vi) is always adjacent to nextP (vi), as it will be shown later).
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Fig. 10. Obtaining new P ′′′ from P ′′ for graph from Fig. 5.

Fig. 11. (a) Paths P ′′
1 , P ′′

2 . (b) The corresponding shortest paths P ′′′
1 , P ′′′

2 .

(4) Replace vi with c(vi) in P ;
(5) ELSE (It implies that vertex b(vi) is adjacent to both prevP (vi) and nextP (vi), as it will be shown later.)
(6) Replace vi with b(vi) in P ;
(7) ENDIF
(8) ENDFOR
(9) RETURN P

We call PROCEDURE 3 for both P ′′
1 and P ′′

2 . Let the resulting paths be P ′′′
1 and P ′′′

2 , respectively. Fig. 11 demonstrates
transformation of paths P ′′

1, P ′′
2 to paths P ′′′

1 , P ′′′
2 , when two consecutive imaginary points are present in P ′′

1, P ′′
2 . Later we

will show that P ′′′
1 , P ′′′

2 are indeed shortest paths of G .
We have the following lemma.

Lemma 6. In PROCEDURE 3, when an imaginary point vi is replaced by v ′
i (v ′

i is either c(vi) or b(vi)) in current P , we have
|prevP (vi)v ′

i | � 1, |v ′
i nextP (vi)| � 1 and |v ′

id(vi)| � 1.

Proof. We will show the proof only for path P ′′
1 . According to the construction of path P ′′

1 from P ′
1 (see step (2) in Sec-

tion 5.2), if vi is an imaginary point in P ′′
1 , then prevP ′′

1
(vi), vi and nextP ′′

1
(vi) cannot be collinear. For an imaginary point

vi in P ′′
1 , its previous element in P ′′

1 is either a real vertex or an imaginary point. For the first imaginary point in P ′′
1 , its

previous element is a real vertex. We prove the lemma by induction on k, the total number of imaginary points in P .
Let v1 be the first imaginary point in P ′′

1 . Assume it is replaced by v ′
1 in P . We need to show that |prevP (v1)v ′

1| � 1,
|v ′

1 nextP (v1)| � 1 and |v ′
1d(v1)| � 1.

According to our general assumption (no two intersecting edges are on the same line), we conclude prevP (v1) is a(v1).
In addition, nextP (v1) must lie on segment (v1,d(v1)). It cannot lie on segment (v1,b(v1)) since prevP (v1), v1 and
nextP (v1) are not collinear. If c(v1) is chosen as v ′ , we know |prevP (v1)v ′ | � 1 by PROCEDURE 3, and |v ′ d(v1)| � 1 because
1 1 1
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Fig. 12. An illustration to the proof of Lemma 6.

(c(v1),d(v1)) is an edge in G . In addition, |v ′
1 nextP (v1)| � 1 holds because (v ′

1,d(v1)) is an edge in G and nextP (v1) lies
on segment (v1,d(v1)). If b(v1) is chosen as v ′

1, |prevP (v1)v ′
1| � 1 must hold because (prevP (v1),b(v1)) is an edge in G .

|v ′
1 nextP (v1)| � 1 still holds because, by PROCEDURE 3, |a(v1)c(v1)| > 1 and, by Lemma 1, |v ′

1d(v1)| � 1, which implies
|b(v1)nextP (v1)| � 1. The basis for induction is proved.

Now let assume that the lemma is true for i < k, i.e., when an imaginary point vi is replaced with v ′
i in P (v ′

i is either
c(vi) or b(vi)), |prevP (vi)v ′

i | � 1, |v ′
i nextP (vi)| � 1 and |v ′

id(vi)| � 1 hold. We need to prove that the lemma is also true for
i + 1.

Assume c(vi+1) is chosen as v ′
i+1. According to PROCEDURE 3, |prevP (vi+1)v ′

i+1| � 1. In addition, nextP (vi+1) must
lie on segment (vi+1,d(vi+1)). Since (c(vi+1),d(vi+1)) is an edge in G and nextP (vi+1) lies on (vi+1,d(vi+1)), we have
|v ′

i+1 nextP (vi+1)| � 1 and |v ′
i+1d(vi+1)| � 1.

Assume now that b(vi+1) is chosen as v ′
i+1. There are two cases to consider.

(1) prevP ′′
1
(vi+1) is a real vertex. According to our general assumption (no two intersecting edges are on the same line), we

conclude prevP (vi+1) is a(vi+1). Therefore, |prevP (vi+1)v ′
i+1| � 1 because (a(vi+1),b(vi+1)) is an edge in G . By PROCE-

DURE 3, |prevP (vi+1)c(vi+1)| > 1. Then, by Lemma 1, we have |v ′
i+1d(vi+1)| � 1, which implies |v ′

i+1 nextP (vi+1)| � 1
because nextP (vi+1) lies on segment (vi+1,d(vi+1)).

(2) prevP ′′
1
(vi+1) is an imaginary point. Let prevP ′′

1
(vi+1) be vi . The case is illustrated in Fig. 12. As we discussed before, vi+1

is on the segment (vi,d(vi)).
If c(vi) (≡ a(vi+1)) is chosen as v ′

i , with similar arguments as in the case (1), we conclude that |prevP (vi+1)v ′
i+1| � 1,

|v ′
i+1d(vi+1)| � 1 and |v ′

i+1 nextP (vi+1)| � 1.
Let b(vi) be chosen as v ′

i , i.e., c(vi) was not adjacent to prevP (vi) in G . By mathematical induction, we know
|v ′

id(vi)| � 1. Since prevP (vi+1) ≡ v ′
i and v ′

i+1 ≡ b(vi+1) ≡ d(vi), |v ′
id(vi)| � 1 implies |prevP (vi+1)v ′

i+1| � 1. By PRO-
CEDURE 3, |v ′

ic(vi+1)| > 1. If edges (b(vi),b(vi+1)) and (c(vi+1),d(vi+1)) of G intersect, then, by Lemma 1, we
have |v ′

i+1d(vi+1)| � 1, which also implies |v ′
i+1 nextP (vi+1)| � 1. So, it remains to prove that (b(vi),b(vi+1)) and

(c(vi+1),d(vi+1)) intersect in G . Assume they do not intersect. Then, either c(vi+1) or d(vi+1) is inside the trian-
gle �vib(vi)b(vi+1) (triangle with corners at points vi,b(vi),b(vi+1) on the Euclidean plane), or edges (b(vi),a(vi))

and (c(vi+1),d(vi+1)) intersect. If c(vi+1) is inside the triangle �vib(vi)b(vi+1), then |b(vi)c(vi+1)| � 1 must hold,
contradicting |v ′

ic(vi+1)| > 1. If d(vi+1) is inside �vib(vi)b(vi+1), then (d(vi+1),b(vi)) must be an edge in G , i.e.,
dG(r,d(vi+1)) � dG(r,b(vi)) + 1, implying L(d(vi+1)) � L(b(vi)) + 1. On the other hand, by Lemma 3, L(d(vi+1)) =
L(c(vi+1)) + 1 = L(b(vi+1)) + 1 = L(d(vi)) + 1 = L(b(vi)) + 2, and a contradiction arises. Similarly, if edges (b(vi),a(vi))

and (c(vi+1),d(vi+1)) intersect, then, by Lemma 1, a(vi) must be adjacent with d(vi+1) (since c(vi+1) and b(vi) are
not adjacent), contradicting with L(d(vi+1)) = L(b(vi)) + 2 = L(a(vi)) + 3.

Thus, the lemma is true for i + 1, too. This completes the entire proof. �
Combining Lemmas 5 and 6, we obtain the following theorem.

Theorem 4. P ′′′
1 and P ′′′

2 are shortest paths in G.

Now, for the paths P ′′′ and P ′′′ , a similar to Theorem 3 result holds.
1 2
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Fig. 13. An illustration to the proof of Lemma 7.

Theorem 5. The union of N3
G [P ′′′

1 ] and N3
G [P ′′′

2 ], where P ′′′
1 and P ′′′

2 are shortest paths of G described above, is a balanced separator
for G with 2/3-split, i.e., removal of N3

G [P ′′′
1 ] ∪ N3

G [P ′′′
2 ] from G leaves no connected component with more than 2/3n vertices.

Proof. The proof is almost identical to the proof of Theorem 3. Only for cases (2) and (4) in the proof of Claim 2, we need
to make some additions to guarantee {r1(o), r2(o), r3(o), r4(o)} ⊆ N3

G [b(u)] if u is an imaginary point.
In case (2), we need to mention that, for an imaginary point u, both {a(u),b(u), c(u),d(u)} ⊆ N2

G [c(u)] and
{a(u),b(u), c(u),d(u)} ⊆ N2

G [b(u)] hold. Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G [c(u)] and {r1(o), r2(o), r3(o), r4(o)} ⊆

N3
G [b(u)].

In case (4), we need to add the following. If u is replaced with c(u) (≡ r1(w)) in PROCEDURE 3, Claim 2 still holds
because {r1(w), r2(w), r3(w), r4(w)} ⊆ N2

G [r1(w)]. If u is replaced with b(u) in PROCEDURE 3, by Lemma 6, b(u) is adjacent
to d(u) (≡ r2(w)). We also know that b(u) is adjacent to c(u) (≡ r1(w)), by Lemma 3. If edge (r3(w), r4(w)) intersects
(b(u),a(u)) or (b(u),d(u)), then, by Lemma 1, we also have {r3(w), r4(w)} ⊆ N2

G [b(u)]. If (r3(w), r4(w)) intersects neither
(b(u),a(u)) nor (b(u),d(u)), then r3(w) is inside �ub(u)d(u), implying that |r3(w)b(u)| � 1, i.e., r3(w) ∈ NG [b(u)] and
r4(w) ∈ N2

G [b(u)]. Therefore, again {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G [b(u)]. �

6. Application of balanced separators for UDGs

In this section, we show how one can use the above balanced separator theorem for UDGs to develop for them a compact
and low delay routing labeling scheme. For this, we combine strategies used in [5,6,13].

First, we prove the following important lemma. Let G = (V , E) be a unit disk graph and S = N3
G [P 1] ∪ N3

G [P 2] be a
balanced separator of G , where P 1 and P 2 are (hop-)shortest paths in G . Construct for G two Breadth First Search trees (BFS-
trees) T 1 and T 2 as follows. T 1 is a BFS-tree of G rooted (started) at path P 1, i.e., T 1 := BFS-tree(G, P 1). T 2 is a BFS-tree of
G rooted at path P 2, i.e., T 2 := BFS-tree(G, P 2). Both trees are (hop-)shortest path trees, rooted at P 1 and P 2, respectively.
These trees can easily be computed as follows. Let P ∈ {P 1, P 2}. Compute layers {L0(P ) = P , L1(P ), . . . , Lα(P )} of G , where
L j(P ) := {v ∈ V : dG(v, P ) = j}, j ∈ {0, . . . ,α}, α = max{dG(v, P ): v ∈ V }, and dG(v, P ) = min{dG(v, u): u ∈ P }. For each
vertex v ∈ L j(P ), j ∈ {1, . . . ,α}, choose arbitrarily a vertex f (v) ∈ L j−1(P ) with (v, f (v)) ∈ E(G). Then, BFS-tree(G, P ) :=
(V , E(P ) ∪ {(v, f (v)): v ∈ L j(P ), j ∈ {1, . . . ,α}}).

Lemma 7. Let x, y be two arbitrary vertices of G and P (x, y) be a (hop-)shortest path between x and y in G. If P (x, y) ∩ S 	= ∅, then
dT 1(x, y) � 3dG(x, y) + 12 or dT 2(x, y) � 3dG(x, y) + 12.

Proof. Without loss of generality, assume P (x, y) intersects N3
G [P 1] in G . Let b ∈ N3

G [P 1] ∩ P (x, y). Let a ∈ N3
G [P 1] be

a vertex such that dT 1(x,a) is minimum and c ∈ N3
G [P 1] be a vertex such that dT 1(y, c) is minimum. Fig. 13(a) is an

illustration, where the central darker curve is P 1 and the area between two lighter curves represents N3
G [P 1].

Since T 1 is a (hop-)shortest path tree rooted at P 1, we conclude dG(x,a) � dG(x,b) and dG(c, y) � dG(b, y). By the
triangle inequality, we know that dG(a, c) � dG(a, x) + dG(x,b) + dG(b, y) + dG(y, c) � 2dG(b, x) + 2dG(y,b) = 2dG(x, y).

Let c′ be the vertex on P 1 that is closest to c (equivalently, to y) in T 1, let a′ be the vertex on P 1 that is closest
to a (equivalently, to x) in T 1 (see Fig. 13(b)). Since P 1 is a (hop-)shortest path of G , we have dT 1(a′, c′) = dG(a′, c′) �
dG(a, c) + dG(a,a′) + dG(c, c′) = dG(a, c) + 6.

Now, dT 1(x, y) � dT 1(x,a′) + dT 1(a′, c′) + dT 1(c′, y) = dT 1(x,a) + 3 + dT 1(a′, c′) + dT 1(c, y) + 3 = dG(x,a) + dG(c, y) +
dG(a, c) + 12 � dG(x,b) + dG(b, y) + 2dG(x, y) + 12 = 3dG(x, y) + 12. �
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One can construct for a unit disk graph G a (rooted) balanced decomposition tree BT (G) as follows. Find a balanced
separator S = N3

G [P 1] ∪ N3
G [P 2] for G , which exists according to Theorem 5. If S contains all vertices of G , then BT (G)

is a one node tree. Otherwise, let G1, G2, . . . , G p be the connected components of the graph G \ S obtained from G by
removing vertices of S . For each graph Gi (i = 1, . . . , p), which is also a UDG, construct a balanced decomposition tree
BT (Gi) recursively, and build BT (G) by taking S to be the root and connecting the root of each tree BT (Gi) as a child
of S . For a node X of BT (G), denote by G(↓X) the (connected) subgraph of G induced by vertices

⋃{Y : Y is a descendent
of X in BT (G)} (here we assume that X is a descendent of itself). We know that X is a balanced separator of G(↓X).

It is easy to see that a balanced decomposition tree BT (G) of an n-vertex m-edge UDG G has depth at most log3/2 n.
Moreover, a balanced separator (mentioned above) can be found in O (C + m) time, where C is the number of crossings
in G , the tree BT (G) can be constructed in O ((C + m) logn) total time.

Consider now two arbitrary vertices x and y of G and let S(x) and S(y) be the nodes of BT (G) containing x and
y, respectively. Let also NCABT (G)(S(x), S(y)) be the nearest common ancestor of nodes S(x) and S(y) in BT (G) and
(X0, X1, . . . , Xt) be the path of BT (G) connecting the root X0 of BT (G) with NCABT (G) (S(x), S(y)) = Xt (in other words,
X0, X1, . . . , Xt are the common ancestors of S(x) and S(y)). Then, any path P G

x,y , connecting vertices x and y in G , contains

a vertex from X0 ∪ X1 ∪ · · · ∪ Xt . Let S P G
x,y be a (hop-)shortest path of G connecting vertices x and y, and let Xi be the

node of the path (X0, X1, . . . , Xt) with the smallest index such that S P G
x,y ∩ Xi 	= ∅ in G . Then, the following lemma holds.

Lemma 8. (See [6].) We have dG(x, y) = dG ′ (x, y), where G ′ := G(↓Xi).

For unit disk graph G ′ = G(↓Xi) with balanced separator Xi = N3
G ′ [P 1′] ∪ N3

G ′ [P 2′], consider BFS-trees T 1′ :=
BFS-tree(G ′, P 1′) and T 2′ := BFS-tree(G ′, P 2′). Since S P G

x,y ∩ Xi 	= ∅, by Lemma 7, there is a tree T ′ ∈ {T 1′, T 2′} which
has the following distance property with respect to those vertices x and y.

Lemma 9. There exists a tree T ′ ∈ {T 1′, T 2′} such that dT ′ (x, y) � 3dG ′ (x, y) + 12 = 3dG(x, y) + 12.

Let now Bi
1, . . . , Bi

pi
be the nodes at depth i of the tree BT (G). Denote Gi

j := G(↓Bi
j), and let Bi

j = N3
Gi

j
[P 1i

j] ∪ N3
Gi

j
[P 2i

j]
be the corresponding balanced separator of Gi

j (i = 0,1, . . . ,depth(BT (G)), j = 1,2, . . . , pi). For each subgraph Gi
j :=

G(↓Bi
j) of G (i = 0,1, . . . ,depth(BT (G)), j = 1,2, . . . , pi), denote by T i

j := {T 1i
j, T 2i

j} two BFS-trees of graph Gi
j , rooted at

paths P 1i
j and P 2i

j . Thus, for each Gi
j , we construct two BFS-trees. We call them local subtrees of G . Lemma 9 implies

Lemma 10. Let G be a unit disk graph,BT (G) be its balanced decomposition tree and LT (G) = {T ∈ T i
j : i = 0,1, . . . ,depth(BT (G)),

j = 1,2, . . . , pi} be its set of local subtrees. Then, for any two vertices x and y of G, there exists a local subtree T ′ ∈ T i′
j′ ⊆LT (G) such

that dT ′(x, y) � 3dG(x, y) + 12.

Let T i
j := {T 1i

j, T 2i
j} be two BFS-trees of graph Gi

j , rooted at paths P 1i
j and P 2i

j , respectively. We arbitrarily extend forest

{T 1i
1, T 1i

2, . . . , T 1i
pi

} ({T 2i
1, T 2i

2, . . . , T 2i
pi

}) to a spanning tree T i
1 (respectively, T i

2) of the graph G . Thus, we obtain two
spanning trees of G for each level i (i = 0,1, . . . ,depth(BT (G))) of the decomposition tree BT (G). Totally, this will result
into at most 2 × depth(BT (G)) + 2 spanning trees T (G) := {T i

1, T i
2: i = 0,1, . . . ,depth(BT (G))} of the original graph G .

Thus, from Lemma 10, we have the following theorem.

Theorem 6. Any unit disk graph G with n vertices and m edges admits a system T (G) of at most 2 log3/2 n + 2 collective tree (3,12)-
spanners, i.e., for any two vertices x and y in G, there exists a spanning tree T ∈ T (G) with dT (x, y) � 3dG(x, y)+ 12. Moreover, such
a system T (G) can be constructed in O ((C + m) log n) time, where C is the number of crossings in G.

Let H be a spanning subgraph of G obtained by taking the union of all spanning trees from T (G). Clearly, H has at most
2(n − 1)(log3/2 n + 1) edges and, for any two vertices x and y of G , dH (x, y) � 3dG(x, y) + 12. Thus, we have the following
corollary.

Corollary 1. Any unit disk graph G with n vertices admits a hop (3,12)-spanner with at most 2(n − 1)(log3/2 n + 1) edges.

6.1. Extracting an appropriate tree from T (G) and approximating distances

Now we will show that one can assign O (log2 n)-bit labels to vertices of G such that, for any pair of vertices x and y,
a tree T in T (G) with dT (x, y) � 3dG(x, y) + 12 can be identified in only O (log n) time by merely inspecting the labels
of x and y, without using any other information about the graph. Additionally, a value d̂(x, y) with dG(x, y) � d̂(x, y) �
3dG(x, y) + 12 can also be computed in O (log n) time from these labels of x and y.
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Associate with each vertex x of G a 5 × (depth(BT (G)) + 1) array Ax such that, for each level i of BT (G), Ax[1, i] = j,
Ax[2, i] = dT 1i

j
(x, x′

1), Ax[3, i] = dT 1i
j
(x′

1, r), Ax[4, i] = dT 2i
j
(x, x′

2), Ax[5, i] = dT 2i
j
(x′

2, r), if there exist local subtrees T 1i
j and

T 2i
j in LT (G) containing vertex x, and Ax[1, i] = nil, Ax[2, i] = Ax[3, i] = Ax[4, i] = Ax[5, i] = ∞, otherwise (i.e., the depth

in BT (G) of node S(x) containing x is smaller than i). Here x′
1 is a vertex from P 1i

j minimizing dT 1i
j
(x, x′

1), x′
2 is a vertex

from P 2i
j minimizing dT 2i

j
(x, x′

2), r is the root end (common end) of paths P 1i
j and P 2i

j . Evidently, each label Ax (x ∈ V ) can

be encoded using O (log2 n) bits and a computation of all labels Ax , x ∈ V , can be performed together with the construction
of system T (G).

Given labels Ax , A y of vertices x and y, the following procedure will return in O (log n) time an index k ∈
{0,1, . . . ,depth(BT (G))} and a number q ∈ {1,2} such that dT (x, y) � 3dG(x, y) + 12 will hold for T = T k

1, if q = 1, and
for T = T k

2, if q = 2.

set k1 := 0, k2 := 0;
set minsum1 := Ax[2,0] + A y[2,0] + |Ax[3,0] − A y[3,0]|;
set minsum2 := Ax[4,0] + A y[4,0] + |Ax[5,0] − A y[5,0]|;
set i := 1;
while (Ax[1, i] = A y[1, i] 	= nil) and (i � log3/2 n) do

if Ax[2, i] + A y[2, i] + |Ax[3, i] − A y[3, i]| < minsum1
then set k1 := i and minsum1 := Ax[2, i] + A y[2, i] + |Ax[3, i] − A y[3, i]|;

if Ax[4, i] + A y[4, i] + |Ax[5, i] − A y[5, i]| < minsum2
then set k2 := i and minsum2 := Ax[4, i] + A y[4, i] + |Ax[5, i] − A y[5, i]|;

i := i + 1;
enddo
if minsum1 � minsum2 then set k = k1 and q = 1;
else set k = k2 and q = 2;
return k, q, j := Ax[1,k] and d̂(x, y) := min{minsum1,minsum2}.

This procedure simply finds, among all local subtrees containing both x and y, a subtree for which the sum Ax[2, i] +
A y[2, i] + |Ax[3, i] − A y[3, i]| (or Ax[4, i] + A y[4, i] + |Ax[5, i] − A y[5, i]|) is minimum.

Assume, without loss of generality, that the procedure above returned q = 1. Below we show that indeed dT k
1
(x, y) �

d̂(x, y) � 3dG(x, y) + 12. First note that d̂(x, y) = dT 1k
j
(x, x′

1) + dT 1k
j
(y, y′

1) + |dT 1k
j
(x′

1, r) − dT 1k
j
(y′

1, r)| = dT 1k
j
(x, x′

1) +
dT 1k

j
(y, y′

1) + dT 1k
j
(x′

1, y′
1) is an upper bound on dT 1k

j
(x, y), by the triangle inequality (where x′

1 ∈ P 1k
j , y′

1 ∈ P 1k
j with mini-

mum dT 1k
j
(x, x′

1), dT 1k
j
(y, y′

1); r is the root end of P 1k
j ).

Let S(x) and S(y) be the nodes of BT (G) containing vertices x and y, respectively, and let (B0, B1
j1
, . . . , Bt

jt
) be

the path of BT (G) connecting the root B0 of BT (G) with NCABT (G)(S(x), S(y)) = Bt
jt

. Since, among local subtrees

T 10, T 20, T 11
j1
, T 21

j1
, . . . , T 1t

jt
, T 2t

jt
, the subtree T 1k

j has minimum sum dT 1k
j
(x, x′

1)+dT 1k
j
(y, y′

1)+|dT 1k
j
(x′

1, r)−dT 1k
j
(y′

1, r)| =
dT 1k

j
(x, x′

1) + dT 1k
j
(y, y′

1) + dT 1k
j
(x′

1, y′
1), by Lemma 9 and by the proof of Lemma 7 (see the last two lines), we conclude

dT 1k
j
(x, y) � d̂(x, y) � 3dG(x, y) + 12, i.e., dT k

1
(x, y) � d̂(x, y) � 3dG(x, y) + 12 as T 1k

j is a subtree of tree T k
1.

Thus, we have the following theorem.

Theorem 7. The family of n-vertex unit disk graphs admits an O (log2 n)-bit (3,12)-approximate distance labeling scheme with
O (log n) time distance decoder.

6.2. Routing labeling scheme with bounded hop route-stretch

Existence of collective tree spanners established in Theorem 6 allows us to construct a compact and low delay routing
labeling scheme for UDGs. We simply reduce the original problem of routing in UDGs to the problem of routing in trees.

We will need the following result from [9,27].

Theorem 8. (See [9,27].) There is a function L labeling in O (n) total time the vertices of an n-vertex tree T with labels of up to O (log n)

bits such that given two labels L(v), L(u) of two vertices v, u of T , it is possible to determine in constant time the port number, at v, of
the first edge on the path in T from v to u, by merely inspecting the labels of v and u.

Let now G be a UDG and let T (G) = {T 1, T 2, . . . , T μ} (μ � O (log n)) be a system of μ collective tree (3,12)-spanners
of G . We can preprocess each tree T i using the O (n) algorithm from [27] and assign to each vertex v of G a tree-label Li(v)

of size O (log n) bits associated with the tree T i . Then, we can form a label L(v) of v of size O (log2 n) bits by concatenating
the μ tree-labels. We store in L(v) also the string Av of length O (log2 n) bits described in Section 6.1. Thus,
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L(v) := Av ◦ L1(v) ◦ · · · ◦ Lμ(v).

Now assume that a vertex v wants to send a message to a vertex u. Given the labels L(v) and L(u), v first uses their
substrings Av and Au to find in O (log n) time an index i such that for tree T i ∈ T (G), dT i (v, u) � 3dG(v, u)+12 holds. Then,
v extracts from L(u) the substring Li(u) and forms a header of the message H(u) := i ◦ Li(u). Now, the initiated message
with the header H(u) = i ◦ Li(u) is routed to the destination using the tree T i : when the message arrives at an intermediate
vertex x, vertex x using own substring Li(x) and the string Li(u) from the header makes a constant time routing decision.

Thus, the following result is true.

Theorem 9. The family of n-vertex unit disk graphs admits an O (log2 n)-bit routing labeling scheme. The scheme has hop (3,12)-
route-stretch. Once computed by the sender in O (log n) time, headers never change, and the routing decision is made in constant time
per vertex.

6.3. Extension to routing labeling scheme with bounded length route-stretch

In this section, we show that our results on hop-distance and hop route-stretch can be extended to analogous results on
length-distance and length route-stretch.

It is known (see [2,18,19,21]) that, for UDGs, a constant hop route-stretch implies a constant length route-stretch and a
constant power route-stretch. In particular, our routing labeling scheme with hop (3,12)-route-stretch, according to [2] (see
Proposition 1), will have length (6,15)-route-stretch.

Proposition 1. (See [2].) Let G be a UDG and x, y be two arbitrary vertices of G. Then, lG(x, y) � dG(x, y) � 2lG(x, y) + 1.

Below, we show that using our approach a slightly better length route-stretch can be achieved.
First, we prove the following important lemma, which is similar to Lemma 7. Let G = (V , E) be a unit disk graph and

S = N3
G [P 1] ∪ N3

G [P 2] be a balanced separator of G , where P 1 and P 2 are (hop-)shortest paths in G . Denote by G(S) a
subgraph of G induced by vertices S ⊆ V . Construct for G ′ = G(N3

G [P 1]) and G ′′ = G(N3
G [P 2]), breadth first search trees

(BFS-trees) T P 1 and T P 2 as follows. T P 1 is a BFS-tree of G ′ rooted (started) at path P 1, i.e., T P 1 := BFS-tree(G ′, P 1). T P 2 is a
BFS-tree of G rooted at path P 2, i.e., T P 2 := BFS-tree(G ′′, P 2).

Construct also for G two (length-)shortest path trees (LSP-trees) T 1 and T 2 as follows. T 1 is an LSP-tree of G rooted
(started) at T P 1, i.e., T 1 := LSP-tree(G, T P 1). T 2 is an LSP-tree of G rooted at T P 2, i.e., T 2 := LSP-tree(G, T P 2).

Lemma 11. Let x, y be two arbitrary vertices of G and P (x, y) be a (length-)shortest path between x and y in G. If P (x, y) ∩ S 	= ∅,
then lT 1(x, y) � 5lG(x, y) + 13 or lT 2(x, y) � 5lG(x, y) + 13.

Proof. Without loss of generality, assume P (x, y) intersects N3
G [P 1] in G . Let b ∈ N3

G [P 1] ∩ P (x, y). Let also a ∈ N3
G [P 1] be a

vertex such that lT 1(x,a) is minimum and c ∈ N3
G [P 1] be a vertex such that lT 1(y, c) is minimum. Fig. 13(a) can also serve

as an illustration here.
Since T 1 is a (length-)shortest path tree rooted at T P 1, we conclude lG(x,a) � lG(x,b) and lG(c, y) � lG(b, y). By the

triangle inequality, we know that lG(a, c) � lG(a, x) + lG(x,b) + lG(b, y) + lG(y, c) � 2lG(b, x) + 2lG(y,b) = 2lG(x, y).
Let c′ be the vertex on P 1 that is closest to c in T P 1, let a′ be the vertex on P 1 that is closest to a in T P 1 (see Fig. 13(b)).

Since P 1 is a (hop-)shortest path of G , we have dT P 1 (a
′, c′) = dG(a′, c′) � dG(a, c) + dG(a,a′) + dG(c, c′) = dG(a, c) + 6.

Now, using the triangle inequality and Proposition 1, we get lT 1(x, y) � lT 1(x,a′) + lT 1(a′, c′) + lT 1(c′, y) � lT 1(x,a) +
3 + lT 1(a′, c′) + lT 1(c, y) + 3 � lG(x,a) + lG(c, y) + dT P 1 (a

′, c′) + 6 � lG(x,a) + lG(c, y) + dG(a, c) + 12 � lG(x,a) + lG(c, y) +
2lG(a, c) + 13 � lG(x,b) + lG(b, y) + 4lG(x, y) + 13 = 5lG(x, y) + 13. �

Using Lemma 11 and similar arguments as before, we obtain the following results on length-distance and length route-
stretch.

Theorem 10. Any unit disk graph G with n vertices and m edges admits a system T (G) of at most 2 log3/2 n + 2 collective tree
length (5,13)-spanners, i.e., for any two vertices x and y in G, there exists a spanning tree T ∈ T (G) with lT (x, y) � 5lG(x, y) + 13.
Moreover, such a system T (G) can be constructed in O ((C + m) logn) time, where C is the number of crossings in G.

Theorem 11. The family of n-vertex unit disk graphs admits an O (log2 n)-bit (5,13)-approximate length-distance labeling scheme
with O (log n) time distance decoder.

Theorem 12. The family of n-vertex unit disk graphs admits an O (log2 n)-bit routing labeling scheme. The scheme has length (5,13)-
route-stretch. Once computed by the sender in O (log n) time, headers never change, and the routing decision is made in constant time
per vertex.
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Note that such an O (log2 n)-bit routing (and distance) labeling scheme for UDGs, but with different length route-stretch,
can be obtained also by combining two known results from [14,20,2] and [13]. It is known that any UDG G = (V , E) admits a

planar length (α,0)-spanner U Del(V ) with α = 4
√

3
9 π ≈ 2.42 (see [14,20,2]). U Del(V ) is the Delaunay Triangulation Del(V )

of a set of points V (the vertices of G) with edges, that are longer than one unit, removed from Del(V ). Applying to U Del(V )

the O (log2 n)-bit (3,0)-approximate length-distance labeling scheme for planar graphs of [13], we obtain an O (log2 n)-bit

(3α,0)-approximate length-distance labeling scheme for the original UDG G (3α = 3( 4
√

3
9 π) ≈ 7.26). Analogously, a result

similar to one presented in Theorem 12, but with length (7.26,0)-route-stretch, can be deduced from [14,20,2] and [13].
Clearly, 7.26lG(x, y) � 5lG(x, y) + 13 for all vertices x, y with lG(x, y) � 5.753. Hence, with respect to accuracy, the scheme
based on U Del(V ) is good for “near-by” vertices, while our scheme is good for more distant vertex pairs. Note also that this
approach is unlikely to give any good bound for hop-route stretch as the currently known planar hop-spanners for UDGs
have very large (more than thousands) hop stretch-factor (see [2, p. 417]).

For routing labeling scheme with bounded power route-stretch, we have the following.

Proposition 2. Let G be a unit disk graph and x, y be two arbitrary vertices of G. Then, pG(x, y) � dG(x, y) � 2β pG(x, y) + 1.

Proof. Let P (x, y) be a hop-shortest path between x and y in G and assume that {e1, e2, . . . , ek} (k = dG(x, y)) are the edges
of P (x, y) in order from x to y. Since |ei| � 1 for each i ∈ {1, . . . ,k}, pG(x, y) = ∑k

i=1 |ei|β � k = dG(x, y) holds. Since P (x, y)

is a hop-shortest path of a UDG, |ei| + |ei+1| > 1 and, therefore, |ei|β + |ei+1|β � ( 1
2 )β + ( 1

2 )β hold for each i ∈ {1, . . . ,k − 1}.

Hence, we have
∑k

i=1 |ei|β � ( 1
2 )βdG(x, y), when k is even, and

∑k
i=1 |ei|β � ( 1

2 )β(dG(x, y) − 1), when k is odd. That is,
2β pG(x, y) + 1 � dG(x, y). �
Corollary 2. The family of n-vertex unit disk graphs admits an O (log2 n)-bit routing labeling scheme. The scheme has power
(3(2β),15)-route-stretch. Once computed by the sender in O (log n) time, headers never change, and the routing decision is made
in constant time per vertex.

Proof. We just need to show, using Proposition 2, that the routing scheme described in Theorem 9 has not only hop
(3,12)-route-stretch but also power (3(2β),15)-route-stretch. Let x, y be two arbitrary vertices of a UDG G and T be a
spanning tree of G from T (G) with dT (x, y) � 3dG(x, y) + 12. Since the Euclidean length of each edge of T is at most
one, we have pT (x, y) � dT (x, y). Hence, by Proposition 2, pT (x, y) � dT (x, y) � 3dG(x, y) + 12 � 3(2β pG(x, y) + 1) + 12 =
3(2β)pG(x, y) + 15. �
7. Conclusion

In this paper, we showed that every unit disk graph G has a balanced separator of form N3
G [P 1]∪ N3

G [P 2], where P 1 and
P 2 are hop-shortest paths of G . Using this separator theorem, we developed for unit disk graphs routing labeling schemes
with O (log2 n)-bit labels and hop (3,12)-route-stretch and length (5,13)-route-stretch.

It is interesting to know if those stretch factors can be improved and if every unit disk graph G admits a balanced
separator of form N1

G [P 1] ∪ N1
G [P 2], where P 1 and P 2 are (hop- or length-)shortest paths of G .
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