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Abstract. In this paper, we introduce and investigate the Minimum
Eccentricity Shortest Path (MESP) problem in unweighted graphs. It
asks for a given graph to find a shortest path with minimum eccentricity.
We demonstrate that:

– a minimum eccentricity shortest path plays a crucial role in obtaining
the best to date approximation algorithm for a minimum distortion
embedding of a graph into the line;

– the MESP-problem is NP-hard on general graphs;
– a 2-approximation, a 3-approximation, and an 8-approximation for

the MESP-problem can be computed in O(n3) time, in O(nm) time,
and in linear time, respectively;

– a shortest path of minimum eccentricity k in general graphs can be
computed in O(n2k+2m) time;

– the MESP-problem can be solved in linear time for trees.

1 Introduction

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. For a graph G = (V,E), we use n = |V |
and m = |E| to denote the cardinality of the vertex set and the edge set of G.
For a vertex v of G, NG(v) = {u ∈ V | uv ∈ E} is called the open neighborhood,
and NG[v] = NG(v) ∪ {v} the closed neighborhood of v.

The length of a path from a vertex v to a vertex u is the number of edges
in the path. The distance dG(u, v) of two vertices u and v is the length of
a shortest path connecting u and v. The distance between a vertex v and a
set S ⊆ V is defined as dG(v, S) = minu∈S dG(u, v). The eccentricity eccG(v) of
a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its eccentricity is eccG(S) =
maxu∈V dG(u, S).

In this paper, we investigate the following problem.

Definition 1 (Minimum Eccentricity Shortest Path Problem). For a
given a graph G, find a shortest path P such that for each shortest path Q,
eccG(P ) ≤ eccG(Q).
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Although this problem might be of an independent interest (it may arise
in determining a “most accessible” speedy linear route in a network and can
find applications in communication networks, transportation planning, water
resource management and fluid transportation), our interest in this problem
stems from the role it plays in obtaining the best to date approximation algo-
rithm for a minimum distortion embedding of a graph into the line. In Section 2,
we demonstrate that every graph G with a shortest path of eccentricity k admits
an embedding f of G into the line with distortion at most (8k + 2) ld(G), where
ld(G) is the minimum line-distortion of G. Furthermore, if a shortest path of G
of eccentricity k is given in advance, then such an embedding f can be found in
linear time.

This fact augments the importance of investigating the Minimum Eccentricity
Shortest Path problem (MESP-problem) in graphs. Fast algorithms for it will
imply fast approximation algorithms for the minimum line distortion problem.
Existence of low eccentricity shortest paths in special graph classes will imply
low approximation bounds for those classes. For example, all AT-free graphs
(and hence all interval, permutation, cocomparability graphs) enjoy a shortest
path of eccentricity at most 1 [3], all convex bipartite graphs enjoy a shortest
path of eccentricity at most 2 [5].

We prove also that for every graph G with ld(G) = λ, the minimum eccentric-
ity of a shortest path of G is at most

⌊
λ
2

⌋
. Hence, one gets an efficient embedding

of G into the line with distortion at most O(λ2).
In Section 3, we show that the MESP-problem is NP-hard on general graphs

and that a shortest path of minimum eccentricity k in general graphs, can be
computed in O(n2k+2m) time. In Section 4, we design for the MESP-problem
on general graphs a 2-approximation algorithm that runs in O(n3) time, a
3-approximation algorithm that runs in O(nm) time and an 8-approximation
algorithm that runs in linear time. In Section 5, we demonstrate that the MESP-
problem can be solved in linear time for trees and distance-hereditary graphs,
and in polynomial time for chordal graphs and dually chordal graphs.

Note that our Minimum Eccentricity Shortest Path problem is close but
different from the Central Path problem in graphs introduced in [16]. It asks
for a given graph G to find a path P (not necessarily shortest) such that any
other path of G has eccentricity at least eccG(P ). The Central Path problem
generalizes the Hamiltonian Path problem and therefore is NP-hard even for
chordal graphs [15]. Our problem is polynomial time solvable for chordal graphs.

In what follows we will need the following additional notions and notations.
The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diame-

ter diamG(S) of a set S ⊆ V is defined as maxu,v∈S dG(u, v). A pair of vertices
x, y of G is called a diametral pair if dG(u, v) = diam(G). In this case, every
shortest path connecting x and y is called a diametral path.

A path P of a graph G is called a k-dominating path of G if eccG(P ) ≤
k. In this case, we say also that P k-dominates each vertex of G. A pair of
vertices x, y of G is called a k-dominating pair if every path connecting x and y
has eccentricity at most k.
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For a vertex s, let L
(s)
i = {v | dG(s, v) = i} denote the vertices with distance i

from s. We will also refer to L
(s)
i as the i-th layer.

2 Motivation Through the Line-Distortion of a Graph

Computing a minimum distortion embedding of a given n-vertex graph G into
the line � was recently identified as a fundamental algorithmic problem with
important applications in various areas of computer science, like computer
vision [17], as well as in computational chemistry and biology (see [12,13]). The
minimum line distortion problem asks, for a given graph G = (V,E), to find a
mapping f of vertices V of G into points of � with minimum number λ such that
dG(x, y) ≤ |f(x) − f(y)| ≤ λ dG(x, y) for every x, y ∈ V . The parameter λ is
called the minimum line-distortion of G and denoted by ld(G). The embedding f
is called non-contractive since dG(x, y) ≤ |f(x) − f(y)| for every x, y ∈ V .

In [2], Bǎdoiu et al. showed that this problem is hard to approximate
within a constant factor. They gave an exponential-time exact algorithm and
a polynomial-time O(n1/2)-approximation algorithm for arbitrary unweighted
input graphs, along with a polynomial-time O(n1/3)-approximation algorithm
for unweighted trees. In another paper [1], Bǎdoiu et al. showed that the prob-
lem is hard to approximate by a factor O(n1/12), even for weighted trees. They
also gave a better polynomial-time approximation algorithm for general weighted
graphs, along with a polynomial-time algorithm that approximates the minimum
line-distortion λ embedding of a weighted tree by a factor that is polynomial in λ.

Fast exponential-time exact algorithms for computing the line-distortion of a
graph were proposed in [7,8]. Fomin et al. [8] showed that a minimum distortion
embedding of an unweighted graph into the line can be found in time 5n+o(n).
Fellows et al. [7] gave an O(nλ4(2λ+1)2λ) time algorithm that for an unweighted
graph G and integer λ either constructs an embedding of G into the line with
distortion at most λ, or concludes that no such embedding exists. They extended
their approach also to weighted graphs obtaining an O(nλ4W (2λ + 1)2λW ) time
algorithm, where W is the largest edge weight. Thus, the problem of minimum
distortion embedding of a given n-vertex graph G into the line � is Fixed Param-
eter Tractable.

Heggernes et al. [10,11] initiated the study of minimum distortion embeddings
into the line of specific graph classes. In particular, they gave polynomial-time
algorithms for the problem on bipartite permutation graphs and on threshold
graphs [11]. Furthermore, in [10], Heggernes et al. showed that the problem
of computing a minimum distortion embedding of a given graph into the line
remains NP-hard even when the input graph is restricted to a bipartite, cobipar-
tite, or split graph, implying that it is NP-hard also on chordal, cocomparability,
and AT-free graphs. They also gave polynomial-time constant-factor approxima-
tion algorithms for split and cocomparability graphs.

Recently, in [5], a more general result for unweighted graphs was proven: for
every class of graphs with path-length bounded by a constant, there exists an effi-
cient constant-factor approximation algorithm for the minimum line-distortion
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problem. As a byproduct, an efficient algorithm was obtained which for each
unweighted graph G with ld(G) = λ constructs an embedding with distortion
at most O(λ2). Furthermore, for AT-free graphs, a linear time 8-approximation
algorithm for the minimum line-distortion problem was obtained. Note that AT-
free graphs contain all cocomparability graphs and hence all interval, permuta-
tion and trapezoid graphs.

In this section we simplify and improve the result of [5]. We show that a
minimum eccentricity shortest path plays a crucial role in obtaining the best to
date approximation algorithm for the minimum line-distortion problem.

We will need the following simple “local density” lemma.

Lemma 1. For every vertex set S ⊆ V of an arbitrary graph G = (V,E),

|S| − 1 ≤ diamG(S) ld(G).

Proof. Consider an embedding f∗ of G into the line � with distortion ld(G).
Let a and b be the leftmost and the rightmost, respectively, in � vertices of S,
i. e., f∗(a) = min{f∗(v) | v ∈ S} and f∗(b) = max{f∗(v) | v ∈ S}. Consider a
shortest path P in G between a and b. Since for each edge xy of G (and hence
of P ) |f∗(x) − f∗(y)| ≤ ld(G) holds, we get f∗(b) − f∗(a) ≤ dG(a, b) ld(G) ≤
diamG(S) ld(G). On the other hand, since all vertices of S are mapped to points
of � between f∗(a) and f∗(b), we have f∗(b) − f∗(a) ≥ |S| − 1. ��

The main result of this section is the following.

Theorem 1. Every graph G with a shortest path of eccentricity k admits an
embedding f of G into the line with distortion at most (8k+2) ld(G). If a shortest
path of G of eccentricity k is given in advance, then such an embedding f can be
found in linear time.

Proof. Let P = (x0, x1, . . . , xi, . . . , xj , . . . , xq) be a shortest path of G of eccen-
tricity k. Build a BFS(P,G)-tree T of G (i. e., a Breadth-First-Search tree of G
started at path P ). Denote by {X0,X1, . . . , Xq} the decomposition of the vertex
set V of G obtained from T by removing the edges of P . That is, Xi is the
vertex set of a subtree (branch) of T growing from vertex xi of P . See Fig. 1(a)
for an illustration. Since eccentricity of P is k, we have dG(v, xi) ≤ k for every
i ∈ {1, . . . , q} and every v ∈ Xi.

We define an embedding f of G into the line � by performing a preorder
traversal of the vertices of T starting at vertex x0 and visiting first vertices of
Xi and then vertices of Xi+1, i = 0, . . . , q − 1. We place vertices of G on the line
in that order, and also, for each i ∈ {0, . . . , q − 1}, we leave a space of length
dT (vi, vi+1) between any two vertices vi and vi+1 placed next to each other (this
can be done during the preorder traversal). Alternatively, f can be defined by
creating a twice around tour of the tree T , which visits vertices of Xi prior to
vertices of Xi+1, i = 0, . . . , q − 1, and then returns to x0 from xq along edges
of P . Following vertices of T from x0 to xq as shown in Fig. 1(b) (i. e., using
upper part of the twice around tour), f(v) can be defined as the first appearance
of vertex v in that subtour (see Fig. 1(c)).
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Fig. 1. Illustration to the proof of Theorem 1. (a) The decomposition {X0, X1, . . . , Xq}
of the vertex set V of G. (b) The upper part of the twice around tour. (c) An embed-
ding f obtained from following the upper part of the twice around tour.

We claim that f is a (non-contractive) embedding with distortion at most
(8k +2) ld(G). It is sufficient to show that dG(x, y) ≤ |f(x)−f(y)| for every two
vertices of G that are placed by f next to each other in � and that |f(v)−f(u)| ≤
(8k + 2) ld(G) for every edge uv of G (see, e. g., [2,11]).

Let x, y be arbitrary two vertices of G that are placed by f next to each other
in �. By construction, we know that |f(x) − f(y)| = dT (x, y). Since dG(x, y) ≤
dT (x, y), we get also dG(x, y) ≤ |f(x) − f(y)|, i. e., f is non-contractive.

Consider now an arbitrary edge uv of G and assume u ∈ Xi and v ∈ Xj

(i ≤ j). Note that dP (xi, xj) = j−i ≤ 2k+1, since P is a shortest path of G and
dP (xi, xj) = dG(xi, xj) ≤ dG(xi, u)+1+dG(xj , v) ≤ 2k+1. Set S =

⋃j
h=i Xh. For

any two vertices x, y ∈ S, dG(x, y) ≤ dG(x, P )+2k+1+dG(y, P ) ≤ k+2k+1+k =
4k+1 holds. Hence, diamG(S) ≤ 4k+1. Consider subtree TS of T induced by S.
Clearly, TS is connected and has |S|−1 edges. Therefore, f(v)−f(u) ≤ 2(|S|−1)
since each edge of TS contributes to f(v) − f(u) at most 2 units. Now, by
Lemma 1, f(v) − f(u) ≤ 2(|S| − 1) ≤ 2 diamG(S) ld(G) ≤ (8k + 2) ld(G). ��

Recall that a pair x, y of vertices of a graph G forms a k-dominating pair if
every path connecting x and y in G has eccentricity at most k. It turns out that
the following result is true.
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Proposition 1. If the minimum line-distortion of a graph G is λ, then G has
a

⌊
λ
2

⌋
-dominating pair.

Proof. Let f be an optimal line embedding for G. This embedding has a first
vertex v1 and a last vertex vn. Let u be an arbitrary vertex and P an arbitrary
path from v1 to vn. If u is not on this path, there is an edge vivj of P with
f(vi) < f(u) < f(vj). Without loss of generality, we can say that f(u)− f(vi) ≤
	(f(vj) − f(vi))/2
 ≤ ⌊

λ
2

⌋
. Thus, each vertex is

⌊
λ
2

⌋
-dominated by each path

from v1 to vn, i. e., v1, vn is a
⌊

λ
2

⌋
-dominating pair. ��

Corollary 1. For every graph G with ld(G) = λ, the minimum eccentricity of
a shortest path of G is at most

⌊
λ
2

⌋
.

Theorem 1 and Corollary 1 stress the importance of investigating the Mini-
mum Eccentricity Shortest Path problem (MESP-problem) in graphs. As we will
show later, although the MESP-problem is NP-hard on general graphs, there
are much better (than for the minimum line distortion problem) approxima-
tion algorithms for it. We design for the MESP-problem on general graphs a
2-approximation algorithm that runs in O(n3) time, a 3-approximation algo-
rithm that runs in O(nm) time and an 8-approximation algorithm that runs in
linear time.

Combining Theorem 1 and Corollary 1 with those approximation results, we
reproduce a result of [2] and [5].

Corollary 2 ([2,5]). For every graph G with ld(G) = λ, an embedding into the
line with distortion at most O(λ2) can be found in polynomial time.

It should be noted that, since the difference between the minimum eccentric-
ity of a shortest path and the line-distortion of a graph can be very large (close
to n), the result in Theorem 1 seems to be stronger. Furthermore, one version of
our algorithm (that uses an 8-approximation algorithm for the MESP-problem)
runs in total linear time.

3 NP-Completeness Result

In this section, we will show that in general it is NP-complete to find a minimum
eccentricity shortest path. For this, we define the decision version of this problem
(k-ESP) as follows: Given a graph G and an integer k, does G contain a shortest
path P with eccentricity at most k?

Theorem 2. The decision version of the minimum eccentricity shortest path
problem is NP-complete.

Proof. We will proof this by reducing SAT to k-ESP.
Let I be an instance of SAT with the variables P = {p1, . . . , pn} and the

clauses C = {c1, . . . , cm}. We assume I is a formula given in CNF. Also, let
k = max{n,m}. We create a graph G as shown in Figure 2. For each variable pi
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create two vertices, one representing pi and one representing ¬pi. Create one
vertex ci for every clause ci. Additionally, create two vertices u0, un and, for
each i with 0 ≤ i ≤ n, a vertex vi.

Connect each variable vertex pi and ¬pi with vi−1 and vi directly with an
edge. Connect each clause with the variables containing it with a path of length k.
Also connect v0 with u0 and vn with un with a path of length k.

u0 v0

p1

¬p1
v1

. . .
vn−1

pn

¬pn
vn un

c1 cm

k k

Fig. 2. Reduction from SAT to k-DSP. Illustration to the proof of Theorem 2.

Note that every shortest path in G not containing v0 and vn has an eccen-
tricity larger than k. Also, a shortest path from v0 to vn has length 2n
(dG(vi−1, vi) = 2, passing pi or ¬pi). Since k ≥ n, no shortest path from v0
to vn is passing a vertex ci; in this case the minimal length would be 2k + 2.
Additionally, note that for all vertices in G except the vertices which represent
clauses, the distance to a vertex vi with 0 ≤ i ≤ n is at most k.

We will now show that I is satisfiable if and only if G has a shortest path
with eccentricity k.

First assume I is satisfiable. Let f : P → {T, F} be a satisfying assignment
for the variables. As shortest path P we choose a shortest path from v0 to vn.
Thus, we have to chose between pi and ¬pi. We will chose pi if and only if
f(pi) = T . Because I is satisfiable, there is a pi for each cj such that either
f(pi) = T and dG(cj , pi) = k, or f(pi) = F and dG(cj ,¬pi) = k. Thus, P has
eccentricity k.

Next consider a shortest path P in G of eccentricity k. As mentioned above,
P contains either pi or ¬pi. Now we define f : P → {T, F} as follows:

f(pi) =

{
T if pi ∈ P ,
F else, i. e. ¬pi ∈ P .

Because P has eccentricity k and only vertices representing a variable in the
clause cj are at distance k to vertex cj , f is a satisfying assignment for I. ��

V.B. Le1 pointed out that, by slightly modifying the created graph, it can be
shown that the problem remains NP-complete even if the graph has a bounded
vertex-degree of 3.
1 University of Rostock, Germany.
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Note that the factor k in this reduction depends on the input size. In [14]
it was already mentioned that for k = 1 the problem can be solved in O(n3m)
time by modifying an algorithm given in [4]. There, the problem was called
Dominating Shortest Path problem. In the full version of this paper, we show
that the k-ESP problem can be solved in O(n2k+2m) time for every fixed k ≥ 0.

We can slightly modify the MESP problem such that a start vertex s and an
end vertex t of the path are given. This is, for a given a graph G and two vertices s
and t, find a shortest (s, t)-path P such that for each shortest (s, t)-path Q,
eccG(P ) ≤ eccG(Q). We call this the (s, t)-MESP problem. From the reduction
above, it follows that the decision version of this problem is NP-complete, too.

Corollary 3. The decision version of the (s, t)-MESP problem is NP-complete.

4 Approximation Algorithms

In this section we will present different approximation algorithms. The algo-
rithms differ in their approximation factor and runtime. Base for them are the
following two lemmas.

Lemma 2. In a graph G, let P be a shortest path from s to t of eccentricity at
most k. For each layer L

(s)
i there is a vertex pi ∈ P such that the distance from

pi to each vertex v ∈ L
(s)
i is at most 2k. Additionally, pi ∈ L

(s)
i if i ≤ dG(s, t),

and pi = t if i ≥ dG(s, t).

Proof. For each vertex v, let p(v) ∈ P be a vertex with dG(p(v), v) ≤ k.
For each i ≤ dG(s, t), let pi ∈ P ∩L

(s)
i be the vertex in P with distance i to s.

For an arbitrary vertex v ∈ L
(s)
i , let j = dG(s, p(v)). Because eccG(P ) ≤ k and P

is a shortest path, |i − j| ≤ k. Thus, dG(pi, v) ≤ dG(pi, p(v)) + dG(p(v), v) ≤ 2k.
Let L′ = {v | dG(s, v) ≥ dG(s, t)}. Because P has eccentricity at most k,

dG(p, t) ≤ k for all p ∈ {p(v) | v ∈ L′}. Therefore, dG(t, v) ≤ 2k for all v ∈ L′. ��
Lemma 3. If G has a shortest path of eccentricity at most k from s to t, then
every path Q with s ∈ Q and dG(s, t) ≤ maxv∈Q dG(s, v) has eccentricity at
most 3k.

Proof. Let P be a shortest path from s to t with eccG(P ) ≤ k and Q an arbitrary
path with s ∈ Q and dG(s, t) ≤ maxv∈Q dG(s, v). Without loss of generality, we
can assume that Q starts at s. Also let u be an arbitrary vertex. Since eccG(P ) ≤
k, there is a vertex p ∈ P with dG(u, p) ≤ k. Because dG(s, t) ≤ maxv∈Q dG(s, v),
there is a vertex q ∈ Q with dG(s, p) = dG(s, q). By Lemma 2, the distance
between p and q is at most 2k. Thus, the distance from q to u is at most 3k. ��
Corollary 4. For a given graph G and two vertices s and t, each shortest (s, t)-
path is a 3-approximation for the (s, t)-MESP problem.

Theorem 3. Algorithm 1 calculates a 3-approximation for the MESP problem
in O(nm) time.
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Algorithm 1. A 3-approximation for the MESP problem.
Input: A graph G = (V, E).
Output: A shortest path with eccentricity at most 3k, where k is the

minimum eccentricity of all paths in G.
1 foreach s ∈ V do
2 Find a vertex v for which the distance to s is maximal. Also find a shortest

path P (s) from s to v.
3 Calculate k(s) = eccG(P (s)).

4 Among all computed paths P (s), select one for which k(s) is minimal.

Proof. Assume a given graph G has a shortest path P from s to t with eccG(P ) =
k and s is the vertex selected by the loop in line 1. Let v be a vertex such that
dG(s, v) is maximal (line 2). Because dG(s, v) is maximal, dG(s, t) ≤ dG(s, v).
Thus, by Lemma 3, each path from s to v has eccentricity at most 3k, i. e. k(s) ≤
3k (line 3). Therefore, the eccentricity of the path selected in line 4 is also at
most 3k.

It is easy to see that line 2 and line 3 run in O(m) time for a given s.
Therefore, the overall runtime for the algorithm is O(nm). ��
Theorem 4. Algorithm 2 calculates a 2-approximation for the MESP problem
in O(n3) time.

Proof (Correctness). Assume a given graph G has a shortest path P from s to t
with eccG(P ) = k and s is the vertex selected by the loop in line 2. Let Q be a
shortest path from s to v. We say the layer-wise eccentricity of Q is φ if for each
layer L

(s)
i (i ≤ dG(s, v)) there is a vertex qi ∈ Q ∩ L

(s)
i with max{dG(qi, u) | u ∈

L
(s)
i } ≤ φ.

We will now show that lines 4 to 8 calculate for each v the minimal φ(v) such
that there is a shortest path Q from s to v with a layer-wise eccentricity φ(v).

By induction assume this is true for all vertices u ∈ L
(s)
j with j ≤ i − 1. Now

let v be an arbitrary vertex in L
(s)
i . Line 6 calculates the maximal distance φ(v)

from v to all other vertices in L
(s)
i . Since v is the only vertex in Q ∩ L

(s)
i for

every shortest path Q from s to v, the layer-wise eccentricity of each Q is at
least φ(v). Let u be a neighbour of v in the previous layer. By induction φ(u) is
optimal. Therefore, φ(v) := max{minu∈N−

G [v] φ(u), φ(v)} (line 7) is optimal for
v.

Since line 9 selects the vertex u with the smallest φ(u) as parent for v, each
path Q from s to v in T (s) has an optimal layer-wise eccentricity of φ(v). Line 8
calculates the maximal distance from v to all vertices in {u | dG(s, u) ≥ dG(s, v)}.
Thus, eccG(Q) ≤ φ′(v) and line 10 and 11 select a shortest path which has an
eccentricity at most φ′(v).

By Lemma 2, we know that P has a layer-wise eccentricity of at most 2k.
Thus, the path Q from s to t in T (s) has a layer-wise eccentricity of at most 2k.
Additionally, Lemma 2 says that t 2k-dominates all vertices in {v | dG(s, v) ≥
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dG(s, t)}. Therefore, eccG(Q) ≤ 2k. Thus, the path selected in line 11 is a shortest
path with eccentricity at most 2k. ��
Proof (Complexity). Line 1 runs in O(nm) time. If the distances are stored in
an array, they can be later accessed in constant time. Therefore, line 6 and line 8
run in O(n) time for a given s and v or in O(n3) time overall. For a given s,
line 7 runs in O(m) time and therefore has an overall runtime of O(nm). Line 9
has an overall runtime of O(nm), line 11 takes O(n2) time, and line 10 runs in
O(n) time. Adding all together, the total runtime is O(n3). ��

Algorithm 2. A 2-approximation for the MESP problem.
Input: A graph G = (V, E).
Output: A shortest path with eccentricity at most 2k, where k is the

minimum eccentricity of all paths in G.
1 Calculate the distances dG(u, v) for all vertex pairs u and v, including

L
(u)
i = {v ∈ V | dG(u, v) = i} with 0 ≤ i ≤ eccG(u) for each u.

2 foreach s ∈ V do
3 Set φ(s) := 0.
4 for i := 1 to eccG(s) do

5 foreach v ∈ L
(s)
i do

6 Set φ(v) := max
u∈L

(s)
i

dG(u, v).

7 Let N−
G (v) = L

(s)
i−1 ∩ NG(v) denote the neighbours of v in the

previous layer. Set φ(v) := max{min
u∈N−

G
(v)

φ(u), φ(v)}.
8 Set φ+(v) := max{dG(u, v) | dG(s, u) ≥ i}.
9 Calculate a BFS-tree T (s) starting from s. If multiple vertices u are possible

as parent for a vertex v, select one with the smallest φ(u).
10 Let t be the vertex for which φ′(t) := max{φ(t), φ+(t)} is minimal. Set

k(s) := φ′(t).

11 Among all computed pairs s and t, select a pair (and corresponding path in
T (s)) for which k(s) is minimal.

Algorithm 1 and 2 both iterate over all vertices of the graph to find the best
start vertex. Lemma 4 will show that a constant factor approximation can be
found with a simple algorithm which starts at an arbitrary vertex. However, the
approximation factor will be much higher.

Lemma 4. Let G be a graph having a shortest path of eccentricity k. Let x be a
vertex most distant from some arbitrary vertex, and y be a vertex most distant
from x. Then, x, y is a 8k-dominating pair of G.

Proof. Let p be an end vertex of a shortest path of eccentricity k in a given
graph G. By Lemma 2, the diameter in G of each layer L

(p)
i is at most 4k.

Assume, x is most distant from an arbitrary vertex s.
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If there is a layer containing both s and x, then dG(s, x) ≤ 4k. By the choice
of x, each vertex of G is within distance at most 4k from s, hence, within distance
at most 8k from x. Evidently, in this case, x, y is a 8k-dominating pair of G.

Assume now, without loss of generality, that x ∈ L
(p)
i and s ∈ L

(p)
l with

i < l. Consider an arbitrary vertex v of G which belongs to a layer with an
index smaller than i. We show that dG(x, v) ≤ 8k. As L

(p)
i separates v from s,

a shortest path P (s, v) of G between s and v must have a vertex u in L
(p)
i . We

have dG(s, x) ≥ dG(s, v) = dG(s, u) + dG(u, v) and, by the triangle inequality,
dG(s, x) ≤ dG(s, u) + dG(u, x). Hence, dG(u, v) ≤ dG(u, x) and, since both u

and x belong to same layer L
(p)
i , dG(u, x) ≤ 4k. That is, dG(x, v) ≤ dG(x, u) +

dG(u, v) ≤ 2dG(u, x) ≤ 8k.
If dG(x, y) ≤ 8k then, by the choice of y, each vertex of G is within distance

at most 8k from x. Hence, x, y is a 8k-dominating pair of G. So, assume that
dG(x, y) > 8k, i. e., the layer L

(p)
j with i < j contains y. Repeating the arguments

of the previous paragraph, we can show that dG(y, v) ≤ 8k for every vertex v
that belongs to a layer with an index greater than j.

Consider now an arbitrary path P of G connecting vertices x and y. P has
a vertex in every layer L

(p)
h with i ≤ h ≤ j. Hence, for each vertex v of G

that belongs to layer L
(p)
h (i ≤ h ≤ j), there is a vertex u ∈ P ∩ L

(p)
h such

that dG(v, u) ≤ 4k. As dG(v, x) ≤ 8k for each vertex v from L
(p)
i′ with i′ < i

and dG(v, y) ≤ 8k for each vertex v from L
(p)
j′ with j′ > j, we conclude that

eccG(P ) ≤ 8k. ��
Corollary 5. An 8-approximation for the MESP problem can be calculated in
linear time.

5 MESP for Certain Graph Classes

So far, we investigated the MESP problem in general graphs. Next, we will show
that the problem is solvable in linear or polynomial time for certain graph classes.

Lemma 5. If a tree has a shortest path of eccentricity k, then any diametral
path has eccentricity at most k.

Proof. In a tree T , let P be a shortest path from s to t with eccG(P ) = k and
D be a diametral path from x to y. Assume P and D do not intersect. Then
there is a vertex u ∈ P with minimal distance to D and a vertex z ∈ D with
minimal distance to P . Thus, the paths from u to x and from u to y contain z.
Because dT (x, P ) ≤ k, dT (y, P ) ≤ k, and dT (u, z) > 0, we have dT (z, x) < k
and dT (z, y) < k. Therefore, dT (x, y) < 2k. Each diametral path of length l in a
tree contains a vertex c with eccT (c) = 
l/2� [9]. Thus, eccG(D) ≤ k.

Next, assume P and D intersect. Then there is a vertex x′ ∈ P ∩ D with
dT (x, x′) = dT (x, P ) ≤ k and y′ ∈ P ∩D with dT (y, y′) = dT (y, P ) ≤ k. Assume
there is a vertex v with dT (v,D) > k. Thus, there is a vertex v′ ∈ P \ D with
dT (v, v′) ≤ k and, without loss of generality, dT (s, v′) < dT (s, x′). Therefore,
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x′ is the vertex in D with minimal distance to v. It follows that dT (y, v) =
dT (y, x′) + dT (x′, v) > dT (y, x′) + dT (x′, x) = dT (y, x). This contradicts with D
being a diametral path. ��

Recall that a diametral path in a tree can be found as follows: Select an
arbitrary vertex v. Find a most distant vertex x from v and then a most distant
vertex y from x. The path from x to y is a diametral path. Thus, it follows from
Lemma 5:

Theorem 5. The MESP problem can be solved for trees in linear time.

In [6] we show that the MESP problem can be solved in linear time for
distance-hereditary graphs and in polynomial time for chordal graphs and dually
chordal graphs.
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