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Abstract. We investigate the Minimum Eccentricity Shortest Path
problem in some structured graph classes. It asks for a given graph to
find a shortest path with minimum eccentricity. Although it is NP-hard
in general graphs, we demonstrate that a minimum eccentricity shortest
path can be found in linear time for distance-hereditary graphs (gen-
eralizing the previous result for trees) and in O(n3m) time for chordal
graphs.

1 Introduction

The Minimum Eccentricity Shortest Path problem asks for a given graph
G = (V,E) to find a shortest path P such that for each other shortest path Q,
eccG(P ) ≤ eccG(Q) holds. Here, the eccentricity of a set S ⊆ V in G is
eccG(S) = maxu∈V dG(u, S). This problem was introduced in [7]. It may arise
in determining a “most accessible” speedy linear route in a network and can
find applications in communication networks, transportation planning, water
resource management and fluid transportation. It was also shown in [6,7] that a
minimum eccentricity shortest path plays a crucial role in obtaining the best to
date approximation algorithm for a minimum distortion embedding of a graph
into the line. Specifically, every graph G with a shortest path of eccentricity r
admits an embedding f of G into the line with distortion at most (8r +2) ld(G),
where ld(G) is the minimum line-distortion of G (see [7] for details). Further-
more, if a shortest path of G of eccentricity r is given in advance, then such an
embedding f can be found in linear time.

Those applications motivate investigation of the Minimum Eccentricity
Shortest Path problem in general graphs and in particular graph classes. Fast
algorithms for it will imply fast approximation algorithms for the minimum line
distortion problem. Existence of low eccentricity shortest paths in structured
graph classes will imply low approximation bounds for those classes. For exam-
ple, all AT-free graphs (hence, all interval, permutation, cocomparability graphs)
enjoy a shortest path of eccentricity at most 1 [4], all convex bipartite graphs
enjoy a shortest path of eccentricity at most 2 [6].

In [7], the Minimum Eccentricity Shortest Path problem was investigated in
general graphs. It was shown that its decision version is NP-complete (even for
graphs with vertex degree at most 3). However, there are efficient approximation
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algorithms: a 2-approximation, a 3-approximation, and an 8-approximation for
the problem can be computed in O(n3) time, in O(nm) time, and in linear time,
respectively. Furthermore, a shortest path of minimum eccentricity r in general
graphs can be computed in O(n2r+2m) time. Paper [7] initiated also the study
of the Minimum Eccentricity Shortest Path problem in special graph classes by
showing that a minimum eccentricity shortest path in trees can be found in
linear time. In fact, every diametral path of a tree is a minimum eccentricity
shortest path.

In this paper, we design efficient algorithms for the Minimum Eccentric-
ity Shortest Path problem in distance-hereditary graphs and in chordal graphs.
We show that the problem can be solved in linear time for distance-hereditary
graphs (generalizing the previous result for trees) and in O(n3m) time for chordal
graphs.

Note that our Minimum Eccentricity Shortest Path problem is close but
different from the Central Path problem in graphs introduced in [13]. It asks
for a given graph G to find a path P (not necessarily shortest) such that any
other path of G has eccentricity at least eccG(P ). The Central Path problem
generalizes the Hamiltonian Path problem and therefore is NP-hard even for
chordal graphs [12]. Our problem is polynomial time solvable for chordal graphs.

2 Notions and Notations

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. For a graph G = (V,E), we use n = |V |
and m = |E| to denote the cardinality of the vertex set and the edge set of G.
G[S] denotes the induced subgraph of G with the vertex set S.

The length of a path from a vertex v to a vertex u is the number of edges
in the path. The distance dG(u, v) of two vertices u and v is the length of
a shortest path connecting u and v. The distance between a vertex v and a
set S ⊆ V is defined as dG(v, S) = minu∈S dG(u, v). The eccentricity eccG(v) of
a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its eccentricity is eccG(S) =
maxu∈V dG(u, S). If no ambiguity arises, we will omit the subscript G. For a
vertex pair s, t, a shortest (s, t)-path P has minimal eccentricity, if there is no
shortest (s, t)-path Q with ecc(Q) < ecc(P ). Two vertices x and y are called
mutually furthest if dG(x, y) = ecc(x) = ecc(y). A vertex u is k-dominated by a
vertex v (by a set S ⊂ V ), if dG(u, v) ≤ k (dG(u, S) ≤ k, respectively).

The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diame-
ter diamG(S) of a set S ⊆ V is defined as maxu,v∈S dG(u, v). A pair of vertices
x, y of G is called a diametral pair if dG(x, y) = diam(G). In this case, every
shortest path connecting x and y is called a diametral path.

For a vertex v ∈ V , N(v) = {u ∈ V | uv ∈ E} is called the
open neighborhood, and N [v] = N(v) ∪ {v} the closed neighborhood of v.
Nr[v] = {u ∈ V | dG(u, v) ≤ r} denotes the disk of radius r around vertex v.
Additionally, L

(v)
r = {u ∈ V | dG(u, v) = i} denotes the vertices with distance r

from v. For two vertices u and v, I(u, v) = {w | dG(u, v) = dG(u,w) + dG(w, v)}
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is the interval between u and v. The set Si(s, t) = L
(s)
i ∩ I(u, v) is called

a slice of the interval from u to v. For any set S ⊆ V and a vertex v,
Pr(v, S) = {u ∈ S | dG(u, v) = dG(v, S)} denotes the projection of v on S.

A chord in a path is an edge connecting two non-consecutive vertices of the
path. A set of vertices S is a clique if all vertices in S are pairwise adjacent.
A graph is chordal if every cycle with at least four vertices has a chord. A graph
is distance-hereditary if the distances in any connected induced subgraph are the
same as they are in the original graph. For more definitions of these classes and
relations between them see [2].

3 A Linear-Time Algorithm for Distance-Hereditary
Graphs

Distance-hereditary graphs can be defined as graphs where each chordless path is
a shortest path [10]. Several interesting characterizations of distance-hereditary
graphs in terms of metric and neighborhood properties, and forbidden config-
urations were provided by Bandelt and Mulder [1], and by D’Atri and
Moscarini [5]. The following proposition lists the basic information on distance-
hereditary graphs that is needed in what follows.

Proposition 1 ([1,5]). For a graph G the following conditions are equivalent:

(1) G is distance-hereditary;
(2) The house, domino, gem (see Fig. 1) and the cycles Ck of length k ≥ 5 are

not induced subgraphs of G;
(3) For an arbitrary vertex x of G and every pair of vertices u, v ∈ L

(x)
k , that

are in the same connected component of the graph G[V \ L
(x)
k−1], we have

N(v) ∩ L
(x)
k−1 = N(u) ∩ L

(x)
k−1.

(4) (4-point condition) For any four vertices u, v, w, x of G at least two of the
following distance sums are equal: dG(u, v) + dG(w, x); dG(u,w) + dG(v, x);
dG(u, x) + dG(v, w). If the smaller sums are equal, then the largest one
exceeds the smaller ones at most by 2.

House Domino Gem

Fig. 1. Forbidden induced subgraphs in a distance-hereditary graph.
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As a consequence of statement (3) of Proposition 1 we get.

Corollary 1. Let P := P (s, t) be a shortest path in a distance-hereditary
graph G connecting vertices s and t, and w be an arbitrary vertex of G. Let
a be a vertex of Pr(w,P ) that is closest to s, and let b be a vertex of Pr(w,P )
that is closest to t. Then dG(a, b) ≤ 2 and there must be a vertex w′ in G adjacent
to both a and b and at distance dG(w,P ) − 1 from w.

As a consequence of statement (4) of Proposition 1 we get.

Corollary 2. Let x, y, v, u be arbitrary vertices of a distance-hereditary graph G
with v ∈ I(x, u), u ∈ I(y, v), and dG(u, v) > 1, then dG(x, y) = dG(x, v) +
dG(v, u)+ dG(u, y). That is, if two shortest paths share ends of length at least 2,
then their union is a shortest path.

Proof. Consider distance sums S1 := dG(x, v) + dG(u, y), S2 := dG(x, y) +
dG(u, v) and S3 := dG(x, u) + dG(v, y). Since dG(x, u) + dG(v, y) = dG(x, v) +
dG(u, y) + 2 dG(u, v), we have S3 > S1. Then, either S2 = S3 or S1 = S2 and
S3 − S1 ≤ 2. If the latter is true, then 2 ≥ S3 − S1 = dG(x, v) + dG(u, y) +
2 dG(u, v) − dG(x, v) − dG(u, y) = 2 dG(v, u) > 2 and a contradiction arises.
Thus, S2 = S3 and we get dG(x, y) = dG(x, v) + dG(v, u) + dG(u, y). 	

Lemma 1. Let x, y be a diametral pair of vertices of a distance-hereditary
graph G, and k be the minimum eccentricity of a shortest path in G. If for
some shortest path P = P (x, y), connecting x and y, ecc(P ) > k holds, then
diam(G) = dG(x, y) ≥ 2k. Furthermore, if dG(x, y) = 2k then there is a shortest
path P ∗ between x and y with ecc(P ∗) = k.

Proof. Consider a vertex v with dG(v, P ) > k. Let x′ be a vertex of Pr(v, P ) clos-
est to x, and y′ be a vertex of Pr(v, P ) closest to y. By Corollary 1, dG(x′, y′) ≤ 2
and there must be a vertex v′ in G adjacent to both x′ and y′ and at distance
dG(v, P ) − 1 from v. Let P (x, x′) and P (y′, y) be subpaths of P connecting
vertices x, x′ and vertices y, y′, respectively. Consider also an arbitrary shortest
path Q(v, v′) connecting v and v′ in G. By choices of x′ and y′, no chords in
G exist in paths P (x, x′) ∪ Q(v′, v) and P (y, y′) ∪ Q(v′, v). Hence, those paths
are shortest in G. Since x, y is a diametral pair, we have dG(x, x′) + dG(x′, y′) +
dG(y′, y) = dG(x, y) ≥ dG(x, v) = dG(x, x′) + 1 + dG(v′, v). That is, dG(y′, y) ≥
dG(v′, v) + 1 − dG(x′, y′). Similarly, dG(x′, x) ≥ dG(v′, v) + 1 − dG(x′, y′). Com-
bining both inequalities and taking into account that dG(v, v′) ≥ k, we get
dG(x, y) = dG(x, x′) + dG(x′, y′) + dG(y′, y) ≥ 2k + 2 − dG(x′, y′) ≥ 2k. Fur-
thermore, we have dG(x, y) ≥ 2k + 1 if dG(x′, y′) = 1 and dG(x, y) ≥ 2k + 2
if dG(x′, y′) = 0. Also, if dG(x, y) = 2k then dG(x′, y′) = 2, dG(v, v′) = k,
dG(x, x′) = dG(y, y′) = k − 1 and dG(v, x) = dG(v, y) = 2k.

Now assume that dG(x, y) = 2k. Consider sets S = {w ∈ V | dG(x,w) =
dG(y, w) = k} and Fx,y = {u ∈ V | dG(u, x) = dG(u, y) = 2k}. Let c ∈ S be a
vertex of S that k-dominates the maximum number of vertices in Fx,y. Consider
a shortest path P ∗ connecting vertices x and y and passing through vertex c.
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We will show that ecc(P ∗) = k. Let x′ (y′) be the neighbor of c in subpath of
P ∗ connecting c with x (with y, respectively).

Assume there is a vertex v in G such that dG(v, P ∗) > k. As in the first
part of the proof, one can show that dG(v, x′) = dG(v, y′) = k + 1, i. e., x′, y′ ∈
Pr(v, P ∗) and dG(v, P ∗) = k + 1. Furthermore, dG(v, x) = dG(v, y) = 2k, i. e.,
v ∈ Fx,y. Also, vertex v′, that is adjacent to x′, y′ and at distance k from v,
must belong to S. Since dG(v, c) > k but dG(v, v′) = k, by choice of c, there
must exist a vertex u ∈ Fx,y such that dG(u, c) ≤ k and dG(u, v′) > k. Since
dG(u, y) = dG(u, x) = 2k, dG(u, c) must equal k and both dG(u, x′) and dG(u, y′)
must equal k + 1.

Since dG(v, u) ≤ diam(G) = 2k and dG(v, y′) = dG(v, x′) = k + 1 =
dG(u, x′) = dG(u, y′), we must have a chord between vertices of a shortest
path P (v, v′) connecting v with v′ and vertices of a shortest path P (u, c)
connecting u with c. If no chords exist or only chord cv′ is present, then
dG(v, u) ≥ 2k + 1, contradicting with diam(G) = 2k. So, consider a chord ab
with a ∈ P (v, v′), b ∈ P (u, c), ab �= cv′, and dG(a, v′) + dG(b, c) is minimum.
We know that dG(a, v′) = dG(b, c) must hold since dG(u, v′) > k = dG(u, c)
and dG(v, c) > k = dG(v, v′). To avoid induced cycles of length k ≥ 5,
dG(a, v′) = dG(b, c) = 1 must hold. But then, vertices a, b, c, x′, v′ form either an
induced cycle C5, when c and v′ are not adjacent, or a house, otherwise. Note
that, by distance requirements, edges bv′, ca, bx′, and ax′ are not possible.

Contradictions obtained show that such a vertex v with dG(v, P ∗) > k is not
possible, i. e., ecc(P ∗) = k. 	

Lemma 2. In every distance-hereditary graph there is a minimum eccentricity
shortest path P (s, t) where s and t are two mutually furthest vertices.

Proof. Let k be the minimum eccentricity of a shortest path in G. Let Q :=
Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t) be a shortest path of G of eccentric-
ity k with maximum q, that is, among all shortest paths with eccentricity k,
Q is a longest one. Assume, without loss of generality, that t is not a ver-
tex most distant from s. Let i ≤ q be the smallest index such that subpath
Q(s, vi) = (v0, v1, . . . , vi) of Q has also the eccentricity k. By choice of i, there
must exist a vertex v in G which is k-dominated only by vertex vi of Q(s, vi),
i. e., Pr(v,Q(s, vi)) = {vi} and dG(v,Q(s, vi)) = k. Let P (v, vi) be an arbitrary
shortest path of G connecting v with vi. By choice of i, no vertex of P (v, vi)\{vi}
is adjacent to a vertex of Q(s, vi) \ {vi}. Hence, path obtained by concatenating
Q(s, vi) with P (vi, v) is chordless and, therefore, shortest in G, and has eccentric-
ity k, too. Note that v is now a most distant vertex from s, i. e., dG(s, v) = ecc(s).
Since dG(s, v) > dG(s, t), a contradiction with maximality of q arises. 	


The main result of this section is the following.

Theorem 1. Let x, y be a diametral pair of vertices of a distance-hereditary
graph G, and k be the minimum eccentricity of a shortest path in G. Then, there
is a shortest path P between x and y with ecc(P ) = k.
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Proof. We may assume that for some shortest path P ′ connecting x and y,
ecc(P ′) > k holds (otherwise, there is nothing to prove). Then, by Lemma 1, we
have d(x, y) ≥ 2k.

Let Q := Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t) be a shortest path of
G of eccentricity k such that s and t are two mutually furthest vertices (see
Lemma 2). Consider projections of x and y to Q. We distinguish between
three cases: Pr(x,Q) is completely on the left of Pr(y,Q) in Q; Pr(x,Q) and
Pr(y,Q) have a common vertex w; and the remaining case (see Corollary 1)
when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for some index i.
Case 1: Pr(x,Q) is completely on the left of Pr(y,Q) in Q.
Let x′ be a vertex of Pr(x,Q) closest to t and y′ a vertex of Pr(y,Q) closest to
s. Consider an arbitrary shortest path P (x, x′) of G connecting vertices x and
x′, an arbitrary shortest path P (y′, y) of G connecting vertices y′ and y, and a
subpath Q(x′, y′) of Q(s, t) between vertices x′ and y′. We claim that the path
P of G obtained by concatenating P (x, x′) with Q(x′, y′) and then with P (y′, y)
is a shortest path of eccentricity k.

Indeed, by choice of x′, no edge connecting a vertex in P (x, x′) \ {x′} with a
vertex in Q(x′, y′)\{x′} can exist in G. Similarly, no edge connecting a vertex in
P (y′, y) \ {y′} with a vertex in Q(x′, y′) \ {y′} can exist in G. Since we also have
dG(x, y) ≥ 2k, dG(x,Q) ≤ k and dG(y,Q) ≤ k, no edge connecting a vertex in
P (y′, y) \ {y′} with a vertex in P (x, x′) \ {x′} can exist in G. Hence, chordless
path P = P (x, x′) ∪ Q(x′, y′) ∪ P (y′, y) is a shortest path of G.

Consider now an arbitrary vertex v of G. We want to show that dG(v, P ) ≤ k.
Since ecc(Q) = k, dG(v,Q) ≤ k. Consider the projection of v to Q. We may
assume that Pr(v,Q)∩Q(x′, y′) = ∅ and, without loss of generality, that vertices
of Pr(v,Q) are closer to s than vertex x′. Let v′ be a vertex of Pr(v,Q) closest
to x′. As before, by choices of v′ and y′, paths P (y, y′) ∪ Q(y′, v′) and P (v, v′) ∪
Q(y′, v′) are chordless and, therefore, are shortest paths of G (here P (v, v′) is
an arbitrary shortest path of G connecting v with v′). Since dG(v′, y′) ≥ 2, by
Corollary 2, dG(v, y) = dG(v, v′)+ dG(v′, y′)+ dG(y′, y). Hence, from dG(x, y) ≥
dG(y, v), dG(x, y) = dG(x, x′) + dG(x′, y) and dG(v, y) = dG(v, x′) + dG(x′, y),
we obtain dG(v, x′) ≤ dG(x, x′) ≤ k.
Case 2: Pr(x,Q) and Pr(y,Q) have a common vertex w.
In this case, we have dG(x, y) ≤ dG(x,w) + dG(y, w) ≤ k + k = 2k. Earlier
we assumed also that dG(x, y) ≥ 2k. Hence, diam(G) = dG(x, y) = 2k and the
statement of the theorem follows from Lemma 1.
Case 3: Remaining case when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for
some index i.
In this case, we have dG(x, y) ≤ dG(x, vi−1) + 1 + dG(vi, y) ≤ 2k + 1. By
Lemma 1, we can assume that diam(G) = dG(x, y) = 2k + 1, i. e., dG(x, vi−1) =
dG(x, vi+1) = dG(vi, y) = k.

Let Q(s, vi−1) and Q(t, vi+1) be subpaths of Q connecting vertices s and vi−1

and vertices t and vi+1, respectively. Pick an arbitrary shortest path P (y, vi)
connecting y with vi. Since no chords are possible between Q(s, vi) \ {vi} and
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P (y, vi) \ {vi} and between Q(t, vi) \ {vi} and P (y, vi) \ {vi}, we have dG(y, t) =
dG(y, vi) + dG(vi, t) = k + dG(vi, t) and dG(y, s) = dG(y, vi) + dG(vi, s) =
k + dG(vi, s). Inequalities dG(x, y) ≥ dG(y, t) and dG(x, y) ≥ dG(y, s) imply
dG(vi+1, t) ≤ dG(vi+1, x) = k and dG(vi−1, s) ≤ dG(vi−1, x) = k. If both
dG(vi+1, t) and dG(vi−1, s) equal k, then dG(s, t) = 2k + 2 contradicting with
diam(G) = 2k + 1. Hence, we may assume, without loss of generality, that
dG(vi−1, s) ≤ k − 1. We will show that shortest path P := P (x, vi+1) ∪ P (vi, y)
has eccentricity k (here, P (x, vi+1) is an arbitrary shortest path of G connecting
x with vi+1).

Consider a vertex v in G and assume that Pr(v,Q) is strictly con-
tained in Q(t, vi+1). Denote by v′ the vertex of Pr(v,Q) that is closest to
s. Let P (v, v′) be an arbitrary shortest path connecting v and v′. As before,
P (v, v′) ∪ Q(v′, s) is a chordless path and therefore dG(v, s) = dG(v, vi+1) +
dG(vi+1, s). Since t is a most distant vertex from s, dG(s, v) ≤ dG(s, t). Hence,
dG(v, vi+1) + dG(vi+1, s) = dG(s, v) ≤ dG(s, t) = dG(s, vi+1) + dG(vi+1, t), i. e.,
dG(v, vi+1) ≤ dG(vi+1, t) ≤ k.

Consider a vertex v in G and assume now that Pr(v,Q) is strictly contained
in Q(s, vi−1). Denote by v′ the vertex of Pr(v,Q) that is closest to t. Let P (v, v′)
be an arbitrary shortest path connecting v and v′. Again, P (v, v′) ∪ Q(v′, t)
is a chordless path and therefore dG(v, t) = dG(v, vi) + dG(vi, t). Since s is a
most distant vertex from t, dG(t, v) ≤ dG(s, t). Hence, dG(v, vi) + dG(vi, t) =
dG(t, v) ≤ dG(s, t) = dG(s, vi) + dG(vi, t), i. e., dG(v, vi) ≤ dG(vi, s) ≤ k.

Thus, all vertices of G are k-dominated by P (x, vi+1) ∪ P (vi, y). 	

It is known [8] that a diametral pair of a distance-hereditary graph can be

found in linear time. Hence, according to Theorem 1, to find a shortest path of
minimum eccentricity in a distance-hereditary graph in linear time, one needs
to efficiently extract a best eccentricity shortest path for a given pair of end-
vertices. In what follows, we demonstrate that, for a distance-hereditary graph,
such an extraction can be done in linear time as well.

We will need few auxiliary lemmas.

Lemma 3. In a distance-hereditary graph G, for each pair of vertices s and t,
if x is on a shortest path from v to Πv = Pr(v, I(s, t)) and dG(x,Πv) = 1, then
Πv ⊆ N(x).

Proof. Let p and q be two vertices in Πv and dG(v,Πv) = r. By statement (3)
of Proposition 1, N(p) ∩ L

(v)
r−1 = N(q) ∩ L

(v)
r−1. Thus, each vertex x on a shortest

path from v to Πv with dG(x,Πv) = 1 (which is in N(p) ∩ L
(v)
r−1 by definition)

is adjacent to all vertices in Πv, i. e., Πv ⊆ N(x). 	

Lemma 4. In a distance-hereditary graph G, let Si(s, t) and Si+1(s, t) be two
consecutive slices of an interval I(s, t). Each vertex in Si(s, t) is adjacent to each
vertex in Si+1(s, t).

Proof. Consider statement (3) of Proposition 1 from perspective of t. Thus,
Si(s, t) ⊆ N(v) for each vertex v ∈ Si+1(s, t). Additionally, from perspective of
s, Si+1(s, t) ⊆ N(u) for each vertex u ∈ Si(s, t). 	
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Lemma 5. In a distance-hereditary graph G, if a projection Πv = Pr(v, I(s, t))
intersects two slices of an interval I(s, t), each shortest (s, t)-path intersects Πv.

Proof. Because of Lemma 3, there is a vertex x with N(x) ⊇ Πv and dG(v, x) =
dG(v,Πv) − 1. Thus, Πv intersects at most two slices of interval I(s, t) and
those slices have to be consecutive, otherwise x would be a part of the interval.
Let Si(s, t) and Si+1(s, t) be these slices. Note that dG(s, x) = i + 1. Thus,
by statement (3) of Proposition 1, N(x) ∩ Si(s, t) = N(u) ∩ Si(s, t) for each
u ∈ Si+1(s, t). Therefore, Si(s, t) ⊆ Πv, i. e., each shortest path from s to t
intersects Πv. 	


From the lemmas above, we can conclude that, for determining a shortest
(s, t)-path with minimal eccentricity, a vertex v is only relevant if dG(v, I(s, t)) =
ecc(I(s, t)) and the projection of v on the interval I(s, t) only intersects one slice.
Algorithm 1 uses this.

Algorithm 1. Computes a shortest (s, t)-path P with minimal eccentricity
for a given distance-hereditary graph G and a vertex pair s, t.
Input: A distance-hereditary graph G = (V, E) and two distinct vertices s

and t.
Output: A shortest path P from s to t with minimal eccentricity.
Compute the sets Vi = {v | dG(v, I(s, t)) = i} for 1 ≤ i ≤ ecc(I(s, t)).1

Each vertex v /∈ I(s, t) gets a pointer g(v) initialised with g(v) := v if v ∈ V1,2

and g(v) := ∅ otherwise.
for i := 2 to ecc(I(s, t)) do3

For each v ∈ Vi, select a vertex u ∈ Vi−1 ∩ N(v) and set g(v) := g(u).4

foreach v ∈ Vecc(I(s,t)) do5

If N(g(v)) intersects only one slice of I(s, t), flag g(v) as relevant.6

Set P := {s, t}.7

for i := 1 to dG(s, t) − 1 do8

Find a vertex v ∈ Si(s, t) for which the number of relevant vertices in N(v)9

is maximal.
Add v to P .10

Lemma 6. For a distance-hereditary graph G and an arbitrary vertex pair s, t,
Algorithm 1 computes a shortest (s, t)-path with minimal eccentricity in linear
time.

Proof. The loop in line 3 determines for each vertex v outside of the
interval I(s, t) a gate vertex g(v) such that N(g(v)) ⊇ Pr(v, I(s, t)) and
dG(v, I(s, t)) = dG(v, g(v)) + 1 (see Lemma 3). From Lemmas 5 and 4, it fol-
lows that for a vertex v which is not in Vecc(I(s,t)) or its projection to I(s, t) is
intersecting two slices of I(s, t), dG(v, P (s, t)) ≤ ecc(I(s, t)) for every shortest
path P (s, t) between s and t. Therefore, line 6 only marks g(v) if v ∈ Vecc(I(s,t))

and its projection Pr(v, I(s, t)) intersects only one slice. Because only one slice
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is intersected and each vertex in a slice is adjacent to all vertices in the consec-
utive slice (see Lemma 4), in each slice the vertex of an optimal (of minimum
eccentricity) path P can be selected independently from the preceding vertex.
If a vertex x of a slice Si(s, t) has the maximum number of relevant vertices in
N(x), then x is good to put in P . Indeed, if x dominates all relevant vertices
adjacent to vertices of Si(s, t), then x is a perfect choice to put in P . Else, any
vertex y of a slice Si(s, t) is a good vertex to put in P . Hence, P is optimal if the
number of relevant vertices adjacent to P is maximal. Thus, the path selected
in line 8 to line 10 is optimal. 	


Running Algorithm 1 for a diametral pair of vertices of a distance-hereditary
graph G, by Theorem 1, we get a shortest path of G with minimum eccentricity.
Thus, we have proven the following result.

Theorem 2. A shortest path with minimum eccentricity of a distance-hereditary
graph G = (V,E) can be computed in O(|V | + |E|) total time.

4 A Polynomial-Time Algorithm for Chordal Graphs

In what follows, we will show that the minimum eccentricity shortest path prob-
lem for chordal graphs can be solved in polynomial time.

For distance-hereditary graphs, we were able to show that there is a shortest
path with minimum eccentricity between a diametral pair of vertices. This is
not always the case for chordal graphs. Consider the graph G given in Fig. 2.
The only diametral path in G is from s to w. Because of u, it has eccentricity 3.
However, a shortest path from s to v containing t has eccentricity 2 which is
optimal for G.

u

vt

ws

Fig. 2. A chordal graph for which no diametral path has the optimal eccentricity.

To find an optimal path, we create a simpler graph H for given start and end
vertices s and t of a chordal graph G. Then, each shortest path P from s to t in
H has eccentricity at most 2. Additionally, if P has minimal eccentricity in H,
the corresponding path in G also has minimal eccentricity. Repeating this for
each vertex pair s, t in G, we can find the minimum eccentricity shortest path
of G.
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The following lemmas allow us to create H.

Lemma 7 ([3]). For every chordal graph G and any two of its vertices s and t,
each slice Si(s, t) is a clique.

Corollary 3. For each shortest path P from s to t in a chordal graph G,

ecc(I(s, t)) ≤ ecc(P ) ≤ ecc(I(s, t)) + 1.

Lemma 8 ([9]). Let G be a chordal graph. If for two distinct vertices x, y in a
disk Nr

G[v] there is a path P connecting them with P ∩ Nr
G[v] = {x, y}, then x

and y are adjacent.

Lemma 9. Let G be a chordal graph. For each vertex v /∈ I(s, t), if a pro-
jection Πv = Pr(v, I(s, t)) is not a clique, then each shortest path from s to t
intersects Πv.

Proof. Because Πv is not a clique, there are two distinct vertices ui ∈ Si(s, t)∩Πv

and uj ∈ Sj(s, t)∩Πv which are not adjacent to each other. Consider an arbitrary
shortest path Q from s to t and two vertices qi ∈ Si(s, t)∩Q and qj ∈ Sj(s, t)∩Q.
Because each slice is a clique (see Lemma 7), there is a path Q′ = {ui} ∪
Q(qi, qj) ∪ {uj} from ui to uj . Note that Πv is the intersection of I(s, t) with
the disk Nr

G[v] (for r = dG(v, I(s, t))). Thus, if Q and Πv do not intersect,
then Q′ ∩ Nr

G[v] = {ui, uj}. However, because ui and uj are not adjacent, this
contradicts with Lemma 8. Therefore, Q and Πv intersect. 	


The conclusion from Corollary 3 and Lemma 9 is that a vertex v is only
relevant for determining a minimal eccentricity shortest path from s to t, if
dG(v, I(s, t)) = ecc(I(s, t)) and the projection of v on I(s, t) intersects at most
two slices. Therefore, we can create a graph H for a given chordal graph G using
Algorithm 2. We call H a hedgehog graph for G.

Algorithm 2. Creates a hedgehog graph H from a given chordal graph G
for its vertex pair s, t.
Input: A chordal graph G = (VG, EG), and a vertex pair s, t.
Output: A hedgehog graph H = (VH , EH).
Initialise VH := ∅ and EH := ∅.1

Add IG(s, t) to H, i. e. VH := VH ∪ IG(s, t) and2

EH := EH ∪ {uv ∈ EG | u, v ∈ IG(s, t)}.
foreach v ∈ VG with dG(v, IG(s, t)) = eccG(IG(s, t)) do3

If PrG(v, IG(s, t)) intersects at most two slices of IG(s, t), then create a new4

vertex g(v), add to H, and connect it with every vertex in PrG(v, IG(s, t)),
i. e. VH := VH ∪ {g(v)} and EH := EH ∪ {ug(v) | u ∈ PrG(v, IG(s, t))}.
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Theorem 3. For a chordal graph G and a vertex pair s, t, let H be the hedgehog
graph of G created by Algorithm 2. A shortest (s, t)-path P in H has eccentricity 1
if and only if P has eccentricity eccG(IG(s, t)) in G.

Proof. Assume eccH(P ) = 1. Therefore, for all vertices g(v) ∈ VH \ IH(s, t),
P intersects the projection PrH(g(v), IH(s, t)). Based on the construction of H,
PrH(g(v), IH(s, t)) = PrG(v, IG(s, t)). Thus, dG(v, P ) = eccG(IG(s, t)) for all v ∈
VG with dG(v, IG(s, t)) = eccG(IG(s, t)) and projection PrG(v, IG(s, t)) intersect-
ing at most two slices of IG(s, t). For all other v ∈ VG, dG(v, P ) ≤ eccG(IG(s, t))
follows from Corollary 3 and Lemma 9. Thus, eccG(P ) = eccG(IG(s, t)).

Assume eccH(P ) > 1. Thus, there is a vertex v ∈ VH \ IH(s, t) such that
P does not intersect the projection PrH(g(v), IH(s, t)). Therefore, dG(v, P ) >
dG(v, IG(s, t)) = eccG(IG(s, t)). 	


For the analysis of the complexity of Algorithm 2, we assume that the
distance between any two vertices can be determined in constant time (i. e.,
the distance matrix of the graph is given). Computing the interval IG(s, t)
and eccG(IG(s, t)) can be done in O(m) total time. For a given vertex v,
dG(v, IG(s, t)) (line 3) and PrG(v, IG(s, t)) (line 4) can be calculated in O(n)
time by determining the distance to all vertices in IG(s, t). Repeating this for
all vertices in VG leads to a total runtime of O(n2).

After generating H, we need to determine if there is a shortest path from s
to t in H with eccentricity 1.

Algorithm 3. Finds a shortest (s, t)-path with minimal eccentricity in a
hedgehog graph H of a chordal graph.
Input: A hedgehog graph H = (V, E) of a chordal graph and a vertex pair s, t.
Output: A shortest path P from s to t with minimal eccentricity.
For each vertex v and each edge e in H, set ω(v) := 0 and ω(e) := 0.1

foreach u /∈ IH(s, t) do2

if NH(u) ⊆ Si(s, t) (for some i) then3

Set ω(v) := ω(v) + 1 for all v ∈ NH(u).4

else5

foreach vw ∈ E with dH(u, vw) = 1 and6

dH(s, u) = dH(s, v) + 1 = dH(s, w) do
ω(vw) := ω(vw) + 17

Find a shortest path P from s to t such that the sum of all vertex and edge8

weights of P is maximal.

Lemma 10. For a given vertex pair s, t and the corresponding hedgehog
graph H, Algorithm 3 determines a shortest (s, t)-path of H with minimal eccen-
tricity (one or two) in O(nm) time.
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Proof (Correctness). Let P be an arbitrary shortest path from s to t in H. We
say ω(P ) =

∑
u∈P ω(u) +

∑
vw∈E,vw∈P ω(vw) is the total weight of P . Because

H is based on a chordal graph, each slice of IH(s, t) is a clique. Thus, each path
from s to t has eccentricity at most 2. To proof the correctness of the algorithm,
we will show that the total weight of P is equal to the number of vertices adjacent
to P which are not part of the interval, i. e. ω(P ) = |NH [P ] \ IH(s, t)|.

The vertices of H can be partitioned into the following three sets: IH(s, t),
V1 containing all vertices x whose NH(x) intersects only one slice of IH(s, t),
and V2 containing all vertices x whose NH(x) intersects two slices of IH(s, t).

For each vertex u ∈ V1 the weight of every of its neighbors v is increased by 1
(line 4). Thus, ω(v) = |NH(v) ∩ V1|. Note that for v, v′ ∈ IH(s, t), dG(s, v) �=
dG(s, v′) implies NH(v) ∩ NH(v′) ∩ V1 = ∅. Therefore,

∑
v∈P ω(v) is the number

of vertices in V1 which are adjacent to P .
Let u ∈ V2 be a vertex such that NH(u) intersects the slices Si(s, t) and

Si+1(s, t). Then the weight of all edges vw from Si(s, t) to Si+1(s, t) which
intersect NH(u) is increased by 1 (line 7). Because the weight of an edge vw
is only increased if dH(s, u) = dH(s, v)+ 1 = dH(s, w), ω(vw) = |NH(vw)∩V2 ∩
L
(s)
i+1|. Therefore,

∑
vw∈E,vw∈P ω(vw) is the number of vertices in V2 which are

adjacent to P .
It follows that each vertex in NH [P ]\ IH(s, t) is counted exactly once for the

total weight of P . Therefore, P has eccentricity 1 if and only if ω(P ) = |V1∪V2|. 	

Proof (Complexity). Initialising the vertex and edge weights can be done in linear
time. For a vertex u /∈ IH(s, t), line 4 only updates the neighborhood of u. Thus,
the total runtime for line 4 is O(m).

Line 7 can be implemented in O(nm) time as follows. Let NH(u) intersect the
slices Si(s, t) and Si+1(s, t). First, update ω(vw′), for all vertices v ∈ Si(s, t) ∩
NH(u) and all w′ ∈ Si+1(s, t) ∩ NH(v). Also mark v as visited. Then, update
ω(v′w) for all vertices w ∈ Si+1(s, t) ∩ NH(u) and all v′ ∈ Si(s, t) ∩ NH(w)
where v′ is not marked as visited. Last, remove all marks from all vertices v ∈
Si(s, t) ∩ NH(u). For a given u, this runs in O(m) time. Thus, the total runtime
for line 7 is in O(nm).

Finding a shortest path P such that ω(P ) is maximal can be easily done in
linear time. Therefore, the overall runtime of Algorithm 3 is in O(nm). 	


Using the methods described above, we can now construct Algorithm 4 to
compute a minimum eccentricity shortest path in chordal graphs.

Theorem 4. Algorithm 4 computes a minimum eccentricity shortest path for a
given chordal graph in O(n3m) time.

Proof (Correctness). The algorithm creates a hedgehog graph H(s, t) for each
vertex pair s, t (line 3). Then it determines a shortest path P (s, t) from s to t
in H(s, t) with minimal eccentricity (line 4). By Theorem 3, P (s, t) is also a
shortest path with minimal eccentricity from s to t in G. Therefore, for at least
one pair s, t, the selected path P (s, t) is a minimum eccentricity shortest path
of G. Such a path is selected in line 5. 	
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Algorithm 4. Finds a shortest path P with minimum eccentricity for a
given chordal graph G.
Input: A chordal graph G = (V, E).
Output: A shortest path P with minimum eccentricity.
Calculate the pairwise distance for all vertices.1

foreach s, t ∈ V do2

Create a hedgehog graph H(s, t) of G for s and t using Algorithm 2.3

Find a shortest path P (s, t) with minimal eccentricity in H(s, t) using4

Algorithm 3.

Among all shortest paths P (s, t), select one for which eccG(P (s, t)) is minimal.5

Proof (Complexity). Calculating the pairwise distances between vertices (line 1)
can be done in O(nm) time. This allows to extract the distance between any
two vertices in constant time. Thus, H(s, t) can be created in O(n2) time. By
Lemma 10, finding a path with minimal eccentricity in H(s, t) runs in O(nm)
time. Therefore, the overall runtime for line 3 and line 4 is in O(n3m). The total
runtime for determining the eccentricities of all calculated paths to select the
minimum is in O(n2m). Thus, the algorithm runs in O(n3m) time. 	


5 Conclusion

We have investigated the Minimum Eccentricity Shortest Path problem for
distance-hereditary graphs and for chordal graphs. For distance-hereditary
graphs, we were able to present a linear time algorithm. For chordal graphs,
we gave an O(n3m) time algorithm.

The main reason for the large difference in the run-times of the two algorithms
is that the second one iterates over all vertex pairs of a chordal graph. We know
that, for general graphs, the problem remains NP-complete even if a start-end
vertex pair is given (see the reduction in [7]). Also, we have shown that there
is a shortest path with minimum eccentricity between every diametral pair of
vertices of a distance-hereditary graph (Theorem 1). This leads to the following
question: How hard is it to determine the start and end vertices of an optimal
path? This question applies to general graphs as well as to special graph classes
like chordal graphs.

Another interesting question is, for which other graph classes the problem
remains NP-complete or can be solved in polynomial time. The NP-completeness
proof in [7] uses a reduction from SAT. There is a planar version of 3-SAT
(see [11]). Does this imply that the problem remains NP-complete for planar
graphs?
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