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1 Algorithmic Research Laboratory, Department of Computer Science,
Kent State University, Kent, OH 44242, USA
dragan@cs.kent.edu, halrashe@kent.edu

2 Mathematisches Institut, Brandenburgische Technische Universität,
03013 Cottbus, Germany

ekkehard.koehler@b-tu.de

Abstract. Using the characteristic property of chordal graphs that they
are the intersection graphs of subtrees of a tree, Erich Prisner showed
that every chordal graph admits an eccentricity 2-approximating span-
ning tree. That is, every chordal graph G has a spanning tree T such
that eccT (v)−eccG(v) ≤ 2 for every vertex v, where eccG(v) (eccT (v)) is
the eccentricity of a vertex v in G (in T , respectively). Using only met-
ric properties of graphs, we extend that result to a much larger family
of graphs containing among others chordal graphs and the underlying
graphs of 7-systolic complexes. Furthermore, based on our approach,
we propose two heuristics for constructing eccentricity k-approximating
trees with small values of k for general unweighted graphs. We validate
those heuristics on a set of real-world networks and demonstrate that all
those networks have very good eccentricity approximating trees.

1 Introduction

All graphs G = (V,E) occurring in this paper are connected, finite, unweighted,
undirected, loopless and without multiple edges. The length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
between two vertices u and v is the length of a shortest path connecting u
and v in G. If no confusion arises, we will omit subindex G. The interval
I(u, v) between u and v consists of all vertices on shortest (u, v)-paths, that
is, it consists of all vertices (metrically) between u and v: I(u, v) = {x ∈ V :
dG(u, x) + dG(x, v) = dG(u, v)}. The eccentricity eccG(v) of a vertex v in G
is defined by maxu∈V dG(u, v), i.e., it is the distance to a most distant ver-
tex. The maximum value of the eccentricity represents the graph’s diameter:
diam(G) = maxu∈V eccG(u) = maxu,v∈V dG(u, v). The minimum value of the
eccentricity represents the graph’s radius: rad(G) = minu∈V eccG(u). The set of
vertices with minimum eccentricity forms the center C(G) of a graph G, i.e.,
C(G) = {u ∈ V : eccG(u) = rad(G)}.

A spanning tree T of a graph G with dT (u, v)−dG(u, v) ≤ k, for all u, v ∈ V,
is known as an additive tree spanner of G [9] and, if it exists for a small integer k,
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then it gives a good approximation of all distances in G by the distances in T .
Many optimization problems involving distances in graphs are known to be NP-
hard in general but have efficient solutions in simpler metric spaces, with well-
understood metric structures, including trees. A solution to such an optimization
problem obtained for a tree spanner T of G usually serves as a good approximate
solution to the problem in G.

In [13], the new notion of eccentricity approximating spanning trees was
introduced by Prisner. A spanning tree T of a graph G is called an eccentricity
k-approximating spanning tree if eccT (v)−eccG(v) ≤ k holds for all v ∈ V . Such
a tree tries to approximately preserve only distances from each vertex v to its
most distant vertices and can tolerate larger increases to nearby vertices. They
are important in applications where vertices measure their degree of centrality
by means of their eccentricity and would tolerate a small surplus to the actual
eccentricities [13]. Note also that Nandakumar and Parthasarasthy considered
in [11] eccentricity-preserving spanning trees (i.e., eccentricity 0-approximating
spanning trees) and showed that a graph G has an eccentricity 0-approximating
spanning tree if and only if: (a) either diam(G) = 2rad(G) and |C(G)| = 1, or
diam(G) = 2rad(G)− 1, |C(G)| = 2, and those two center vertices are adjacent;
(b) every vertex u ∈ V \ C(G) has a neighbor v such that eccG(v) < eccG(u).

Every additive tree k-spanner is clearly eccentricity k-approximating. There-
fore, eccentricity k-approximating spanning trees can be found in every inter-
val graph for k = 2 [9,10,12], and in every asteroidal-triple–free graph [9],
strongly chordal graph [3] and dually chordal graph [3] for k = 3. On the
other hand, although for every k there is a chordal graph without a tree k-
spanner [9,12], yet as Prisner demonstrated in [13], every chordal graph has an
eccentricity 2-approximating spanning tree, i.e., with the slightly weaker concept
of eccentricity-approximation, one can be successful even for chordal graphs.

Unfortunately, the method used by Prisner in [13] heavily relies on a char-
acteristic property of chordal graphs (chordal graphs are exactly the intersection
graphs of subtrees of a tree) and is hardly extendable to larger families of graphs.

In this paper we present a new proof of the result of [13] using only metric
properties of chordal graphs (see Theorem 9 and Corollary 3). This allows us
to extend the result to a much larger family of graphs which includes not only
chordal graphs but also other families of graphs known from the literature.

It is known [4,15] that every chordal graph satisfies the following two metric
properties:

α1-metric: if v ∈ I(u,w) and w ∈ I(v, x) are adjacent, then dG(u, x) ≥
dG(u, v) + dG(v, x) − 1 = dG(u, v) + dG(w, x).
triangle condition: for any three vertices u, v, w with 1 = dG(v, w) <
dG(u, v) = dG(u,w) there exists a common neighbor x of v and w such that
dG(u, x) = dG(u, v) − 1.

A graph G satisfying the α1-metric property is called an α1-metric graph.
If an α1-metric graph G satisfies also the triangle condition then G is called
an (α1,Δ)-metric graph. We prove that every (α1,Δ)-metric graph G = (V,E)
has an eccentricity 2-approximating spanning tree and that such a tree can be
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constructed in O(|V ||E|) total time. As a consequence, we get that the underly-
ing graph of every 7-systolic complex (and, hence, every chordal graph) has an
eccentricity 2-approximating spanning tree.

The paper is organized as follows. In Sect. 2, we present additional notions
and notations and some auxiliary results. In Sect. 3, some useful properties of
the eccentricity function on (α1,Δ)-metric graphs are described. Our eccentricity
approximating spanning tree is constructed and analyzed in Sect. 4. In Sect. 5,
the algorithm for the construction of an eccentricity approximating spanning
tree developed in Sect. 4 for (α1,Δ)-metric graphs is generalized and validated
on some real-world networks. Our experiments show that all those real-world
networks have very good eccentricity approximating trees.

Due to space limitations some proofs are omitted, they can be found in the
full journal version of the paper [1].

2 Preliminaries

For a graph G = (V,E), we use n = |V | and m = |E| to denote the cardinality
of the vertex set and the edge set of G. We denote an induced cycle of length k
by Ck (i.e., it has k vertices) and by Wk an induced wheel of size k which is a Ck

with one extra vertex universal to Ck. For a vertex v of G, NG(v) = {u ∈ V :
uv ∈ E} is called the open neighborhood, and NG[v] = NG(v) ∪ {v} the closed
neighborhood of v. The distance between a vertex v and a set S ⊆ V is defined as
dG(v, S) = minu∈S dG(u, v) and the set of furthest (most distant) vertices from
v is denoted by F (v) = {u ∈ V : dG(u, v) = eccG(v)}.

An induced subgraph of G (or the corresponding vertex set A) is called
convex if for each pair of vertices u, v ∈ A it includes the interval I(v, u) of
G between u, v. An induced subgraph H of G is called isometric if the distance
between any pair of vertices in H is the same as their distance in G. In particular,
convex subgraphs are isometric. The disk D(x, r) with center x and radius r ≥ 0
consists of all vertices of G at distance at most r from x. In particular, the unit
disk D(x, 1) = N [x] comprises x and the neighborhood N(x). For an edge e = xy
of a graph G, let D(e, r) := D(x, r) ∪ D(y, r).

By the definition of α1-metric graphs clearly, such a graph cannot contain
any isometric cycles of length k > 5 and any induced cycle of length 4. The
following results characterize α1-metric graphs and the class of chordal graphs
within the class of α1-metric graphs. Recall that a graph is chordal if all its
induced cycles are of length 3.

Theorem 1 ([15]). G is chordal if and only if it is an α1-metric graph not
containing any induced subgraphs isomorphic to cycle C5 and wheel Wk, k ≥ 5.

Theorem 2 ([15]). G is an α1-metric graph if and only if all disks D(v, k)
(v ∈ V , k ≥ 1) of G are convex and G does not contain the graph W++

6 (see
Fig. 1) as an isometric subgraph.
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Fig. 1. Forbidden isometric subgraph W++
6 .

Theorem 3 ([8,14]). All disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex
if and only if G does not contain isometric cycles of length k > 5, and for any
two vertices x, y the neighbors of x in the interval I(x, y) are pairwise adjacent.

A graph G is called a bridged graph if all isometric cycles of G have length
three [8]. The class of bridged graphs is a natural generalization of the class of
chordal graphs. They can be characterized in the following way.

Theorem 4 ([8,14]). G = (V,E) is a bridged graph if and only if the disks
D(v, k) and D(e, k) are convex for all v ∈ V , e ∈ E, and k ≥ 1.

As a consequence of Theorems 2, 3 and 4 we obtain the following equivalences.

Lemma 1. For a graph G = (V,E) the following statements are equivalent:

(a) G is an α1-metric graph not containing an induced C5;
(b) G is a bridged graph not containing W++

6 as an isometric subgraph;
(c) The disks D(v, k) and D(e, k) of G are convex for all v ∈ V , e ∈ E, and

k ≥ 1, and G does not contain W++
6 as an isometric subgraph.

As we will show now the class of (α1,Δ)-metric graphs contains all graphs
described in Lemma 1. An induced C5 is called suspended in G if there is a vertex
in G which is adjacent to all vertices of the C5.

Theorem 5. A graph G is (α1,Δ)-metric if and only if it is an α1-metric graph
where for each induced C5 there is a vertex v ∈ V such that C5 ⊆ N(v), i.e.,
every induced C5 is suspended.

We will also need the following fact.

Lemma 2. Let G = (V,E) be an (α1,Δ)-metric graph, let K be a complete
subgraph of G, and let v be a vertex of G. If for every vertex z ∈ K, d(z, v) = k
holds, then there is a vertex v′ at distance k−1 from v which is adjacent to every
vertex of K.

We note here, without going into the rich theory of systolic complexes, that
the underlying graph of any 7-systolic complex is nothing else than a bridged
graph not containing a 6-wheel W6 as an induced (equivalently, isometric) sub-
graph (see [6] for this fact and a relation of 7-systolic complexes with CAT(0)
complexes). Hence, the class of (α1,Δ)-metric graphs contains the underlying
graphs of 7-systolic complexes.
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3 Eccentricity Function on (α1, Δ)-Metric Graphs

In what follows, by C(G) we denote not only the set of all central vertices of
G but also the subgraph of G induced by this set. We say that the eccentricity
function eccG(v) on G is unimodal if every vertex u ∈ V \C(G) has a neighbor
v such that eccG(v) < eccG(u). In other words, every local minimum of the
eccentricity function eccG(v) is a global minimum on G. It this section we will
often omit subindex G since we deal only with a graph G here. A spanning tree
T of G will be built only in the next section.

In this section, we will show that the eccentricity function eccG(v) on an
(α1,Δ)-metric graph G is almost unimodal and that the radius of the center
C(G) of G is at most 2. Recall that for every graph G, diam(G) ≤ 2rad(G).

Lemma 3. Let G be an α1-metric graph and x be its arbitrary vertex with
ecc(x) ≥ rad(G) + 1. Then, for every vertex z ∈ F (x) and every neighbor v
of x in I(x, z), ecc(v) ≤ ecc(x) holds.

Proof. Assume, by way of contradiction, that ecc(v) > ecc(x) and consider an
arbitrary vertex u ∈ F (v). Since x and v are adjacent, necessarily, d(v, u) =
ecc(v) = ecc(x) + 1 = d(u, x) + 1, i.e., x ∈ I(v, u). By the α1-metric property,
d(u, z) ≥ d(u, x)+d(v, z) = ecc(v)− 1+ ecc(x)− 1 = 2ecc(x)− 1 ≥ 2rad(G)+1.
The latter gives a contradiction to d(u, z) ≤ diam(G) ≤ 2rad(G). ��
Theorem 6. Let G be an (α1,Δ)-metric graph and x be an arbitrary vertex
of G. If (i) ecc(x) > rad(G) + 1 or (ii) ecc(x) = rad(G) + 1 and diam(G) <
2rad(G), then there must exist a neighbor v of x with ecc(v) < ecc(x).

Proof. Define for a neighbor v of x a set Sv := {z ∈ F (x) : v ∈ I(x, z)} of vertices
that are most distant from x and have v on a shortest path from x. Choose a
neighbor v of x which maximizes |Sv|. We claim that ecc(v) < ecc(x). We know,
by Lemma 3, that ecc(v) ≤ ecc(x). Assume ecc(v) = ecc(x) and consider an
arbitrary vertex u ∈ F (v).

Suppose first that x ∈ I(v, u). Then, by the α1-metric property, d(u, z) ≥
d(u, x)+d(v, z) = 2ecc(x)−2 holds for every z ∈ Sv. Hence, if ecc(x) > rad(G)+
1 then d(u, z) > 2rad(G) and thus a contradiction to d(u, z) ≤ diam(G) ≤
2rad(G) arises. If, on the other hand, case (ii) applies, i.e., ecc(x) = rad(G) + 1
and diam(G) < 2rad(G), then it follows that d(u, z) ≥ 2rad(G) > diam(G) and
again a contradiction arises.

Now consider the case that x /∈ I(v, u). Then ecc(v) = ecc(x) implies that
d(u, x) = d(u, v) and u ∈ F (x). By the triangle condition, there must exist a
common neighbor w of x and v such that w ∈ I(x, u)∩I(v, u). Since u belongs to
Sw but not to Sv, then, by the maximality of |Sv|, there must exist a vertex z ∈
F (x) which is in Sv but not in Sw. Thus, d(w, z) > d(v, z) and v ∈ I(w, z) must
hold. Now, the α1-metric property applied to v ∈ I(w, z) and w ∈ I(v, u) gives
d(u, z) ≥ d(u,w) + d(v, z) = 2ecc(x) − 2. As before we get d(u, z) > 2rad(G) ≥
diam(G), if ecc(x) > rad(G) + 1 (case (i)), and d(u, z) ≥ 2rad(G) > diam(G),
if ecc(x) = rad(G)+1 and diam(G) < 2rad(G) (case (ii)). These contradictions
complete the proof. ��
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For each vertex v ∈ V \C(G) of a graph G we can define a parameter loc(v) =
min{d(v, x) : x ∈ V, ecc(x) < ecc(v)} and call it the locality of v. We define the
locality of any vertex from C(G) to be 1. Theorem 6 says that if a vertex v with
loc(v) > 1 exists in an (α1,Δ)-metric graph G then diam(G) = 2rad(G) and
ecc(v) = rad(G) + 1. That is, only in the case that diam(G) = 2rad(G) the
eccentricity function can be not unimodal on G.

Observe that the center C(G) of a graph G = (V,E) can be represented as the
intersection of all the disks of G of radius rad(G), i.e., C(G) =

⋂ {D(v, rad(G)) :
v ∈ V }. Consequently, the center C(G) of an α1-metric graph G is convex (in
particular, it is connected), as the intersection of convex sets is always a convex
set. In general, any set C≤i(G) := {z ∈ V : ecc(z) ≤ rad(G) + i} is a convex set
of G as C≤i(G) =

⋂ {D(v, rad(G) + i) : v ∈ V }.

Corollary 1. In an α1-metric graph G, all sets C≤i(G), i ∈ {0, . . . , diam(G) −
rad(G)}, are convex. In particular, C(G) of an α1-metric graph G is convex.

The following result gives bounds on the diameter and the radius of the center
of an (α1,Δ)-metric graph. Previously it was known that the diameter (the
radius) of the center of a chordal graph is at most 3 (at most 2, respectively) [5].

Theorem 7. For an (α1,Δ)-metric graph G, rad(C(G)) ≤ 2.

Proof. Assume, by way of contradiction, that there are vertices s, t ∈ C(G) such
that d(s, t) = 4. Consider an arbitrary shortest path P = (s = x1, x2, x3, x4, x5 =
t). Since C(G) is convex any shortest path connecting s and t is in C(G).

First we claim that for any vertex u ∈ F (x3) all vertices of P are at distance
r := d(u, x3) = rad(G) from u. As xi ∈ C(G), we know that d(u, xi) ≤ r (1 ≤
i ≤ 5). Assume d(u, xi) = r − 1, d(u, xi+1) = r, and i ≤ 2. Then, the α1-metric
property applied to xi ∈ I(u, xi+1) and xi+1 ∈ I(xi, xi+3) gives d(xi+3, u) ≥
r − 1 + 2 = r + 1 which is a contradiction to d(u, xi+3) ≤ r. So, d(u, x1) =
d(u, x2) = r. By symmetry, also d(u, x4) = d(u, x5) = r.

By the triangle condition, there must exist vertices v and w at distance r −1
from u such that vx1, vx2, wx4, wx5 ∈ E. We claim that x3 is adjacent to neither
v nor w. Assume, without loss of generality, that vx3 ∈ E. Then, d(x5, x1) = 4
implies d(x5, v) = 3 and therefore x3 ∈ I(x5, v). Now, the α1-metric property
applied to x3 ∈ I(x5, v) and v ∈ I(u, x3) gives d(x5, u) ≥ r − 1+2 = r +1 which
is impossible. So, vx3, wx3 /∈ E.

Obviously, vx4, wx2 /∈ E. If d(x4, v) = 3 then x2 ∈ I(x4, v). Thus, by v ∈
I(x2, u) and the α1-metric property, we would get d(x4, u) ≥ r − 1 + 2 = r + 1
which, again, is impossible. Thus, d(x4, v) = 2 must hold. Since, by Theorem 5,
every induced C5 is suspended in G and, further, G cannot contain an induced
C4, we can choose a vertex y ∈ N(v) ∩ N(x4) which is adjacent both to x2 and
x3 as well. If d(y, u) = r then again y ∈ I(v, x5) and v ∈ I(u, y) will imply
d(x5, u) ≥ r − 1 + 2 = r + 1, which is impossible. So, d(y, u) = r − 1 must hold
and, by the convexity of disks, y must be adjacent to w.

All the above holds for every shortest path P = (s = x1, x2, x3, x4, x5 = t)
connecting vertices s and t. Now, assume that P is chosen in such a way that
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among all vertices in I(s, t) that are at distance 2 from s (we will call this set
of vertices S2(s, t)) the vertex x3 has the minimum number of furthest vertices,
i.e., |F (x3)| is as small as possible. Observe that, by convexity of the center,
S2(s, t) ⊆ C(G). As y also belongs to S2(s, t) and has u at distance r − 1, by the
choice of x3, there must exist a vertex u′ ∈ F (y) which is at distance r − 1 from
x3. Applying the previous arguments to the path P ′ := (s = x1, x2, y, x4, x5 = t),
we will have d(xi, u

′) = d(y, u′) = r for i = 1, 2, 4, 5, and get two more vertices
v′ and w′ at distance r − 1 from u′ such that v′x1, v

′x2, w
′x4, w

′x5 ∈ E and
v′y, w′y /∈ E. By the convexity of disk D(u′, r − 1), also v′x3, w

′x3 ∈ E. Now
consider the disk D(x2, 2). Since w,w′ are in the disk and x5 is not, vertices w
and w′ must be adjacent. But then vertices y, x3, w

′, w form a forbidden induced
cycle C4.

The obtained contradictions show that a shortest path P of length 4 cannot
exist in C(G), i.e., diam(C(G)) ≤ 3. As C(G) is a convex set of G, the subgraph
of G induced by C(G) is also an α1-metric graph. According to [15], diam(G) ≥
2rad(G) − 2 holds for every α1-metric graph G. Hence, for a graph induced by
C(G) we have 3 ≥ diam(C(G)) ≥ 2rad(C(G)) − 2, i.e., rad(C(G)) ≤ 2. ��
Corollary 2 ([5]). For a chordal graph G, rad(C(G)) ≤ 2.

For our next arguments we need a generalization of the set S2(s, t), as used
in the proof of Theorem 7. We define a slice of the interval I(u, v) from u to v
for 0 ≤ k ≤ d(u, v) to be the set Sk(u, v) = {w ∈ I(u, v) : d(w, u) = k}.

Theorem 8. Let G be an (α1,Δ)-metric graph. Then, in every slice Sk(u, v)
there is a vertex x that is universal to that slice, i.e., Sk(u, v) ⊆ N [x]. In partic-
ular, if diam(G) = 2rad(G), then diam(C(G)) ≤ 2 and rad(C(G)) ≤ 1.

4 Eccentricity Approximating Spanning Tree
Construction

It this section, we construct an eccentricity approximating spanning tree and
analyze its quality for (α1,Δ)-metric graphs. Here, we will use sub-indices G

and T to indicate whether the distances or the eccentricities are considered in G
or in T . I(u, v) will always mean the interval between vertices u and v in G.

4.1 Tree Construction for Unimodal Eccentricity Functions

First consider the case when the eccentricity function on G is unimodal, that is,
every non-central vertex of G has a neighbor with smaller eccentricity. We will
need the following lemmas.

Lemma 4 ([7]). Let G be an arbitrary graph. The eccentricity function on G is
unimodal if and only if, for every vertex v of G, eccG(v) = dG(v, C(G))+rad(G).
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Lemma 5 ([2]). Let G be an arbitrary α1-metric graph. Let x, y, v, u be vertices
of G such that v ∈ I(x, y), x ∈ I(v, u), and x and v are adjacent. Then d(u, y) =
d(u, x) + d(v, y) holds if and only if there exist a neighbor x′ of x in I(x, u) and
a neighbor v′ of v in I(v, y) with dG(x′, v′) = 2; in particular, x′ and v′ lie on a
common shortest path of G between u and y.

We construct a spanning tree T of G as follows. First find the center C(G) of
G and pick an arbitrary central vertex c of the graph C(G), i.e., c ∈ C(C(G)).
Compute a breadth-first-search tree T ′ of C(G) started at c. Expand this tree T ′

to a spanning tree T of G by identifying for every vertex v ∈ V \C(G) its parent
vertex in the following way: among all neighbors x of v with eccG(x) = eccG(v)−1
pick that vertex which is closest to c in G (break ties arbitrarily).

Lemma 6. Let G be an (α1,Δ)-metric graph whose eccentricity function is uni-
modal. Then, for a tree T constructed as described above and every vertex v of
G, dG(v, c) = dT (v, c) holds, i.e., T is a shortest-path-tree of G started at c.

Proof. Let v be an arbitrary vertex of G and let v′ be a vertex of C(G) closest
to v in T . By Lemma 4 and by the construction of T , dG(v, v′) = dT (v, v′)
and v′ is a vertex of C(G) closest to v in G. By the construction of T ′, also
dG(c, v′) = dT (c, v′) (note that, as C(G) is a convex subgraph of G, clearly,
dC(G)(x, y) = dG(x, y) for every pair x, y of C(G)). So, in the tree T , we have
dT (c, v′)+dT (v′, v) = dT (v, c). If dG(c, v′)+dG(v′, v) = dG(v, c), then dG(v, c) =
dT (v, c), and we are done. Assume, therefore, that dG(c, v′)+dG(v′, v) > dG(v, c)
and among all vertices that fulfill this inequality, let v be the one that is closest
to C(G). Consider the neighbor x of v′ on the path in T from v′ to v. We have
x ∈ I(v′, v) and, by Lemma 4, eccG(x) = rad(G)+1. Note that x = v is possible.

If v′ /∈ I(x, c) then dG(x, c) ≤ dG(v′, c). By the convexity of C(G), x with
eccG(x) = rad(G)+1 cannot be on a shortest path between two central vertices
c and v′. Hence, dG(x, c) = dG(v′, c) holds. By the triangle condition, there must
exist a common neighbor y of v′ and x which is at distance dG(v′, c) − 1 from c.
Since y ∈ I(v′, c), by the convexity of C(G), eccG(y) = rad(G). But then, as y
is closer to c than v′ is, vertex x cannot choose v′ as its parent in T , since y is
a better choice.

If v′ ∈ I(x, c) then, by the α1-metric property, dG(c, v′)+dG(x, v) ≤ dG(v, c).
As dG(c, v′) + dG(v′, v) > dG(v, c), we have dG(c, v′) + dG(x, v) = dG(v, c). By
Lemma 5, there must exist a neighbor x′ of x in I(x, v) and a neighbor v′′ of v′

in I(v′, c) with dG(x′, v′′) = 2. Denote by w a common neighbor of x′ and v′′. We
have dG(x, c) > dG(w, c). Set k := dG(v, v′) = dG(v, C(G)) = eccG(v) − rad(G).
Let PT := (x = a1, . . . , ak = v) be the path in T between x and v. Let PG :=
(w = b1, x

′ = b2, . . . , bk = v) be a shortest path of G between w and v which
shares a longest suffix with PT , that is, aj = bj for all j > i, ai 
= bi, and i is
minimal under these conditions. Note that i = 1 and a2 = b2 = v is possible. By
Lemma 4, eccG(ai) = eccG(bi) = rad(G) + i = eccG(ai+1) − 1.

Since v is a vertex closest to C(G) fulfilling inequality dG(c, v′)+ dG(v′, v) >
dG(v, c), for vertex ai (i < k), the equation dG(c, v′) + dG(v′, ai) =
dG(ai, c) holds. Hence, dG(c, x) + dG(x, ai) = dG(ai, c). Also, by Lemma 5,
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dG(c, w) + dG(w, bi) = dG(bi, c). Consequently, dG(x, c) > dG(w, c) and
dG(x, ai) = dG(w, bi) imply dG(ai, c) > dG(bi, c). Therefore, vertex ai+1 can-
not choose ai as its parent in T , since bi is a better choice.

The obtained contradictions prove that dG(c, v′) + dG(v′, v) = dG(v, c) and
hence dG(v, c) = dT (v, c). ��
Lemma 7. Let G be an (α1,Δ)-metric graph whose eccentricity function is uni-
modal. Then, for a tree T constructed as described above and for every vertex v
of G, eccT (v) ≤ eccG(v) + rad(C(G)) holds.

Proof. Let v be an arbitrary vertex of G, v′ be a vertex of C(G) closest to v
in T , and u be a vertex most distant from v in T , i.e., eccT (v) = dT (v, u). By
Lemma 4 and by the construction of T , dG(v, v′) = dT (v, v′) and v′ is a vertex
of C(G) closest to v in G. We have eccT (v) = dT (v, u) ≤ dT (v, v′) + dT (v′, c) +
dT (c, u), where c ∈ C(C(G)) is the root of the tree T (see the construction of T ).
Since dG(v, v′) = dT (v, v′), dT (v′, c) = dG(v′, c) ≤ rad(C(G)), and dT (c, u) =
dG(c, u) ≤ rad(G) (by Lemma 6 and the fact that c ∈ C(C(G))), we obtain
eccT (v) ≤ dG(v, v′)+rad(C(G))+rad(G) = eccG(v)+rad(C(G)), as dG(v, v′)+
rad(G) = dG(v, C(G)) + rad(G) = eccG(v) by Lemma 4. ��

4.2 Construction for Eccentricity Functions that Are Not Unimodal

Consider now the case when the eccentricity function on G is not unimodal, that
is, there is at least one vertex v /∈ C(G) in G which has no neighbor with smaller
eccentricity. By Theorem 6, eccG(v) = rad(G) + 1, diam(G) = 2rad(G) and v
has a neighbor with the eccentricity equal to eccG(v). We will need the following
weaker version of Lemma 4.

Lemma 8. Let G = (V,E) be an (α1,Δ)-metric graph. Let v be an arbitrary
vertex of G and v′ be an arbitrary vertex of C(G) closest to v. Then,

dG(v, C(G)) + rad(G) − 1 ≤ eccG(v) ≤ dG(v, C(G)) + rad(G).

Furthermore, there is a shortest path P := (v′ = x0, x1, . . . , x� = v), connecting
v with v′, for which the following holds:

(a) if eccG(v) = dG(v, C(G))+rad(G) then eccG(xi) = dG(xi, C(G))+rad(G) =
i + rad(G) for each i ∈ {0, . . . , �};

(b) if eccG(v) = dG(v, C(G)) + rad(G) − 1 then eccG(xi) = dG(xi, C(G)) − 1 +
rad(G) = i − 1 + rad(G) for each i ∈ {3, . . . , �} and eccG(x1) = eccG(x2) =
rad(G) + 1.

In particular, if eccG(v) = rad(G) + 1 then dG(v, C(G)) ≤ 2.

Now we are ready to construct an eccentricity approximating spanning tree
T of G for the case when the eccentricity function is not unimodal. We know
that diam(G) = 2rad(G) in this case and, therefore, C(G) ⊆ Srad(G)(x, y) for
any diametral pair of vertices x and y, i.e., for x, y with dG(x, y) = diam(G).
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By Theorem 8 and since C(G) is convex, there is a vertex c ∈ C(G) such that
C(G) ⊆ N [c]. First we find such a vertex c in C(G) and build a tree T ′ by
making c adjacent with every other vertex of C(G). Then, we expand this tree
T ′ to a spanning tree T of G by identifying for every vertex v ∈ V \C(G) its
parent vertex in the following way: if v has a neighbor with eccentricity less
than eccG(v), then among all such neighbors pick that vertex which is closest to
c in G (break ties arbitrarily); if v has no neighbors with eccentricity less than
eccG(v) (i.e., eccG(v) = rad(G) + 1 by Theorem 6), then among all neighbors x
of v with eccG(x) = eccG(v) = rad(G)+1 pick again that vertex which is closest
to c in G (break ties arbitrarily).

Lemma 9. Let G be an (α1,Δ)-metric graph whose eccentricity function is not
unimodal. Then, for a tree T constructed as described above and every vertex v
of G, dT (v, c) = dG(v, c) holds.

Proof. Assume, by way of contradiction, that dG(v, c) < k := dT (v, c) and let v
be a vertex with such a condition that has smallest eccentricity eccG(v). We may
assume that eccG(v) > rad(G) + 1. Indeed, every v with eccG(v) = rad(G) + 1
either has a neighbor in C(G) or has a neighbor with a neighbor in C(G) (see
Lemma 8). Therefore, if dG(v, c) < dT (v, c) then, by the construction of T ,
necessarily dG(v, c) = 2, dT (v, c) = 3 and the neighbor x of v on the path of T
between v and c must have the eccentricity equal to rad(G) + 1 = eccG(v). But
then, for a common neighbor w of v and c in G, eccG(w) ≤ rad(G) + 1 must
hold and hence vertex v cannot choose x as its parent in T , since w is a better
choice.

So, let eccG(v) > rad(G) + 1. By Lemma 8, there must exist a shortest path
in G between v and c such that the neighbor w of v on this path has eccentricity
eccG(w) = eccG(v) − 1. Hence, by the construction of T , eccG(x) = eccG(v) − 1
must hold for the neighbor x of v on the path of T between v and c. By the
minimality of eccG(v), we have dG(x, c) = dT (x, c) = k − 1. Since dG(w, c) =
dG(v, c)−1 < k−1, a contradiction arises; again v cannot choose x as its parent
in T , since w is a better choice. ��
Lemma 10. Let G be an (α1,Δ)-metric graph with diam(G) = 2rad(G). Then,
for a tree T constructed as described above and every vertex v of G, eccT (v) ≤
eccG(v) + 2 holds.

Proof. Let v be an arbitrary vertex of G and u be a vertex most distant from v
in T , i.e., eccT (v) = dT (v, u). We have eccT (v) = dT (v, u) ≤ dT (v, c)+dT (c, u) =
dG(v, c)+dG(c, u) ≤ dG(v, c)+rad(G) ≤ dG(v, C(G))+1+rad(G) ≤ eccG(v)+2
since dG(c, u) ≤ eccG(c) = rad(G), dG(v, c) ≤ dG(v, C(G)) + 1 (recall that
C(G) ⊆ N [c]), and dG(v, C(G)) − 1 + rad(G) ≤ eccG(v) (by Lemma 8). ��

Our main result is the following theorem. It combines Theorem 7, Lemmas 7
and 10; the complexity follows straightforward.

Theorem 9. Every (α1,Δ)-metric graph G = (V,E) has an eccentricity 2-
approximating spanning tree. Furthermore, such a tree can be constructed in
O(|V ||E|) total time.
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As a consequence we have the following corollary. Note that the result of
Corollary 3 (and hence of Theorem 9) is sharp as there are chordal graphs that
do not have any eccentricity 1-approximating spanning tree [13].

Corollary 3. The underlying graph of every 7-systolic complex has an eccen-
tricity 2-approximating spanning tree. In particular, every chordal graph has an
eccentricity 2-approximating spanning tree.

5 Experimental Results for Some Real-World Networks

We say that a tree T is an eccentricity k-approximating tree for a graph G if
for every vertex v of G, |eccT (v) − eccG(v)| ≤ k holds. If T is a spanning tree,
then eccT (v) ≥ eccG(v), for all v ∈ V , and this new definition agrees with the
definition of an eccentricity k-approximating spanning tree.

Table 1. A spanning tree T constructed by heuristic EAST: for each vertex u ∈ V ,
k(u) = eccT (u) − eccG(u); kmax = maxu∈V k(u); kavg = 1

n

∑
u∈V k(u). A tree T ′

constructed by heuristic EAT: for each vertex u ∈ V , k(u) = eccT ′(u) − eccG(u);
kmax = maxu∈V k(u); kmin = minu∈V k(u); kavg = 1

n

∑
u∈V k(u)

Network diam(G) kmax kavg [kmin, kmax] kavg

of T of T of T ′ of T ′

EMAIL 8 3 1.774 [−1, 0] −0.0009

Facebook 8 2 0.69 [0, 0] 0

Dutch-Elite 22 6 2.083 [−1, 0] −0.771

Jazz 6 2 1.742 [−1, 0] −0.015

EVA 18 2 0.575 [−1, 0] −0.36

AS-Graph-1 9 2 0.64 [0, 1] 0.62

AS-Graph-2 11 3 1.272 [0, 1] 0.949

AS-Graph-3 9 2 0.312 [0, 1] 0.248

E-coli-PI 5 2 0.769 [0, 1] 0.595

Yeast-PI 12 4 0.972 [−1, 0] −0.168

Macaque-brain-1 4 1 0.222 [0, 0] 0

Macaque-brain-2 4 2 1.489 [−1, 0] −0.003

E-coli-metabolic 16 4 1.132 [−1, 0] −0.624

C-elegans-metabolic 7 1 0.349 [0, 1] 0.342

Yeast-transcription 9 3 1.121 [0, 1] 0.019

US-Airlines 6 0 0 [0, 0] 0

POWER-Grid 46 4 1.409 [−3, 0] −1.309

Word-Adjacency 5 1 0.411 [0, 1] 0.152

Food 4 2 1.629 [−1, 0] −0.015
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Based on what we learned from (α1,Δ)-metric graphs in Sect. 4, we propose
two heuristics for constructing eccentricity approximating trees in general graphs
and analyze their performance on a set of real-world networks. Both heuristics
try to mimic the construction for (α1,Δ)-metric graphs that we used in Sect. 4.
For more details on the data-set and the experiments see the full journal version
of the paper [1].

Our first heuristic, named EAST, constructs an Eccetricity Approximating
Spanning Tree TEAST as a shortest-path-tree starting at a vertex c ∈ C(C(G)).
We identify an arbitrary vertex c ∈ C(C(G)) as the root of TEAST , and for each
other vertex v of G define its parent in TEAST as follows: among all neighbors of
v in I(v, c) choose a vertex with minimum eccentricity (break ties arbitrarily).

Our second heuristic, named EAT, constructs for a graph G an Eccetricity
Approximating Tree TEAT (not necessarily a spanning tree; it may have a few
edges not present in graph G) as follows. We again identify an arbitrary vertex
c ∈ C(C(G)) as the root of TEAT and make it adjacent in TEAT to all other
vertices of C(G) (clearly, some of these edges might not be contained in G). Then,
for each vertex v ∈ V \C(G), we find a vertex u with eccG(u) < eccG(v) which
is closest to v, and if there is more than one such vertex, we pick the one which
is closest to c. In other words, among all vertices {u ∈ V : dG(u, v) = loc(v)
and eccG(u) < eccG(v)}, we choose a vertex u which is closest to c (break
ties arbitrarily). Such a vertex u becomes the parent of v in TEAT . Clearly, if
loc(v) > 1 then edge uv of TEAT is not present in G.

We tested both heuristics on a set of real-world networks. Experimental
results obtained are presented in Table 1. See the full journal version of the
paper [1] for more details. It turns out that the eccentricity terrain of each of
those networks resembles the eccentricity terrain of a tree.
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