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In this paper, we study collective additive tree spanners for families of graphs enjoying 
special Robertson–Seymour’s tree-decompositions, and demonstrate interesting conse-
quences of obtained results. We say that a graph G admits a system of μ collective additive 
tree r-spanners (resp., multiplicative tree t-spanners) if there is a system T (G) of at most 
μ spanning trees of G such that for any two vertices x, y of G a spanning tree T ∈ T (G)

exists such that dT (x, y) ≤ dG (x, y) + r (resp., dT (x, y) ≤ t · dG (x, y)). When μ = 1 one gets 
the notion of additive tree r-spanner (resp., multiplicative tree t-spanner). It is known that 
if a graph G has a multiplicative tree t-spanner, then G admits a Robertson–Seymour’s 
tree-decomposition with bags of radius at most �t/2� in G . We use this to demonstrate 
that there is a polynomial time algorithm that, given an n-vertex graph G admitting a 
multiplicative tree t-spanner, constructs a system of at most log2 n collective additive tree 
O (t log n)-spanners of G . That is, with a slight increase in the number of trees and in the 
stretch, one can “turn” a multiplicative tree spanner into a small set of collective additive 
tree spanners. We extend this result by showing that if a graph G admits a multiplicative 
t-spanner with tree-width k − 1, then G admits a Robertson–Seymour’s tree-decomposition 
each bag of which can be covered with at most k disks of G of radius at most �t/2� each. 
This is used to demonstrate that, for every fixed k, there is a polynomial time algorithm 
that, given an n-vertex graph G admitting a multiplicative t-spanner with tree-width k − 1, 
constructs a system of at most k(1 + log2 n) collective additive tree O (t log n)-spanners 
of G .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the basic questions in the design of routing schemes for communication networks is to construct a spanning 
network (a so-called spanner) which has two (often conflicting) properties: it should have simple structure and nicely 
approximate distances in the network. This problem fits in a larger framework of combinatorial and algorithmic problems 
that are concerned with distances in a finite metric space induced by a graph. An arbitrary metric space (in particular a 
finite metric defined by a graph) might not have enough structure to exploit algorithmically. A powerful technique that has 
been successfully used recently in this context is to embed the given metric space in a simpler metric space such that the 
distances are approximately preserved in the embedding. New and improved algorithms have resulted from this idea for 
several important problems (see, e.g., [4,6,18,39,45,52]).

✩ Results of this paper were partially presented at the SOFSEM 2013 conference [27].
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There are several ways to measure the quality of this approximation, two of them leading to the notion of a spanner. For 
t ≥ 1, a spanning subgraph H of G = (V , E) is called a (multiplicative) t-spanner of G if dH (u, v) ≤ t ·dG(u, v) for all u, v ∈ V
[19,56,57]. If r ≥ 0 and dH (u, v) ≤ dG(u, v) + r, for all u, v ∈ V , then H is called an additive r-spanner of G [51,60,61]. The 
parameter t is called the stretch (or stretch factor) of H , while the parameter r is called the surplus of H . In what follows, 
we will often omit the word “multiplicative” when we refer to multiplicative spanners.

Tree metrics are a very natural class of simple metric spaces since many algorithmic problems become tractable on them. 
A (multiplicative) tree t-spanner of a graph G is a spanning tree with a stretch t [17], and an additive tree r-spanner of G is 
a spanning tree with a surplus r [60]. If we approximate the graph by a tree spanner, we can solve a given problem on 
the tree and the solution interpret on the original graph. The tree t-spanner problem asks, given a graph G and a positive 
number t , whether G admits a tree t-spanner. Note that the problem of finding a tree t-spanner of G minimizing t is known 
in the literature also as the Minimum Max-Stretch spanning Tree problem (see, e.g., [40] and literature cited therein).

Unfortunately, not many graph families admit good tree spanners. This motivates the study of sparse spanners, i.e., 
spanners with a small amount of edges. There are many applications of spanners in various areas; especially, in dis-
tributed systems and communication networks. In [58], close relationships were established between the quality of spanners 
(in terms of stretch factor and the number of spanner edges), and the time and communication complexities of any syn-
chronizer for the network based on this spanner. Another example is the usage of tree t-spanners in the analysis of arrow 
distributed queuing protocols [47,55]. Sparse spanners are very useful in message routing in communication networks; in 
order to maintain succinct routing tables, efficient routing schemes can use only the edges of a sparse spanner [59]. The
Sparsest t-Spanner problem asks, for a given graph G and a number t , to find a t-spanner of G with the smallest number 
of edges. We refer to the survey paper of Peleg [54] for an overview on spanners.

Inspired by ideas from works of Alon et al. [1], Bartal [4,5], Fakcharoenphol et al. [41], and to extend those ideas to 
designing compact and efficient routing and distance labeling schemes in networks, in [31], a new notion of collective tree 
spanners1 was introduced. This notion is slightly weaker than the one of a tree spanner and slightly stronger than the notion 
of a sparse spanner. We say that a graph G = (V , E) admits a system of μ collective additive tree r-spanners if there is a system 
T (G) of at most μ spanning trees of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists such that 
dT (x, y) ≤ dG(x, y) + r (a multiplicative variant of this notion can be defined analogously). Clearly, if G admits a system of 
μ collective additive tree r-spanners, then G admits an additive r-spanner with at most μ × (n − 1) edges (take the union 
of all those trees), and if μ = 1 then G admits an additive tree r-spanner.

Recently, in [32], spanners of bounded tree-width were introduced, motivated by the fact that many algorithmic problems 
are tractable on graphs of bounded tree-width, and a spanner H of G with small tree-width can be used to obtain an 
approximate solution to a problem on G . In particular, efficient and compact distance and routing labeling schemes are 
available for bounded tree-width graphs (see, e.g., [29,45] and papers cited therein), and they can be used to compute 
approximate distances and route along paths that are close to shortest in G . The k-Tree-width t-spanner problem asks, for 
a given graph G , an integer k and a positive number t ≥ 1, whether G admits a t-spanner of tree-width at most k. Every 
connected graph with n vertices and at most n − 1 + m edges is of tree-width at most m + 1 and hence this problem is a 
generalization of the Tree t-Spanner and the Sparsest t-Spanner problems. Furthermore, t-spanners of bounded tree-width 
have much more structure to exploit algorithmically than sparse t-spanners (which have a small number of edges but may 
lack other nice structural properties).

1.1. Related work

Tree spanners. Substantial work has been done on the tree t-spanner problem on unweighted graphs. Cai and Corneil [17]
have shown that, for a given graph G , the problem to decide whether G has a tree t-spanner is NP-complete for any fixed 
t ≥ 4 and is linear time solvable for t = 1, 2 (the status of the case t = 3 is open for general graphs).2 The NP-completeness 
result was further strengthened in [15] and [16], where Brandstädt et al. showed that the problem remains NP-complete 
even for the class of chordal graphs (i.e., for graphs where each induced cycle has length 3) and every fixed t ≥ 4, and for 
the class of chordal bipartite graphs (i.e., for bipartite graphs where each induced cycle has length 4) and every fixed t ≥ 5.

The tree t-spanner problem on planar graphs was studied in [32,42]. In [42], Fekete and Kremer proved that the tree 
t-spanner problem on planar graphs is NP-complete (when t is part of the input) and polynomial time solvable for t = 3. For 
fixed t ≥ 4, the complexity of the tree t-spanner problem on arbitrary planar graphs was left as an open problem in [42]. 
This open problem was recently resolved in [32] by Dragan et al., where it was shown that the tree t-spanner problem is 
linear time solvable for every fixed constant t on the class of apex-minor-free graphs which includes all planar graphs and 
all graphs of bounded genus. Note also that a number of particular graph classes (like interval graphs, permutation graphs, 
asteroidal-triple-free graphs, strongly chordal graphs, dually chordal graphs, and others) admit additive tree r-spanners for 
small values of r (we refer reader to [14–17,42,50,54,55,60,61] and papers cited therein).

The first O (log n)-approximation algorithm for the minimum value of t for the tree t-spanner problem was developed 
by Emek and Peleg in [40] (where n is the number of vertices in a graph). Recently, another logarithmic approximation 

1 Independently, Gupta et al. in [45] introduced a similar concept which is called tree covers there.
2 When G is an unweighted graph, t can be assumed to be an integer.
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algorithm for the problem was proposed in [28] (we elaborate more on this in Section 1.2). Emek and Peleg also established 
in [40] that unless P = NP, the problem cannot be approximated additively by any o(n) term. Hardness of approximation is 
established also in [50], where it was shown that approximating the minimum value of t for the tree t-spanner problem 
within factor better than 2 is NP-hard (see also [55] for an earlier result).

Sparse spanners. Sparse t-spanners were introduced by Peleg, Schäffer and Ullman in [56,58] and since that time were 
studied extensively. It was shown by Peleg and Schäffer in [56] that the problem of deciding whether a graph G has a 
t-spanner with at most m edges is NP-complete. Later, Kortsarz [48] showed that for every t ≥ 2 there is a constant c < 1
such that it is NP-hard to approximate the sparsest t-spanner within the ratio c · logn, where n is the number of vertices in 
the graph. On the other hand, the problem admits an O (log n)-ratio approximation for t = 2 [49,48] and an O (n2/(t+1))-ratio 
approximation for t > 2 [37]. For some other inapproximability and approximability results for the Sparsest t-Spanner

problem on general graphs we refer the reader to [11,12,23,22,38,35,37,63] and papers cited therein. It is interesting to note 
also that any (even weighted) n-vertex graph admits an O (2k − 1)-spanner with at most O (n1+1/k) edges for any k ≥ 1, and 
such a spanner can be constructed in polynomial time [2,7,63].

On planar graphs the Sparsest t-Spanner problem was studied as well. Brandes and Handke have shown that the decision 
version of the problem remains NP-complete on planar graphs for every fixed t ≥ 5 (the case 2 ≤ t ≤ 4 is open) [13]. 
Duckworth, Wormald, and Zito [34] have shown that the problem of finding a sparsest 2-spanner of a 4-connected planar 
triangulation admits a polynomial time approximation scheme (PTAS). Dragan et al. [33] proved that the Sparsest t-Spanner

problem admits PTAS for graph classes of bounded local tree-width (and therefore for planar and bounded genus graphs).
Sparse additive spanners were considered in [8,24,36,51,64]. It is known that every n-vertex graph admits an additive 

2-spanner with at most Θ(n3/2) edges [24,36], an additive 6-spanner with at most O (n4/3) edges [8], and an additive 
O (n(1−1/k)/2)-spanner with at most O (n1+1/k) edges for any k ≥ 1 [8]. All those spanners can be constructed in polynomial 
time. We refer the reader to paper [64] for a good summary of the state of the art of results on the sparsest additive 
spanner problem in general graphs.

Collective tree spanners. The problem of finding “small” systems of collective additive tree r-spanners for small values of 
r was examined on special classes of graphs in [20,30,29,31,65]. For example, in [20,31], sharp results were obtained for 
unweighted chordal graphs and c-chordal graphs (i.e., the graphs where each induced cycle has length at most c): every 
c-chordal graph admits a system of at most log2 n collective additive tree (2�c/2	)-spanners, constructible in polynomial 
time; no system of constant number of collective additive tree r-spanners can exist for chordal graphs (i.e., when c = 3) 
and r ≤ 3, and no system of constant number of collective additive tree r-spanners can exist for outerplanar graphs for any 
constant r.

Only papers [29,45,65] have investigated collective (multiplicative or additive) tree spanners in weighted graphs. It was 
shown that any weighted n-vertex planar graph admits a system of O (

√
n) collective multiplicative tree 1-spanners (equiv-

alently, additive tree 0-spanners) [29,45] and a system of at most 2 log3/2 n collective multiplicative tree 3-spanners [45]. 
Furthermore, any weighted graph with genus at most g admits a system of O (

√
gn) collective additive tree 0-spanners

[29,45], any weighted graph with tree-width at most k − 1 admits a system of at most k log2 n collective additive tree 
0-spanners [29,45], any weighted graph G with clique-width at most k admits a system of at most k log3/2 n collec-
tive additive tree (2w)-spanners [29], any weighted c-chordal graph G admits a system of log2 n collective additive tree 
(2�c/2	w)-spanners [29] (where w denotes the maximum edge weight in G).

Collective tree spanners of Unit Disk Graphs (UDGs) (which often model wireless ad hoc networks) were investigated 
in [65]. It was shown that every n-vertex UDG G admits a system T (G) of at most 2 log 3

2
n + 2 spanning trees of G such 

that, for any two vertices x and y of G , there exists a tree T in T (G) with dT (x, y) ≤ 3 · dG(x, y) + 12. That is, the distances 
in any UDG can be approximately represented by the distances in at most 2 log 3

2
n + 2 of its spanning trees. Based on this 

result a new compact and low delay routing labeling scheme was proposed for Unit Disk Graphs.

Spanners with bounded tree-width. The k-Tree-width t-spanner problem was considered in [32] and [43]. It was shown that 
the problem is linear time solvable for every fixed constants t and k on the class of apex-minor-free graphs [32], which 
includes all planar graphs and all graphs of bounded genus, and on the graphs with bounded degree [43].

1.2. Our results and their place in the context of the previous results

This paper was inspired by few recent results from [26,28,37,40]. Elkin and Peleg in [37], among other results, described 
a polynomial time algorithm that, given an n-vertex graph G admitting a tree t-spanner, constructs a t-spanner of G with 
O (n log n) edges. Emek and Peleg in [40] presented the first O (log n)-approximation algorithm for the minimum value of t
for the tree t-spanner problem. They described a polynomial time algorithm that, given an n-vertex graph G admitting a 
tree t-spanner, constructs a tree O (t log n)-spanner of G . Later, a simpler and faster O (log n)-approximation algorithm for 
the problem was given by Dragan and Köhler [28]. Their result uses a new necessary condition for a graph to have a tree 
t-spanner: if a graph G has a tree t-spanner, then G admits a Robertson–Seymour’s tree-decomposition with bags of radius 
at most �t/2� in G .
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To describe the results of [26] and to elaborate more on the Dragan–Köhler’s approach, we need to recall definitions of 
a few graph parameters. They all are based on the notion of tree-decomposition introduced by Robertson and Seymour in 
their work on graph minors [62].

A tree-decomposition of a graph G = (V , E) is a pair ({Xi |i ∈ I}, T = (I, F )) where {Xi |i ∈ I} is a collection of subsets of V , 
called bags, and T is a tree. The nodes of T are the bags {Xi |i ∈ I} satisfying the following three conditions:

1.
⋃

i∈I Xi = V ;
2. for each edge uv ∈ E , there is a bag Xi such that u, v ∈ Xi ;
3. for all i, j, k ∈ I , if j is on the path from i to k in T , then Xi ∩ Xk ⊆ X j . Equivalently, this condition could be stated as 

follows: for all vertices v ∈ V , the set of bags {i ∈ I|v ∈ Xi} induces a connected subtree T v of T .

For simplicity we denote a tree-decomposition ({Xi |i ∈ I}, T = (I, F )) of a graph G by T (G).
Tree-decompositions were used to define several graph parameters to measure how close a given graph is to some known 

graph class (e.g., to trees or to chordal graphs) where many algorithmic problems could be solved efficiently. The width of 
a tree-decomposition T (G) = ({Xi |i ∈ I}, T = (I, F )) is maxi∈I |Xi | − 1. The tree-width of a graph G , denoted by tw(G), is the 
minimum width, over all tree-decompositions T (G) of G [62]. The trees are exactly the graphs with tree-width 1. The length
of a tree-decomposition T (G) of a graph G is λ := maxi∈I maxu,v∈Xi dG (u, v) (i.e., each bag Xi has diameter at most λ in G). 
The tree-length of G , denoted by tl(G), is the minimum of the length, over all tree-decompositions of G [25]. The chordal 
graphs are exactly the graphs with tree-length 1. Note that these two graph parameters are not related to each other. For 
instance, a clique on n vertices has tree-length 1 and tree-width n − 1, whereas a cycle on 3n vertices has tree-width 2 
and tree-length n. In [28], yet another graph parameter was introduced, which is very similar to the notion of tree-length 
and, as it turns out, is related to the tree t-spanner problem. The breadth of a tree-decomposition T (G) of a graph G is the 
minimum integer r such that for every i ∈ I there is a vertex vi ∈ V (G) with Xi ⊆ Dr(vi, G) (i.e., each bag Xi can be covered 
by a disk Dr(vi, G) := {u ∈ V (G)|dG (u, vi) ≤ r} of radius at most r in G). Note that vertex vi does not need to belong to Xi . 
The tree-breadth of G , denoted by tb(G), is the minimum of the breadth, over all tree-decompositions of G . Evidently, for 
any graph G , 1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G) holds. Hence, if one parameter is bounded by a constant for a graph G then the 
other parameter is bounded for G as well.

We say that a family of graphs G is of bounded tree-breadth (of bounded tree-width, of bounded tree-length) if there is a 
constant c such that for each graph G from G , tb(G) ≤ c (resp., tw(G) ≤ c, tl(G) ≤ c).

It was shown in [28] that if a graph G admits a tree t-spanner then its tree-breadth is at most �t/2� and its tree-length is 
at most t . Furthermore, any graph G with tree-breadth tb(G) ≤ ρ admits a tree (2ρ�log2 n	)-spanner that can be constructed 
in polynomial time. Thus, these two results gave a new log2 n-approximation algorithm for the tree t-spanner problem 
on general (unweighted) graphs (see [28] for details). The algorithm of [28] is conceptually simpler than the previous 
O (log n)-approximation algorithm proposed for the problem by Emek and Peleg [40].

Dourisboure et al. in [26] considered the construction of additive spanners with few edges for n-vertex graphs having a 
tree-decomposition into bags of diameter at most λ, i.e., the tree-length λ graphs. For such graphs they construct additive 
2λ-spanners with O (λn + n log n) edges, and additive 4λ-spanners with O (λn) edges. Combining these results with the 
results of [28], we obtain the following interesting fact (in a sense, turning a multiplicative stretch into an additive surplus 
without much increase in the number of edges).

Theorem 1. (Combining [26] and [28].) If a graph G admits a (multiplicative) tree t-spanner then it has an additive 2t-spanner with 
O (tn + n log n) edges and an additive 4t-spanner with O (tn) edges, both constructible in polynomial time.

This fact rises few intriguing questions. Does a polynomial time algorithm exist that, given an n-vertex graph G ad-
mitting a (multiplicative) tree t-spanner, constructs an additive O (t)-spanner of G with O (n) or O (n log n) edges (where 
the number of edges in the spanner is independent of t)? Is a result similar to the one presented by Elkin and Peleg in 
[37] possible? Namely, does a polynomial time algorithm exist that, given an n-vertex graph G admitting a (multiplicative) 
tree t-spanner, constructs an additive (t − 1)-spanner3 of G with O (n log n) edges? If we allow to use more trees (like in 
collective tree spanners), does a polynomial time algorithm exist that, given an n-vertex graph G admitting a (multiplica-
tive) tree t-spanner, constructs a system of Õ (1) collective additive tree Õ (t)-spanners of G (where Õ is similar to Big-O
notation up to a poly-logarithmic factor)? Note that an interesting question whether a multiplicative tree spanner can be 
turned into an additive tree spanner with a slight increase in the stretch is (negatively) settled already in [40]: if there exist 
some δ = o(n) and ε > 0 and a polynomial time algorithm that for any graph admitting a tree t-spanner constructs a tree 
((6/5 − ε)t + δ)-spanner, then P = NP.

We give some partial answers to these questions in Section 3. There we investigate a more general question whether 
a graph with bounded tree-breadth admits a small system of collective additive tree spanners. We show that any n-vertex 
graph G has a system of at most log2 n collective additive tree (2ρ log2 n)-spanners, where ρ ≤ tb(G). This settles also an 
open question from [26] whether a graph with tree-length λ admits a small system of collective additive tree Õ (λ)-spanners.

3 Note that any additive (t − 1)-spanner is a multiplicative t-spanner (see Proposition 2).
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As a consequence, we obtain that there is a polynomial time algorithm that, given an n-vertex graph G admitting a 
(multiplicative) tree t-spanner, constructs:

– a system of at most log2 n collective additive tree O (t log n)-spanners of G (compare with [28,40] where a multiplica-
tive tree O (t log n)-spanner was constructed for G in polynomial time; thus, we “have turned” a multiplicative tree 
O (t log n)-spanner into at most log2 n collective additive tree O (t log n)-spanners);

– an additive O (t log n)-spanner of G with at most n log2 n edges (compare with Theorem 1).

In Section 4 we generalize the method of Section 3. We define a new notion which combines both the tree-width and 
the tree-breadth of a graph.

The k-breadth of a tree-decomposition T (G) = ({Xi |i ∈ I}, T = (I, F )) of a graph G is the minimum integer r such 
that for each bag Xi, i ∈ I , there is a set of at most k vertices Ci = {vi

j |vi
j ∈ V (G), j = 1, . . . , k} such that for each 

u ∈ Xi , we have dG (u, Ci) ≤ r (i.e., each bag Xi can be covered with at most k disks of G of radius at most r each; 
Xi ⊆ Dr(vi

1, G) ∪ · · · ∪ Dr(vi
k, G)). The k-tree-breadth of a graph G , denoted by tbk(G), is the minimum of the k-breadth, 

over all tree-decompositions of G . We say that a family of graphs G is of bounded k-tree-breadth, if there is a constant c
such that for each graph G from G , tbk(G) ≤ c. Clearly, for every graph G , tb(G) = tb1(G), and tw(G) ≤ k − 1 if and only if 
tbk(G) = 0 (each vertex in the bags of the tree-decomposition of width k can be considered as a center of a disk of radius 0). 
Thus, the notions tree-width and the tree-breadth are particular cases of the k-tree-breadth.

In Section 4, we show that any n-vertex graph G with tbk(G) ≤ ρ has a system of at most k(1 + log2 n) collective 
additive tree (2ρ(1 + log2 n))-spanners. In Section 5, we extend a result from [28] and show that if a graph G admits a 
(multiplicative) t-spanner H with tw(H) = k − 1 then its k-tree-breadth is at most �t/2�. As a consequence, we obtain that, 
for every fixed k, there is a polynomial time algorithm that, given an n-vertex graph G admitting a (multiplicative) t-spanner 
with tree-width at most k − 1, constructs:

– a system of at most k(1 + log2 n) collective additive tree O (t log n)-spanners of G;
– an additive O (t log n)-spanner of G with at most O (kn log n) edges.

We conclude the paper with some open questions.

2. Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected, loopless and without multiple edges. 
We call G = (V , E) an n-vertex m-edge graph if |V | = n and |E| = m. A clique is a set of pairwise adjacent vertices of G . By 
G[S] we denote a subgraph of G induced by vertices of S ⊆ V . Let also G \ S be the graph G[V \ S] (which is not necessarily 
connected). A set S ⊆ V is called a separator of a connected graph G if the graph G[V \ S] has more than one connected 
component, and S is called a balanced separator of G if each connected component of G[V \ S] has at most |V |/2 vertices. 
A set C ⊆ V is called a balanced clique-separator of G if C is both a clique and a balanced separator of G . For a vertex v of G , 
the sets NG (v) = {w ∈ V |v w ∈ E} and NG [v] = NG(v) ∪ {v} are called the open neighborhood and the closed neighborhood
of v , respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)

between vertices u and v is the length of a shortest path connecting u and v in G . The diameter in G of a set S ⊆ V is 
maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in some papers they are called the weak diameter and the 
weak radius to indicate that the distances are measured in G not in G[S]). The disk of G of radius k centered at vertex v
is the set of all vertices at distance at most k to v: Dk(v, G) = {w ∈ V |dG(v, w) ≤ k}. A disk Dk(v, G) is called a balanced 
disk-separator of G if the set Dk(v, G) is a balanced separator of G .

It is well known that the t-spanners can equivalently be defined as follows.

Proposition 1. (See [17].) Let G be a connected graph and t be a positive number. A spanning subgraph H of G is a t-spanner of G if 
and only if for every edge xy of G, dH (x, y) ≤ t holds.

This proposition implies that the stretch of a spanning subgraph of a graph G is always obtained on a pair of vertices 
that form an edge in G . Consequently, throughout this paper, t can be considered as an integer which is greater than 1 (the 
case t = 1 is trivial since H must be G itself).

It is also known that every additive r-spanner of G is a (multiplicative) (r + 1)-spanner of G .

Proposition 2. (See [60].) Every additive r-spanner of G is a (multiplicative) (r + 1)-spanner of G. The converse is generally not true.

3. Collective additive tree spanners and the tree-breadth of a graph

In this section, we show that every n-vertex graph G has a system of at most log2 n collective additive tree 
(2ρ log2 n)-spanners, where ρ ≤ tb(G). We also discuss consequences of this result. Our method is a generalization of tech-
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Fig. 1. A graph G with a disk-separator Dr(v, G) and the corresponding graphs G+
1 , . . . , G+

4 obtained from G . c1, . . . , c4 are meta vertices representing the 
disk Dr(v, G) in the corresponding graphs.

niques used in [31] and [28]. We will assume that n ≥ 4 since any connected graph with at most 3 vertices has an additive 
tree 1-spanner.

Note that we do not assume here that a tree-decomposition T (G) of breadth ρ is given for G as part of the input. 
Our method does not need to know T (G), our algorithm works directly on G . For a given graph G and an integer ρ , 
even checking whether G has a tree-decomposition of breadth ρ could be a hard problem. For example, while graphs with 
tree-length 1 (as they are exactly the chordal graphs) can be recognized in linear time, the problem of determining whether 
a given graph has tree-length at most λ is NP-complete for every fixed λ > 1 (see [53]).

We will need the following results proven in [28].

Lemma 1. (See [28].) Every graph G has a balanced disk-separator Dr(v, G) centered at some vertex v, where r ≤ tb(G).

Lemma 2. (See [28].) For an arbitrary graph G with n vertices and m edges a balanced disk-separator Dr(v, G) with minimum r can 
be found in O (nm) time.

3.1. Hierarchical decomposition of a graph with bounded tree-breadth

In this subsection, following [28], we show how to decompose a graph with bounded tree-breadth and build a hierarchi-
cal decomposition tree for it. This hierarchical decomposition tree is used later for construction of collective additive tree 
spanners for such a graph.

Let G = (V , E) be an arbitrary connected n-vertex m-edge graph with a disk-separator Dr(v, G). Also, let G1, . . . , Gq

be the connected components of G[V \ Dr(v, G)]. Denote by Si := {x ∈ V (Gi)|dG(x, Dr(v, G)) = 1} the neighborhood of 
Dr(v, G) with respect to Gi . Let also G+

i be the graph obtained from component Gi by adding a vertex ci (representative of 
Dr(v, G)) and making it adjacent to all vertices of Si , i.e., for a vertex x ∈ V (Gi), ci x ∈ E(G+

i ) if and only if there is a vertex 
xD ∈ Dr(v, G) with xxD ∈ E(G). See Fig. 1 for an illustration. In what follows, we will call vertex ci a meta vertex representing 
disk Dr(v, G) in graph G+

i . Given a graph G and its disk-separator Dr(v, G), the graphs G+
1 , . . . , G+

q can be constructed in 
total time O (m). Furthermore, the total number of edges in the graphs G+

1 , . . . , G+
q does not exceed the number of edges 

in G , and the total number of vertices (including q meta vertices) in those graphs does not exceed the number of vertices 
in G[V \ Dr(v, G)] plus q.

Denote by G/e the graph obtained from G by contracting its edge e. Recall that edge e contraction is an operation which 
removes e from G while simultaneously merging together the two vertices e previously connected. If a contraction results in 
multiple edges, we delete duplicates of an edge to stay within the class of simple graphs. The operation may be performed 
on a set of edges by contracting each edge (in any order). The following lemma guarantees that the tree-breadths of the 
graphs G+

i , i = 1, . . . , q, are no larger than the tree-breadth of G .

Lemma 3. (See [28].) For any graph G and its edge e, tb(G) ≤ ρ implies tb(G/e) ≤ ρ . Consequently, for any graph G with tb(G) ≤ ρ , 
tb(G+

i ) ≤ ρ holds for each i = 1, . . . , q.

Clearly, one can get G+
i from G by repeatedly contracting (in any order) edges of G that are not incident to vertices of Gi . 

In other words, G+
i is a minor of G . Recall that a graph G ′ is a minor of G if G ′ can be obtained from G by contracting 

some edges, deleting some edges, and deleting some isolated vertices. The order in which a sequence of such contractions 
and deletions is performed on G does not affect the resulting graph G ′ .

Let G = (V , E) be a connected n-vertex, m-edge graph and assume that tb(G) ≤ ρ . Lemma 1 and Lemma 2 guarantee that 
G has a balanced disk-separator Dr(v, G) with r ≤ ρ , which can be found in O (nm) time by an algorithm that works directly 
on graph G and does not require construction of a tree-decomposition of G of breadth ≤ ρ . Using these and Lemma 3, 
we can build a (rooted) hierarchical tree H(G) for G as follows. If G is a connected graph with at most 5 vertices, then 
H(G) is one node tree with root node (V (G), G). Otherwise, find a balanced disk-separator Dr(v, G) in G with minimum 
r (see Lemma 2) and construct the corresponding graphs G+, G+, . . . , G+

q . For each graph G+ (i = 1, . . . , q) (by Lemma 3, 
1 2 i
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Fig. 2. a) A graph G and its balanced disk-separator D1(13, G). b) A hierarchical tree H(G) of G . We have G = G(↓Y 0), Y 0 = D1(13, G). Meta vertices are 
shown circled, disk centers are shown in bold. c) The graph G(↓Y 1) with its balanced disk-separator D1(23, G(↓Y 1)) = Y 1. G(↓Y 1) is a minor of G(↓Y 0). 
d) The graph G(↓Y 2), a minor of G(↓Y 1) and of G(↓Y 0). Y 2 = V (G(↓Y 2)) is a leaf of H(G).

tb(G+
i ) ≤ ρ), construct a hierarchical tree H(G+

i ) recursively and build H(G) by taking the pair (Dr(v, G), G) to be the root 
and connecting the root of each tree H(G+

i ) as a child of (Dr(v, G), G).
The depth of this tree H(G) (that is, the length of a longest path from the root to any node) is the smallest integer k

such that

n

2k
+ 1

2k−1
+ · · · + 1

2
+ 1 ≤ 5,

that is, the depth is at most log2 n − 1.
It is also easy to see that, given a graph G with n vertices and m edges, a hierarchical tree H(G) can be constructed in 

O (nm log2 n) total time. There are at most O (log n) levels in H(G), and one needs to do at most O (nm log n) operations per 
level since the total number of edges in the graphs of each level is at most m and the total number of vertices in those 
graphs cannot exceed O (n log n).

For an internal (i.e., non-leaf) node Y of H(G), since it is associated with a pair (Dr′ (v ′, G ′), G ′), where r′ ≤ ρ , G ′ is a 
minor of G and v ′ is the center of disk Dr′ (v ′, G ′) of G ′ , it will be convenient, in what follows, to denote G ′ by G(↓Y ), v ′
by c(Y ), r′ by r(Y ), and Dr′ (v ′, G ′) by Y itself. Thus, (Dr′ (v ′, G ′), G ′) = (Dr(Y )(c(Y ), G(↓Y )), G(↓Y )) = (Y , G(↓Y )) in these 
notations, and we identify node Y of H(G) with the set Y = Dr(Y )(c(Y ), G(↓Y )) and associate with this node also the graph 
G(↓Y ). See Fig. 2 for an illustration. Each leaf Y of H(G), since it corresponds to a pair (V (G ′), G ′), we identify with the 
set Y = V (G ′) and use, for convenience, the notation G(↓Y ) for G ′ .

If now (Y 0, Y 1, . . . , Y h) is the path of H(G) connecting the root Y 0 of H(G) with a node Y h , then the vertex set 
of the graph G(↓Y h) consists of some (original) vertices of G plus at most h meta vertices representing the disks 
Dr(Y )(c(Y i), G(↓Y i)) = Y i , i = 0, 1, . . . , h − 1. Note also that each (original) vertex of G belongs to exactly one node of 
H(G).

3.2. Construction of collective additive tree spanners

Unfortunately, the class of graphs of bounded tree-breadth is not hereditary, i.e., induced subgraphs of a graph with 
tree-breath ρ are not necessarily of tree-breadth at most ρ (for example, a cycle of length � with one extra vertex adjacent 
to each vertex of the cycle has tree-breadth 1, but the cycle itself has tree-breadth �/3). Thus, the method presented in [31], 
for constructing collective additive tree spanners for hereditary classes of graphs admitting balanced disk-separators, cannot 
be applied directly to the graphs of bounded tree-breadth. Nevertheless, we will show that, with the help of Lemma 3, the 
notion hierarchical tree from the previous subsection and a careful analysis of distance changes (see Lemma 4), it is possible 
to generalize the method of [31] and construct in polynomial time for every n-vertex graph G a system of at most log2 n
collective additive tree (2ρ log2 n)-spanners, where ρ ≤ tb(G). Unavoidable presence of meta vertices in the graphs resulting 
from a hierarchical decomposition of the original graph G complicates the construction and the analysis. Recall that, in [31], 
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Fig. 3. Illustration to the proof of Lemma 4: “unfolding” meta vertices.

it was shown that if every induced subgraph of a graph G enjoys a balanced disk-separator with radius at most r, then G
admits a system of at most log2 n collective additive tree 2r-spanners.

Let G = (V , E) be a connected n-vertex, m-edge graph and assume that tb(G) ≤ ρ . Let H(G) be a hierarchical tree of G . 
Consider an arbitrary internal node Y h of H(G), and let (Y 0, Y 1, . . . , Y h) be the path of H(G) connecting the root Y 0 of 
H(G) with Y h . Let Ĝ(↓Y j) be the graph obtained from G(↓Y j) by removing all its meta vertices (note that Ĝ(↓Y j) may be 
disconnected).

Lemma 4. For any vertex z from Y h ∩ V (G) there exists an index i ∈ {0, 1, . . . , h} such that c(Y i) is not a meta vertex and vertices z
and c(Y i) are connected in the graph ̂G(↓Y i) by a path of length at most ρ(h + 1). In particular, dG(z, c(Y i)) ≤ ρ(h + 1) holds.

Proof. Set Gh := G(↓Y h), c := c(Y h), and let SPGh
c,z be a shortest path of Gh connecting vertices c and z. We know that this 

path has at most r(Y h) ≤ ρ edges. If SPGh
c,z does not contain any meta vertices, then this path is a path of Ĝ(↓Y h) and of G

and therefore dG(c, z) ≤ ρ holds.
Assume now that SPGh

c,z does contain meta vertices and let μ′ be the closest to z meta vertex in SPGh
c,z . See Fig. 3 for an 

illustration. Let SPGh
c,z = (c, . . . , a′, μ′, b′, . . . , z). By construction of H(G), meta vertex μ′ was created at some earlier recursive 

step to represent disk Y i′ of graph Gi′ := G(↓Y i′ ) for some i′ ∈ {0, . . . , h − 1}. Hence, there is a path P
Gi′
c′,z = (c′, . . . , b′, . . . , z)

of length at most 2ρ in Gi′ with c′ := c(Y i′ ). Again, if P
Gi′
c′,z does not contain any meta vertices, then this path is a path 

of Ĝ(↓Y i′ ) and of G and therefore dG(c′, z) ≤ 2ρ holds. If P
Gi′
c′,z does contain meta vertices then again, “unfolding” a meta 

vertex μ′′ of P
Gi′
c′,z closest to z, we obtain a path P

Gi′′
c′′,z of length at most 3ρ in Gi′′ := G(↓Y i′′ ) with c′′ := c(Y i′′ ) for some 

i′′ ∈ {0, . . . , i′ − 1}.
By continuing “unfolding” this way meta vertices closest to z, after at most h steps, we will arrive at the situation 

when, for some index i∗ ∈ {0, 1, . . . , h}, a path of length at most ρ(h + 1) will connect vertices z and c(Y i∗ ) in the graph 
Ĝ(↓Y i∗ ). �

Consider two arbitrary vertices x and y of G , and let S(x) and S(y) be the nodes of H(G) containing x and y, respec-
tively. Let also NC AH(G)(S(x), S(y)) be the nearest common ancestor of nodes S(x) and S(y) in H(G) and (Y 0, Y 1, . . . , Y h)

be the path of H(G) connecting the root Y 0 of H(G) with NC AH(G)(S(x), S(y)) = Y h (in other words, Y 0, Y 1, . . . , Y h are 
the common ancestors of S(x) and S(y)). Clearly, Y 0 ∪ Y 1 ∪ · · · ∪ Y h separates vertices x and y in G .

Lemma 5. Any path P G
x,y connecting vertices x and y in G contains a vertex from Y 0 ∪ Y 1 ∪ · · · ∪ Y h.

Let SPG
x,y be a shortest path of G connecting vertices x and y, and let Y i be the node of the path (Y 0, Y 1, . . . , Y h) with 

the smallest index such that SPG
x,y ∩ Y i �= ∅ in G . The following lemma holds.

Lemma 6. For each j = 0, . . . , i, we have dG(x, y) = dG ′ (x, y), where G ′ := Ĝ(↓Y j).

Proof. It is enough to show that the path SPG
x,y consists of only vertices of G ′ . Let assume, by a way of contradiction, that 

there is a vertex z of SPG
x,y that does not belong to G ′ . Let SPG

x,z be a subpath of SPG
x,y between x and z. Clearly, the node 

S(z) of H(G), containing vertex z, is not a descendant of Y i . Therefore, the nearest common ancestor of S(x) and S(z) in 
H(G) is a node Y j from {Y 0, Y 1, . . . , Y h} with j < i. But then, by Lemma 5, the path SPG

x,z (and hence the path SPG
x,y) must 

have a vertex in Y 0 ∪ Y 1 ∪ · · · ∪ Y j , contradicting with the choice of Y i , i > j. �
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Fig. 4. Illustration to the proof of Lemma 7.

Let now Bi
1, . . . , B

i
pi

be the nodes at depth i of the tree H(G). For each node Bi
j that is not a leaf of H(G), consider 

its (central) vertex ci
j := c(Bi

j). If ci
j is an original vertex of G (not a meta vertex created during the construction of H(G)), 

then define a connected graph Gi
j obtained from G(↓Bi

j) by removing all its meta vertices. If removal of those meta vertices 
produced few connected components, choose as Gi

j that component which contains the vertex ci
j . Denote by T i

j a BFS-tree 
of graph Gi

j rooted at vertex ci
j of Bi

j . If Bi
j is a leaf of H(G), then Bi

j has at most 5 vertices. In this case, remove all meta 
vertices from G(↓Bi

j) and for each connected component of the resulting graph construct an additive tree spanner with 
optimal surplus ≤ 3. Note that the diameter of a tree with 5 vertices is at most 4. Denote the resulting subtree (forest) 
by T i

j .

The trees T i
j (i = 0, 1, . . . , depth(H(G)), j = 1, 2, . . . , pi ), obtained this way, are called local subtrees of G . Clearly, the 

construction of these local subtrees can be incorporated into the procedure of constructing the hierarchical tree H(G) of G
and will not increase the overall O (nm log2 n) run-time (see Section 3.1).

Lemma 7. For any two vertices x, y ∈ V (G), there exists a local subtree T such that dT (x, y) ≤ dG (x, y) + 2ρ log2 n − 1.

Proof. We know, by Lemma 6, that a shortest path SPG
x,y , intersecting Y i and not intersecting any Y l (l < i), lies entirely 

in G ′ := Ĝ(↓Y i). Thus, dG(x, y) = dG ′ (x, y). If Y i is a leaf of H(G) then for a local subtree T ′ (it could be a forest) of G
constructed for G ′ the following holds: dT ′ (x, y) ≤ dG ′ (x, y) + 3 = dG(x, y) + 3 ≤ dG(x, y) + 2ρ log2 n − 1 (since n ≥ 4 and 
ρ ≥ 1). Assume now that Y i is an internal node of H(G). We have i ≤ log2 n − 2, since the depth of H(G) is at most 
log2 n − 1. Let z ∈ Y i be a vertex on the shortest path SPG

x,y . By Lemma 4, there exists an index j ∈ {0, 1, . . . , i} such that the 
vertices z and c(Y j) can be connected in the graph Ĝ(↓Y j) by a path of length at most ρ(i +1). See Fig. 4 for an illustration. 
Set G ′′ := Ĝ(↓Y j) and c := c(Y j). By Lemma 6, dG(x, y) = dG ′ (x, y) = dG ′′ (x, y). Let T ′′ be the local tree constructed for graph 
G ′′ = Ĝ(↓Y j), i.e., a BFS-tree of a connected component of the graph G ′′ = Ĝ(↓Y j) and rooted at vertex c = c(Y j).

We have dT ′′ (x, c) = dG ′′ (x, c) and dT ′′ (y, c) = dG ′′ (y, c). By the triangle inequality, dT ′′ (x, c) = dG ′′ (x, c) ≤ dG ′′ (x, z) +
dG ′′ (z, c) and dT ′′ (y, c) = dG ′′ (y, c) ≤ dG ′′ (y, z) + dG ′′ (z, c). That is, dT ′′ (x, y) ≤ dT ′′ (x, c) + dT ′′ (y, c) ≤ dG ′′ (x, z) + dG ′′ (y, z) +
2dG ′′ (z, c) = dG ′′ (x, y) + 2dG ′′ (z, c). Now, using Lemma 6 and inequality dG ′′ (z, c) ≤ ρ(i + 1) ≤ ρ(log2 n − 1), we get 
dT ′′ (x, y) ≤ dG ′′ (x, y) + 2dG ′′ (z, c) ≤ dG (x, y) + 2ρ(log2 n − 1). �

This lemma implies two important results. Let G be a graph with n vertices and m edges having tb(G) ≤ ρ . Also, let 
H(G) be its hierarchical tree and LT (G) be the family of all its local subtrees (defined above). Consider a graph H obtained 
by taking the union of all local subtrees of G (by putting all of them together), i.e.,

H :=
⋃{

T i
j|T i

j ∈ LT (G)
} = (

V ,∪{
E
(
T i

j

)|T i
j ∈ LT (G)

})
.

Clearly, H is a spanning subgraph of G , constructible in O (nm log2 n) total time, and, for any two vertices x and y of G , 
dH (x, y) ≤ dG(x, y) + 2ρ log2 n − 1 holds. Also, since for every level i (i = 0, 1, . . . , depth(H(G))) of hierarchical tree H(G), 
the corresponding local subtrees T i

1, . . . , T
i
pi

are pairwise vertex-disjoint, their union has at most n − 1 edges. Therefore, H
cannot have more than (n − 1) log2 n edges in total. Thus, we have proven the following result.
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Theorem 2. Every graph G with n vertices and tb(G) ≤ ρ admits an additive (2ρ log2 n)-spanner with at most n log2 n edges. Fur-
thermore, such a sparse additive spanner of G can be constructed in polynomial time.

Instead of taking the union of all local subtrees of G , one can fix i (i ∈ {0, 1, . . . , depth(H(G))}) and consider separately 
the union of only local subtrees T i

1, . . . , T i
pi

, corresponding to the level i of the hierarchical tree H(G), and then extend 
in linear O (m) time that forest to a spanning tree T i of G (using, for example, a variant of the Kruskal’s Spanning Tree 
algorithm for the unweighted graphs). We call this tree T i the spanning tree of G corresponding to the level i of the hierarchical 
tree H(G). In this way we can obtain at most log2 n spanning trees for G , one for each level i of H(G). Denote the collection 
of those spanning trees by T (G). Thus, we obtain the following theorem.

Theorem 3. Every graph G with n vertices and tb(G) ≤ ρ admits a system T (G) of at most log2 n collective additive tree 
(2ρ log2 n)-spanners. Furthermore, such a system of collective additive tree spanners of G can be constructed in polynomial time.

3.3. Additive spanners for graphs admitting (multiplicative) tree t-spanners

Now we give two implications of the above results for the class of tree t-spanner admissible graphs. In [28], the following 
important (“bridging”) lemma was proven.

Lemma 8. (See [28].) If a graph G admits a tree t-spanner then its tree-breadth is at most �t/2�.

Note that the tree-breadth bounded by �t/2� provides only a necessary condition for a graph to have a multiplicative 
tree t-spanner. There are (chordal) graphs which have tree-breadth 1 but any multiplicative tree t-spanner of them has 
t = Ω(log n) [28]. Furthermore, a cycle on 3n vertices has tree-breadth n but admits a system of 2 collective additive tree 
0-spanners.

Combining Lemma 8 with Theorem 2 and Theorem 3, we deduce the following results.

Theorem 4. Let G be a graph with n vertices and m edges having a (multiplicative) tree t-spanner. Then, G admits an additive 
(2�t/2� log2 n)-spanner with at most n log2 n edges constructible in O (nm log2 n) time.

Theorem 5. Let G be a graph with n vertices and m edges having a (multiplicative) tree t-spanner. Then, G admits a system T (G) of 
at most log2 n collective additive tree (2�t/2� log2 n)-spanners constructible in O (nm log2 n) time.

4. Collective additive tree spanners of graphs with bounded k-tree-breadth, k ≥ 2

In this section, we extend the approach of Section 3 and show that any n-vertex graph G with tbk(G) ≤ ρ has a system of 
at most k(1 + log2 n) collective additive tree (2ρ(1 + log2 n))-spanners constructible in polynomial time for every fixed k. We 
will assume that n > k, since any graph with n vertices has a system of n − 1 collective additive tree 0-spanners (consider 
n − 1 BFS-trees rooted at different vertices).

4.1. Balanced separators for graphs with bounded k-tree-breadth

We will need the following balanced clique-separator result for chordal graphs. Recall that a graph is chordal if each of 
its induced cycles has length three.

Theorem 6. (See [44].) Every chordal graph G with n vertices and m edges contains a maximal clique C such that if the vertices in C
are deleted from G, every connected component in the graph induced by any remaining vertices is of size at most n/2. Such a balanced 
clique-separator C of a connected chordal graph can be found in O (m) time.

We say that a graph G = (V , E) with |V | ≥ k has a balanced Dk
r -separator if there exists a collection of k disks 

Dr(v1, G), Dr(v2, G), . . . , Dr(vk, G) in G , centered at (different) vertices v1, v2, . . . , vk and each of radius r, such that the 
union of those disks Dk

r := ⋃k
i=1 Dr(vi, G) forms a balanced separator of G , i.e., each connected component of G[V \ Dk

r ] has 
at most |V |/2 vertices. The following result generalizes Lemma 1.

Lemma 9. Every graph G with at least k vertices and tbk(G) ≤ ρ has a balanced Dk
ρ -separator.

Proof. The proof of this lemma follows from acyclic hypergraph theory. First we review some necessary definitions and an 
important result characterizing acyclic hypergraphs. Recall that a hypergraph H is a pair H = (V , E) where V is a set of 
vertices and E is a set of non-empty subsets of V called hyperedges. For these and other hypergraph notions see [10].
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Let H = (V , E) be a hypergraph with the vertex set V and the hyperedge set E . For every vertex v ∈ V , let E(v) = {e ∈
E |v ∈ e}. The 2-section graph 2SEC(H) of a hypergraph H has V as its vertex set and two distinct vertices are adjacent in 
2SEC(H) if and only if they are contained in a common hyperedge of H . A hypergraph H is called conformal if every clique 
of 2SEC(H) is contained in a hyperedge e ∈ E , and a hypergraph H is called acyclic if there is a tree T with node set E such 
that for all vertices v ∈ V , E(v) induces a subtree T v of T . It is a well-known fact (see, e.g., [3,9,10]) that a hypergraph H
is acyclic if and only if H is conformal and 2SEC(H) of H is a chordal graph.

Let now G = (V , E) be a graph with tbk(G) = ρ and T (G) = ({Xi |i ∈ I}, T = (I, F )) be its tree-decomposition of 
k-breadth ρ . Evidently, the third condition of tree-decompositions can be restated as follows: the hypergraph H =
(V (G), {Xi |i ∈ I}) is an acyclic hypergraph. Since each edge of G is contained in at least one bag of T (G), the 2-section 
graph G∗ := 2SEC(H) of H is a chordal supergraph of the graph G (each edge of G is an edge of G∗ , but G∗ may have some 
extra edges between non-adjacent vertices of G contained in a common bag of T (G)). By Theorem 6, the chordal graph 
G∗ contains a balanced clique-separator C ⊆ V (G). By conformality of H , C must be contained in a bag of T (G). From the 
definition of k-breadth, there must exist k vertices v1, v2, . . . , vk such that C ⊆ Dk

ρ , where Dk
ρ = Dρ(v1, G) ∪ · · · ∪ Dρ(vk, G). 

As the removal of the vertices of C from G∗ leaves no connected component in G∗[V \ C] with more than |V |/2 vertices 
and since G∗ is a supergraph of G , clearly, the removal of the vertices of Dk

ρ from G leaves no connected component in 
G[V \ Dk

ρ ] with more than |V |/2 vertices. �
Again, like in Section 3, we do not assume that a tree-decomposition T (G) of k-breadth ρ is given for G as part of the 

input. Our method does not need to know T (G). For a given graph G , integers k ≥ 1 and ρ ≥ 0, even checking whether G
has a tree-decomposition of k-breadth ρ is a hard problem (as tbk(G) = 0 if and only if tw(G) ≤ k − 1) (see Section 1.2).

Let G be an arbitrary connected n-vertex m-edge graph. In [28], an algorithm was described which, given G and its 
arbitrary fixed vertex v , finds in O (m) time a balanced disk separator Dr(v, G) of G centered at v and with minimum r. 
We can use this algorithm as a subroutine to find for G in O (nkm) time a balanced Dk

r -separator with minimum r. Given 
arbitrary k vertices v1, v2, . . . , vk of G , we can add a new dummy vertex x to G and make it adjacent to only v1, v2, . . . , vk
in G . Denote the resulting graph by G + x. Then, a balanced disk separator Dr+1(x, G + x) of G + x with minimum r +1 gives 
a balanced separator of G of the form Dr(v1, G) ∪· · ·∪ Dr(vk, G) (for particular disk centers v1, v2, . . . , vk) with minimum r. 
Iterating over all k vertices of G , we can find a balanced Dk

r -separator of G with the smallest (absolute minimum) radius r. 
Thus, we have the following result.

Proposition 3. Let k be a positive integer (assumed to be small). For an arbitrary graph G with n ≥ k vertices and m edges, a balanced 
Dk

r -separator with the smallest radius r can be found in O (nkm) time.

4.2. Decomposition of a graph with bounded k-tree-breadth

Let G = (V , E) be an arbitrary connected graph with n vertices and m edges and with a balanced Dk
r -separator, where 

Dk
r = ⋃k

j=1 Dr(v j, G). Note that some disks in {Dr(v1, G), . . . , Dr(vk, G)} may overlap. In what follows, we will partition 
Dk

r = ⋃k
j=1 Dr(v j, G) into k sets D1, . . . , Dk such that no two of them intersect and each D j , j = 1, . . . , k, contains at least 

one vertex v j and induces a connected subgraph of G[Dr(v j, G)]. Create a graph G + s by adding a new dummy vertex s to 
G and making it adjacent to only v1, v2, . . . , vk in G . Let T be a BFS-tree of G + s started at vertex s and T ′ be a subtree 
of T formed by vertices {v ∈ V (G + s)|dT (s, v) ≤ r + 1} and rooted at s. Let also T (v1), . . . , T (vk) be the subtrees of T ′ \ {s}
rooted at v1, . . . , vk , respectively. Clearly, each T (v j), j = 1, . . . , k, is a subtree (not necessarily spanning) of G[Dr(v j, G)]
and Dk

r = ⋃k
j=1 V (T (v j)). Set now D j := V (T (v j)), j = 1, . . . , k.

Let G1, G2, . . . , Gq be the connected components of G[V \ Dk
r ]. Denote by S j

i = {v ∈ V (Gi)|dG(v, D j) = 1}, i = 1, . . . , q, 
j = 1, . . . , k, the neighborhood of D j in Gi . Also, let G+

i be the graph obtained from component Gi by adding one meta 
vertex c j

i for each disk Dr(v j, G) (a representative of Dr(v j, G)), j = 1, . . .k, and making it adjacent to all vertices of S j
i , i.e., 

for a vertex x ∈ V (Gi), c
j
i x ∈ E(G+

i ) if and only if there is a vertex xD ∈ D j ⊆ Dr(v j, G) with xxD ∈ E(G). If S j
i is empty for 

some j, then vertex c j
i is not added to G+

i . Also, add an edge between any two representatives c j
i and cl

i if vertices v j and 
vl are connected by a path in G[V \ V (Gi)]. See Fig. 5 for an illustration.

Given an n-vertex m-edge graph G and its balanced Dk
r -separator, the graphs G+

1 , . . . , G+
q can be constructed in total 

time O (kqm). Furthermore, the total number of edges in graphs G+
1 , . . . , G+

q does not exceed m + qk2, and the total number 
of vertices in those graphs does not exceed the number of vertices in G[V \ Dk

r ] plus qk.
Note that G+

i is a minor of G and can be obtained from G by a sequence of edge contractions in the following way. First 
contract all edges (in any order) that are incident to V (Gi′ ), for all i′ = 1, . . . , q, i′ �= i. Then, for each j = 1, . . . , k, contract 
(all edges of) connected subgraph G[D j] of G to get meta vertex c j

i representing the disk Dr(v j, G) in G+
i .

Let again G/e be the graph obtained from G by contracting edge e. We have the following analog of Lemma 3.

Lemma 10. For any graph G and its edge e, tbk(G) ≤ ρ implies tbk(G/e) ≤ ρ . Consequently, for any graph G with tbk(G) ≤ ρ , 
tbk(G+) ≤ ρ holds for i = 1, . . . , q.
i
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Fig. 5. A graph G with a balanced D3
r -separator and the corresponding graphs G+

1 , . . . , G+
4 obtained from G . Each G+

i has three meta vertices representing 
the three disks.

Proof. Our proof is similar to the proof from [28] of Lemma 3. We provide it here for the sake of completeness. Let 
T (G) = ({Xi |i ∈ I}, T = (I, F )) be a tree-decomposition of G with k-breadth ρ . Let e = xy be an arbitrary edge of G . We 
can obtain a tree-decomposition T (G/e) of the graph G/e by replacing in each bag Xi , i ∈ I , vertices x and y with a new 
vertex x′ representing them (if some bag A contained both x and y, only one copy of x′ is kept). Evidently, the first 
and the second conditions of tree-decompositions are fulfilled for T (G/e). Furthermore, the topology (the tree T = (I, F )) 
of the tree-decomposition did not change. Still, for any vertex v �= x′ of G/e , the bags of T (G/e) containing v form a 
subtree in T (G/e). Since vertices x and y were adjacent in G , there was a bag A of T (G) containing both those vertices. 
Hence, a subtree of T (G/e) formed by bags of T (G/e) containing vertex x′ is nothing else but the union of two subtrees 
(one for x and one for y) of T (G) sharing at least one common bag A. Also, contracting an edge can only reduce the 
distances in a graph. Hence, still, for each bag B of T (G/e), there must exist corresponding vertices v1, . . . , vk in G/e with 
B ⊆ Dρ(v1, G/e) ∪· · ·∪ Dρ(vk, G/e). Thus, tbk(G/e) ≤ ρ . Since G+

i can be obtained from G by a sequence of edge contractions, 
we also have tbk(G+

i ) ≤ ρ . �
4.3. Construction of a hierarchical tree

Here we show how a hierarchical tree for a graph with bounded k-tree-breadth is built.
Let G = (V , E) be a connected n-vertex, m-edges graph with tbk(G) ≤ ρ and n ≥ k. Lemma 9 guaranties that G has a 

balanced Dk
r -separator with r ≤ ρ . Proposition 3 says that such a balanced Dk

r -separator of G can be found in O (nkm) time 
by an algorithm that works directly on the graph G and does not require construction of a tree-decomposition of G with 
k-breadth ≤ ρ . Using these and Lemma 10, we can build a rooted hierarchical-tree H(G) for G , which is constructed as 
follows. If G is a connected graph with at most 2k + 1 vertices, then H(G) is a one node tree with root node (V (G), G). It 
is known [46] that any connected graph with p ≥ 2 vertices has a dominating set of size �p/2	, i.e., all vertices of it can 
be covered by �p/2	 disks of radius one. Hence, in our case, G with at most 2k + 1 vertices can be covered by k disks of 
radius one each, i.e., there are k vertices v1, . . . , vk such that V (G) = Dr(v1, G) ∪ · · · ∪ Dr(vk, G) for r = 1 ≤ ρ . If G is a 
connected graph with more than 2k + 1 vertices, find a balanced Dk

r -separator of minimum radius r in O (nkm) time and 
construct the corresponding graphs G+

1 , . . . , G+
q . For each graph G+

i , i ∈ {1, . . . , q}, (by Lemma 10, tbk(G+
i ) ≤ ρ) construct a 

hierarchical tree H(G+
i ) recursively and build H(G) by taking the pair (Dk

r , G) to be the root and connecting the root of 
each tree H(G+

i ) as a child of (Dk
r , G).

The depth of this tree H(G) is the smallest integer p such that

n

2p
+ k

(
1

2p−1
+ · · · + 1

2
+ 1

)
≤ 2k + 1,

that is, the depth is at most log2 n. It is also not hard to see that, given a graph G with n vertices and m edges, a hierarchical 
tree H(G) can be constructed in O ((kn)k+2 logk+1 n) total time. There are at most O (log n) levels in H(G), and one needs 
to do at most O ((n + kn log n)k(m + k2n log n)) ≤ O ((kn)k+2 logk n) operations per level since the total number of edges 
in the graphs of each level is at most O (m + k2n log n) and the total number of vertices in those graphs cannot exceed 
O (n + kn log n).

For nodes of H(G), we use the same notations as in Section 3. For a node Y of H(G), since it is associated 
with a pair (Dk

r′ , G ′), where r′ ≤ ρ , G ′ is a minor of G and Dk
r′ = Dr′ (v ′

1, G
′) ∪ · · · ∪ Dr′ (v ′

1, G
′), it is convenient 

to denote G ′ by G(↓Y ), {v ′
1, . . . , v

′
k} by c(Y ) = {c1(Y ), . . . , ck(Y )}, r′ by r(Y ), and Dk

r′ by Y itself. Thus, (Dk
r′ , G ′) =

(
⋃k

l=1 Dr(Y )(cl(Y ), G(↓Y )), G(↓Y )) = (Y , G(↓Y )) in these notations, and we identify node Y of H(G) with the set ⋃k
l=1 Dr(Y )(cl(Y ), G(↓Y )) and associate with this node also the graph G(↓Y ). If now (Y 0, Y 1, . . . , Y h) is the path of H(G)

connecting the root Y 0 of H(G) with a node Y h , then the vertex set of the graph G(↓Y h) consists of some (original) 
vertices of G plus at most kh meta vertices representing the disks Dr(Y )(c1(Y i), G(↓Y i)), . . . , Dr(Y )(ck(Y i), G(↓Y i)) of Y i , 
i = 0, 1, . . . , h − 1. Note also that each (original) vertex of G belongs to exactly one node of H(G).
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4.4. Construction of collective additive tree spanners

Let G = (V , E) be a connected n-vertex, m-edge graph and assume that tbk(G) ≤ ρ and n ≥ k. Let H(G) be a hierarchical 
tree of G . Consider an arbitrary node Y h of H(G), and let (Y 0, Y 1, . . . , Y h) be the path of H(G) connecting the root Y 0 of 
H(G) with Y h . Let Ĝ(↓Y j) be the graph obtained from G(↓Y j) by removing all its meta vertices (note that Ĝ(↓Y j) may 
be disconnected and that all meta vertices of G(↓Y j) come from previous levels of H(G)). We have the following analog 
of Lemma 4.

Lemma 11. For any vertex z from Y h ∩ V (G) there exists an index i ∈ {0, 1, . . . , h} such that the vertices z and cl(Y i), for some 
l ∈ {1, . . . , k} can be connected in the graph ̂G(↓Y i) by a path of length at most ρ(h + 1). In particular, dG(z, cl(Y i)) ≤ ρ(h + 1) holds.

Proof. The proof is similar to the proof of Lemma 4 of Section 3. Set Gh := G(↓Y h) and c := cl(Y h), where z ∈ Dl ⊆
Dr(Y h)(cl(Y h), Gh) (for the definition of set Dl see the first paragraph of Section 4.2). Let SPGh

c,z be a shortest path of Gh

connecting vertices c and z. We know that this path has at most r(Y h) ≤ ρ edges. If SPGh
c,z does not contain any meta 

vertices, then this path is a path of Ĝ(↓Y h) and of G and therefore dG (c, z) ≤ ρ holds.
Assume now that SPGh

c,z does contain meta vertices and let μ′ be the closest to z meta vertex in SPGh
c,z (consult with Fig. 3). 

Let SPGh
c,z = (c, . . . , a′, μ′, b′, . . . , z). By construction of H(G), meta vertex μ′ was created at some earlier recursive step to 

represent one disk of Y i′ of graph Gi′ := G(↓Y i′ ) for some i′ ∈ {0, . . . , h − 1}. Hence, there is a path P
Gi′
c′,z = (c′, . . . , b′, . . . , z)

of length at most 2ρ in Gi′ with c′ := cl′(Y i′ ) for some l′ ∈ {1, . . . , k}. Again, if P
Gi′
c′,z does not contain any meta vertices, then 

this path is a path of Ĝ(↓Y i′ ) and of G and therefore dG(c′, z) ≤ 2ρ holds. If P
Gi′
c′,z does contain meta vertices then again, 

“unfolding” a meta vertex μ′′ of P
Gi′
c′,z closest to z, we obtain a path P

Gi′′
c′′,z of length at most 3ρ in Gi′′ := G(↓Y i′′ ) with 

c′′ := cl′′(Y i′′ ) for some i′′ ∈ {0, . . . , i′ − 1} and l′′ ∈ {1, . . . , k}.
We continue “unfolding” this way meta vertices closest to z. Eventually, after at most h steps, we will arrive at the 

situation when, for some index i∗ ∈ {0, 1, . . . , h}, a path of length at most ρ(h + 1) will connect vertices z and cl∗ (Y i∗ ), for 
some l∗ ∈ {1, . . . , k}, in the graph Ĝ(↓Y i∗ ). �

Let Bi
1, . . . , B

i
pi

be the nodes at depth i of the tree H(G). Assume Bi
j = ⋃k

l=1 Dr(ci
j(l), G(↓Bi

j)), where r := r(Bi
j). Denote 

k central vertices of Bi
j by C i

j = {ci
j(1), ci

j(2), . . . , ci
j(k)}. For each node Bi

j , consider its (central) vertex ci
j(l) (l ∈ {1, . . . , k}). If 

ci
j(l) is an original vertex of G (not a meta vertex created during the construction of H(G)), then define a connected graph 

Gi
j(l) obtained from G(↓Bi

j) by removing all its meta vertices. If removal of those meta vertices produced few connected 
components, choose as Gi

j(l) that component which contains the vertex ci
j(l). Denote by T i

j(l) a BFS-tree of graph Gi
j(l)

rooted at vertex ci
j(l) of Bi

j .

The trees T i
j(l) (i = 0, 1, . . . , depth(H(G)), j = 1, 2, . . . , pi , l = 1, 2, . . . , k), obtained this way, are called local subtrees of G . 

Clearly, the construction of these local subtrees can be incorporated into the procedure of constructing a hierarchical tree 
H(G) of G and will not increase the overall O ((kn)k+2 logk+1 n) run-time (see Section 4.3).

Since Lemma 5 and Lemma 6 hold for G , similarly to the proof of Lemma 7, one can prove its analog for graphs with 
bounded k-tree-breadth.

Lemma 12. For any two vertices x, y ∈ V (G), there exists a local subtree T such that dT (x, y) ≤ dG(x, y) + 2ρ(1 + log2 n).

This lemma implies the following two results. Let G be a graph with n vertices and m edges having tbk(G) ≤ ρ . Let 
also H(G) be its hierarchical tree and LT (G) be the family of all its local subtrees (defined above). Consider a graph H
obtained by taking the union of all local subtrees of G (by putting all of them together). Clearly, H is a spanning subgraph 
of G , constructible in polynomial time for every fixed k. We have dH (x, y) ≤ dG (x, y) + 2ρ(1 + log2 n) for any two vertices 
x and y of G . Also, since for every level i (i = 0, 1, . . . , depth(H(G))) of hierarchical tree H(G), the corresponding local 
subtrees T i

1(l), . . . , T
i
pi

(l) for each fixed index l ∈ {1, . . . , k} are pairwise vertex-disjoint, their union has at most n − 1 edges. 
Therefore, H cannot have more than k(n − 1)(1 + log2 n) edges in total. Thus, we have the following result.

Theorem 7. Every graph G with n vertices and tbk(G) ≤ ρ admits an additive (2ρ(1 + log2 n))-spanner with at most O (kn logn)

edges constructible in polynomial time for every fixed k.

For a node Bi
j of H(G), let T i

j = {T i
j(1), . . . , T i

j(k)} be the set of its local subtrees. Instead of taking the union of all local 
subtrees of G , one can fix i (i ∈ {0, 1, . . . , depth(H(G))}) and fix l ∈ {1, . . . , k} and consider separately the union of only local 
subtrees T i

1(l), . . . , T
i
pi

(l), corresponding to the lth subtrees of level i of the hierarchical tree H(G), and then extend in linear 
O (m) time that forest to a spanning tree T i(l) of G (using, for example, a variant of the Kruskal’s Spanning Tree algorithm 
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for the unweighted graphs). We call this tree T i(l) the lth spanning tree of G corresponding to the level i of the hierarchical tree 
H(G). In this way we can obtain at most k(1 + log2 n) spanning trees for G , k trees for each level i of H(G). Denote the 
collection of those spanning trees by T (G). Thus, we deduce the following theorem.

Theorem 8. Every graph G with n vertices and tbk(G) ≤ ρ admits a system T (G) of at most k(1 + log2 n) collective additive tree 
(2ρ(1 + log2 n))-spanners constructible in polynomial time for every fixed k.

5. Additive spanners for graphs admitting (multiplicative) t-spanners of bounded tree-width

In this section, we show that if a graph G admits a (multiplicative) t-spanner H with tw(H) = k − 1 then its k-tree-
breadth is at most �t/2�. As a consequence, we obtain that, for every fixed k, there is a polynomial time algorithm that, 
given an n-vertex graph G admitting a (multiplicative) t-spanner with tree-width at most k − 1, constructs a system of at 
most k(1 + log2 n) collective additive tree O (t log n)-spanners of G .

5.1. k-Tree-breadth of a graph admitting a t-spanner of bounded tree-width

Let H be a graph with tree-width k − 1, and let T (H) = ({Xi |i ∈ I}, T = (I, F )) be its tree-decomposition of width k − 1. 
For an integer r ≥ 0, denote by X (r)

i , i ∈ I , the set Dr(Xi, H) := ⋃
x∈Xi

Dr(x, H). Clearly, X (0)
i = Xi for every i ∈ I . The following 

important lemma holds.

Lemma 13. For every integer r ≥ 0, T (r)(H) := ({X (r)
i |i ∈ I}, T = (I, F )) is a tree-decomposition of H with k-breadth ≤ r.

Proof. It is enough to show that the third condition of tree-decompositions (see Section 1.2) is fulfilled for T (r)(H). That is, 
for all i, j, k ∈ I , if j is on the path from i to k in T , then X (r)

i ∩ X (r)
k ⊆ X (r)

j . We know that Xi ∩ Xk ⊆ X j holds and need to 
show that for every vertex v of H , dH (v, Xi) ≤ r and dH (v, Xk) ≤ r imply dH (v, X j) ≤ r. Assume, by way of contradiction, 
that for some integer r > 0 and for some vertex v of H , dH (v, X j) > r while dH (v, Xi) ≤ r and dH (v, Xk) ≤ r.

Consider the original tree-decomposition T (H). It is known [21] that if ab (a, b ∈ I) is an edge of the tree T = (I, F )

of tree-decomposition T (H), and Ta , Tb are the subtrees of T obtained after removing edge ab from T , then S = Xa ∩ Xb
separates in H vertices belonging to bags of Ta but not to S from vertices belonging to bags of Tb but not to S . We will 
use this nice separation property.

Let T \ { j} be the forest obtained from T by removing node j, and let T (i) and T (k) be the trees from this forest 
containing nodes i and k, respectively. Clearly, T (i) and T (k) are disjoint. The above separation property and inequalities 
dH (v, Xi) ≤ r < dH (v, X j) ensure that the vertex v belongs to a node (a bag) of T (i) (X j cannot separate in H vertex v
from a vertex xi of Xi with dH (v, Xi) = dH (v, xi) since otherwise dH (v, Xi) > dH (v, X j) will hold). Similarly, inequalities 
dH (v, Xk) ≤ r < dH (v, X j) and the above separation property guarantee that the vertex v belongs to a node of T (k). But 
then, the third condition of tree-decompositions says that v must also belong to the bag X j of T (H). The latter, however, is 
in a contradiction to the assumption that dH (v, X j) > r ≥ 0. �

Now we can prove the main lemma of this section.

Lemma 14. If a graph G admits a t-spanner with tree-width k − 1, then tbk(G) ≤ �t/2�.

Proof. Let H be a t-spanner of G with tw(G) = k − 1 and T (H) = ({Xi |i ∈ I}, T = (I, F )) be a tree-decomposition of H of 
width k − 1. We claim that T (G) := T (�t/2�)(H) := ({X (�t/2�)

i |i ∈ I}, T = (I, F )) is a tree-decomposition of G with k-breadth 
≤ �t/2�. See Fig. 6 for an illustration.

By Lemma 13, T (�t/2�)(H) is a tree-decomposition of H with k-breadth ≤ �t/2�. Hence, the first and the third condi-
tions of tree-decompositions hold for T (G). For every pair u, v of vertices of G , dG (u, v) ≤ dH (u, v). Therefore, every disk 
D�t/2�(x, H) of H is contained in a disk D�t/2�(x, G) of G . This implies that every bag of T (G) is covered by at most k disks 
of G of radius at most �t/2� each, i.e.,

X (�t/2�)
i = D�t/2�(Xi, H) =

⋃
x∈Xi

D�t/2�(x, H) ⊆
⋃
x∈Xi

D�t/2�(x, G).

We need only to show additionally that each edge uv of G belongs to some bag of T (G). Since H is a t-spanner of 
G , dH (u, v) ≤ t holds. Let x be a middle vertex of a shortest path connecting u and v in H . Then, both u and v belong 
to the disk D�t/2�(x, H). Let Xi be a bag of T (H) containing vertex x. Then, both u and v are contained in X (�t/2�)

i , a bag 
of T (G). �
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Fig. 6. Illustration to the proof of Lemma 14. A tree-decomposition for G is obtained from a tree-decomposition of H .

5.2. Consequences

Now we give two implications of the above results for the class of graphs admitting (multiplicative) t-spanners with 
tree-width k − 1. They are direct consequences of Lemma 14, Theorem 7 and Theorem 8.

Theorem 9. Let G be a graph with n vertices and m edges having a (multiplicative) t-spanner with tree-width k − 1. Then, G admits 
an additive (2�t/2�(1 + log2 n))-spanner with at most O (kn logn) edges constructible in polynomial time for every fixed k.

Theorem 10. Let G be a graph with n vertices and m edges having a (multiplicative) t-spanner with tree-width k − 1. Then, G admits 
a system T (G) of at most k(1 + log2 n) collective additive tree (2�t/2�(1 + log2 n))-spanners constructible in polynomial time for 
every fixed k.

6. Concluding remarks and open problems

Using Robertson–Seymour’s tree-decomposition of graphs, we described a necessary condition for a graph to have a 
multiplicative t-spanner of tree-width k (in particular, to have a multiplicative tree t-spanner, when k = 1). As we have 
mentioned earlier, this necessary condition is far from being sufficient. The following interesting problem remains open.

– Does there exist a clean “if and only if” condition under which a graph admits a multiplicative (or, additive) t-spanner 
of tree-width k (in particular, admits a multiplicative (or, additive) tree t-spanner (k = 1 case))?

That necessary condition was very useful in demonstrating that, for every fixed k, there is a polynomial time algorithm 
that, given an n-vertex graph G admitting a multiplicative t-spanner with tree-width k, constructs a system of at most 
(k + 1)(1 + log2 n) collective additive tree O (t log n)-spanners of G . In particular, when k = 1, we showed that there is a 
polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative tree t-spanner, constructs a system of 
at most log2 n collective additive tree O (t log n)-spanners of G . Can these results be improved?
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– Does a polynomial time algorithm exist that, given an n-vertex graph G admitting a multiplicative tree t-spanner, 
constructs a system of O (1) collective additive tree O (t)-spanners of G?

– Does a polynomial time algorithm exist that, given an n-vertex graph G admitting a multiplicative t-spanner with 
tree-width k, constructs a system of O (k) collective additive tree O (t)-spanners of G?

As we have mentioned earlier, an interesting particular question whether a multiplicative tree spanner can be turned in 
polynomial time into a (one) additive tree spanner with a slight increase in the stretch is (negatively) settled already in 
[40]. Yet, it is interesting to know whether an exponential time procedure that performs such a transformation exists.

Two more interesting challenging questions we leave for future investigation.

– Is there any polynomial time algorithm which, given a graph admitting a system of at most μ collective tree t-spanners, 
constructs a system of at most α(μ, n) collective tree β(t, n)-spanners, where α(μ, n) is O (μ) (or O (μ log n)) and 
β(t, n) is O (t) (or O (t log n))?

In this approximation question, we assume that one knows that a graph G admits a system of at most μ collective tree 
t-spanners, but (s)he does not know how to find it in polynomial time and wonders if something weaker can be constructed 
efficiently. The following question is about approximating the k-tree-width t-spanner problem.

– Is there a polynomial time algorithm that, for every unweighted graph G admitting a t-spanner of tree-width k, con-
structs an (O (k log n)t)-spanner with tree-width at most k?
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