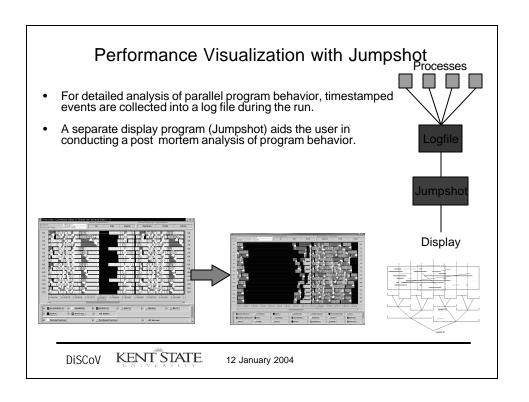
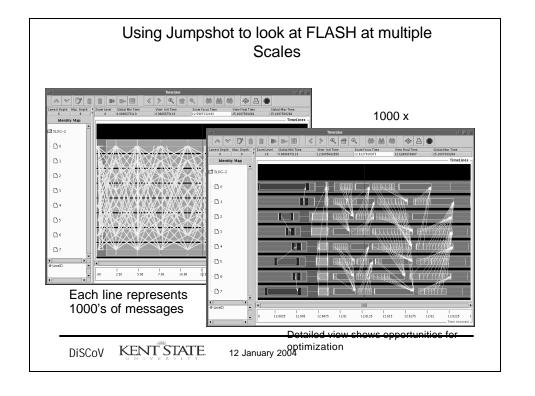
MPI Related Software

- Profiling Libraries and Tools
- Visualizing Program Behavior
- Timing
- Performance Measurement and Tuning
- High Level Libraries


DISCOV KENT STATE


12 January 2004

Profiling Libraries

- MPI provides mechanism to intercept calls to MPI functions
- For each MPI_ function corresponding PMPI_ version
- User can write custom version of for example MPI Send then call PMPI Send to send
- If user library is loaded before the standard one, users calls are executed
- Profiling libraries and tools are at
 - http://ftp.mcs.anl.gov/pub/mpi/mpe.tar

DISCOV KENT STATE

Timing in MPI

- Use MPI_Wtime
 - Time in seconds since an arbitrary time in the past.
 - high-resolution, elapsed (or wall) clock.
 - MPI_WTICK gives the resolution of MPI_WTIME.

DISCOV KENT STATE

12 January 2004

Performance Measurement

- Mpptest
 - http://www-unix.mcs.anl.gov/mpi/mpptest/
 - measures the performance of some of the basic MPI message passing routines
 - Measures performance with many participating processes (exposing contention and scalability problems)
 - can adaptively choose the message sizes in order to isolate sudden changes in performance
- SKaMPI
 - http://liinwww.ira.uka.de/~skampi/
 - suite of tests designed to measure the performance of MPI
 - Goal is to create a database to illustrate the performance of different MPI implementations on different architectures
 - Database of results
 - http://liinwww.ira.uka.de/~skampi/cgi-bin/run_list.cgi.pl

DISCOV KENT STATE. 12

High Performance LINPACK (HPL)

- software package that solves a (random) dense linear system in double precision (64 bits) arithmetic on distributed-memory computers
- In addition to MPI, an implementation of either the Basic Linear Algebra Subprograms BLAS or the Vector Signal Image Processing Library VSIPL is also needed.
- Performance estimate usually overestimates that achieved in practice
- Performance on HPL depends on tuning of BLAS
 - Vendor specific BLAS
 - ATLAS

DISCOV KENT STATE

12 January 2004

ATLAS

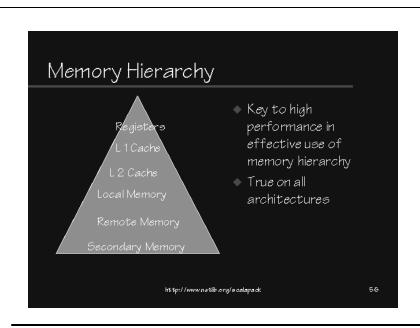
- Automatically Tuned Linear Algebra Software (ATLAS)
 - <u>http://math-atlas.sourceforge.net/</u>
 - ongoing research effort focusing on applying empirical techniques in order to provide portable performance
 - provides C and Fortran77 interfaces to a portably efficient <u>BLAS</u> implementation, as well as a few routines from <u>LAPACK</u>
 - Prebuilt versions for various architectures
 - Build it from source
 - check the ATLAS errata file
 - may take several hours

High-Level Programming With MPI

- MPI was designed from the beginning to support libraries
- Many libraries exist, both open source and commercial
- Sophisticated numerical programs can be built using libraries
 - Dense Linear algebra
 - Sparse Linear Algebra
 - Solve a PDE (e.g., PETSc)
 - Fast Fourier Transforms
 - Scalable I/O of data to a community standard file format

DISCOV KENT STATE

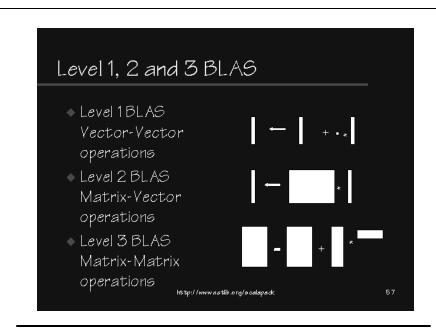
12 January 2004

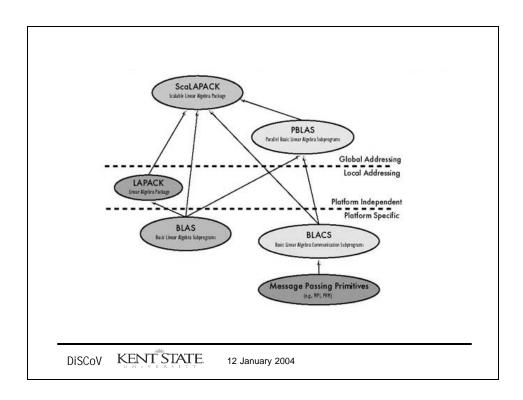

Higher Level I/O Libraries

- Scientific applications work with structured data and desire more self-describing file formats
- netCDF and HDF5 are two popular "higher level" I/O libraries
 - Abstract away details of file layout
 - Provide standard, portable file formats
 - Include metadata describing contents
- For parallel machines, these should be built on top of MPI-IO

ScaLAPACK

- ScaLAPACK (or Scalable LAPACK) library includes a subset of <u>LAPACK</u> routines redesigned for distributed memory MIMD parallel computers
- http://www.netlib.org/scalapack/scalapack_home.html
- Latest in sequence of libraries LINPACK, EISPACK, LAPACK
- written in a Single-Program-Multiple-Data style using explicit message passing
- assumes matrices are laid out in a <u>two-dimensional</u> block cyclic decomposition
- based on block-partitioned algorithms in order to minimize the frequency of data movement between different levels of the memory hierarchy


DISCOV KENT STATE. 12 January 2004



ScaLAPACK

- Based on
- distributed memory versions (PBLAS) of the Level 1, 2 and 3 BLAS,
- a set of Basic Linear Algebra Communication Subprograms (BLACS) for communication tasks that arise frequently in parallel linear algebra computations
- all interprocessor communication occurs within the PBLAS and the BLACS
- See tutorial for more details
 - http://www.netlib.org/scalapack/tutorial/

DISCOV KENT STATE. 12 January 2004

ScaLAPACK

AVAILABLE SOFTWARE:

Dense, Band, and Tridiagonal Linear Systems

• general

symmetric positive definite

Full-Rank Linear Least Squares Standard and Generalized

Orthogonal Factorizations

Eigensolvers

 SEP: Symmetric Eigenproblem
 NEP: Nonsymmetric Eigenproblem GSEP: Generalized Symmetric Eigenproblem

Prototype Codes

• HPF interface to ScaLAPACK

Matrix Sign Function for Eigenproblems
 Out-of-core solvers (LU, Cholesky, QR)

• Super LU

• PBLAS (algorithmic blocking and no

alignment restrictions.)

DOCUMENTATION:

ScaLAPACK Users' Guide

Future Work

Out-of-core Eigensolvers

Divide and Conquer routines

• C++ and Java Interfaces

Commercial Use

ScaLAPACK has been incorporated into the following software packages:

• NAG Numerical Library

• IBM Parallel ESSL

* SGI Cray Scientific Software Library

and is being integrated into the VNI IMSL Numerical Library, as well as software libraries for Fujitsu, HP/Convex, Hitachi, and NEC.

http://www.netlib.org/scalapack/

DISCOV KENT STATE

PI APACK

- · Designed for coding linear algebra algorithms at a high level of abstraction
- http://www.cs.utexas.edu/users/plapack/
- includes Cholesky, LU, and QR factorization based solvers for symmetric positive definite, general, and overdetermined systems of equations, respectively
- More OO in style
- raising the level of abstraction sacrifices some perfromance but more sophisticated algorithms can be implemented, which allows high levels of performance to be regained

DISCOV KENT STATE 12 January 2004

Spare Linear Systems

- SuperLU
 - http://crd.lbl.gov/~xiaoye/SuperLU/
 - direct solution of large, sparse, nonsymmetric systems
 - SuperLU for sequential machines
 - SuperLU MT for shared memory parallel machines
 - SuperLU_DIST for distributed memory
 - perform an LU decomposition with partial pivoting and triangular system solves through forward and back substitution
 - Distributed memory version uses static pivoting instead to avoid large numbers of small messages

DISCOV KENT STATE

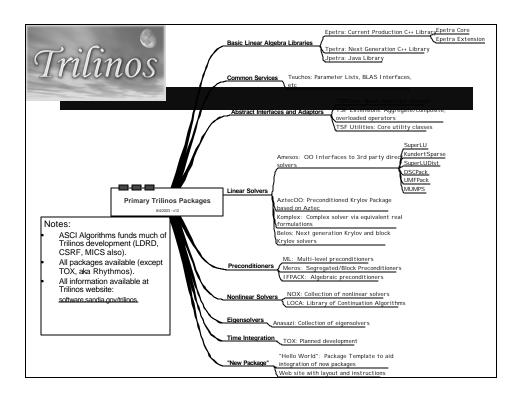
Aztec

- A massively parallel iterative solver for solving sparse linear systems
- grew out of a specific application: modeling reacting flows (MPSalsa)
- easy-to-use and efficient
- global distributed matrix allows a user to specify pieces (different rows for different processors) of his application matrix exactly as he would in the serial setting
- Issues such as local numbering, ghost variables, and messages are instead computed by an automated transformation function.

DISCOV KENT STATE

12 January 2004

Trilinos


- an effort to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications
- unique design feature of Trilinos is its focus on packages
- Aztec now part of Trilinos

DISCOV KENT STATE

Trilinos Packages

- Trilinos is a collection of Packages.
- Each package is:
 - Focused on important, state-of-the-art algorithms in its problem regime.
 - Developed by a small team of domain experts.
 - Self-contained: No explicit dependencies on any other software packages (with some special exceptions).
 - Configurable/buildable/documented on its own.
- Sample packages: NOX, AztecOO, IFPACK, Meros.
- Special package collections: Petra, TSF, Teuchos.

DISCOV KENT STATE

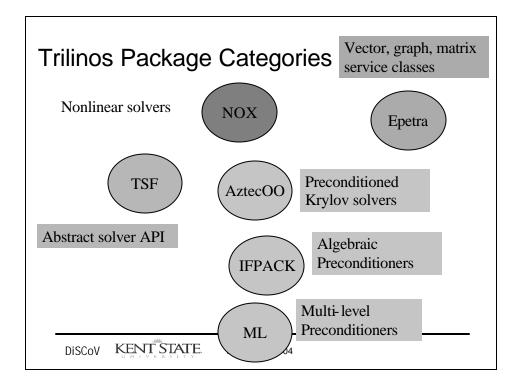
Package	Description	Release 3.1 (9/2003) 4 (5/2004)			
		3.1 General			
Amesos	3 rd Party Direct Solver Suite		X	X	X
Anasazi	Eigensolver package				X
AztecOO	Linear Iterative Methods	X	X	X	X
Belos	Block Linear Solvers				X
Epetra	Basic Linear Algebra	X	X	X	X
EpetraExt	Extensions to Epetra		X	X	X
Ifpack	Algebraic Preconditioners	X	X	X	X
Jpetra	Java Petra Implementation				X
Kokkos	Sparse Kernels			X	X
Komplex	Complex Linear Methods	X	X	X	X
LOCA	Bifurcation Analysis Tools	X	X	X	X
Meros	Segregated Preconditioners		X		X
ML	Multi-level Preconditioners	X	X	X	X
NewPackage	Working Package Prototype	X	X	X	X
NOX	Nonlinear solvers	X	X	X	X
Pliris	Dense direct Solvers			X	X
Teuchos	Common Utilities			X	X
TSFCore	Abstract Solver API			X	X
TSFExt	Extensions to TSFCore			X	X
Tpetra	Templated Petra				X
Totals		8	11	15	20

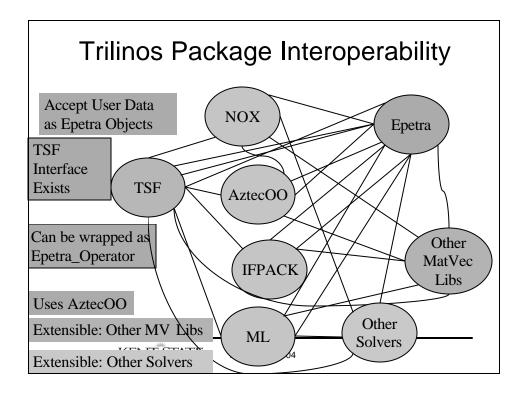
Three Special Trilinos Package Collections

- Petra: Package of concrete linear algebra classes: Operators, matrices, vectors, graphs, etc.
 - Provides working, parallel code for basic linear algebra computations.
- TSF: Packages of abstract solver classes: Solvers, preconditioners, matrices, vectors, etc.
 - Provides an application programmer interface (API) to any other package that implements TSF interfaces.
 - Inspired by HCL.
- Teuchos (pronounced Tef-hos): Package of basic tools:
 - Common Parameter list, smart pointer, error handler, timer.
 - Interface to BLAS, LAPACK, MPI, XML, ...
 - Common traits mechanism.
 - Goal: Portable tools that enhance interoperability between packages.

Dependence vs. Interoperability

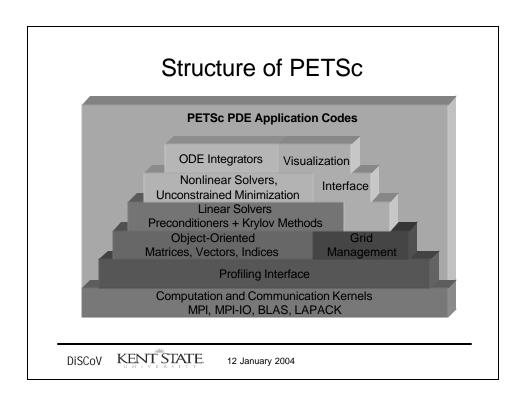
- Although most Trilinos packages have no explicit dependence, each package must interact with some other packages:
 - NOX needs operator, vector and solver objects.
 - AztecOO needs preconditioner, matrix, operator and vector objects.
 - Interoperability is enabled at configure time. For example, NOX:
 - --enable-nox-lapack compile NOX lapack interface libraries
 - --enable-nox-epetra compile NOX epetra interface libraries
 - --enable-nox-petsc compile NOX petsc interface libraries
- Trilinos is a vehicle for:
 - Establishing interoperability of Trilinos components...
 - Without compromising individual package autonomy.
- I rilinos offers tive basic interoperability mechanisms.

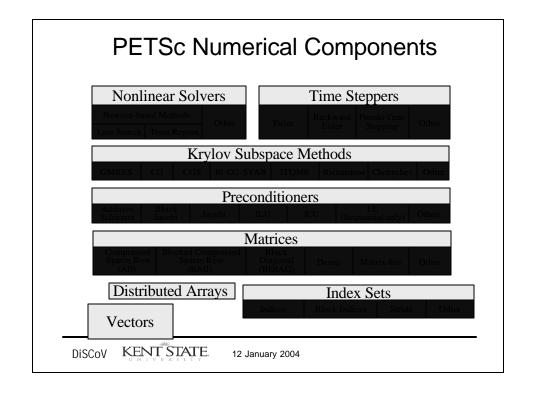

 DISCOV KENT STATE 12 January 2004

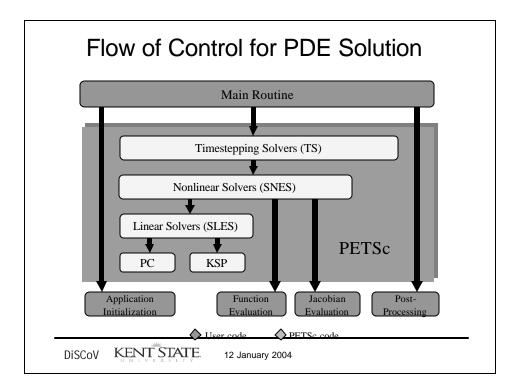

Trilinos Interoperability Mechanisms

- M1: Package accepts user data as Epetra or TSF objects.
 =>Applications using Epetra/TSF can use package.
- M2: Package can be used via TSF abstract solver classes.
 - => Applications or other packages using TSF can use *package*.
- M3: Package can use Epetra for private data.
 - => Package can then use other packages that understand Epetra.
- M4: Package accesses solver services via TSF interfaces.
 - => Package can then use other packages that implement TSF interfaces.
- M5: Package builds under Trilinos configure scripts.
 - => Package can be built as part of a suite of packages.
 - => Cross-package dependencies can be handled automatically.

Interoperability Example: AztecOO


- AztecOO: Preconditioned Krylov Solver Package.
- Primary Developer: Mike Heroux.
- Minimal explicit, essential dependence on other Trilinos packages.
 - Uses abstract interfaces to matrix/operator objects.
 - Has independent configure/build process (but can be invoked at Trilinos level).
 - Sole dependence is on Epetra (but easy to work around).
- Interoperable with other Trilinos packages:
 - Accepts user data as Epetra matrices/vectors.
 - Can use Epetra for internal matrices/vectors.
 - Can be used via TSF abstract interfaces.
 - Can be built via Trilinos configure/build process.
 - Can provide solver services for NOX.
 - Can use IFPACK, ML or AztecOO objects as preconditioners





The PETSc Library

- PETSc provides routines for the parallel solution of systems of equations that arise from the discretization of PDEs
 - Linear systems
 - Nonlinear systems
 - Time evolution
- PETSc also provides routines for
 - Sparse matrix assembly
 - Distributed arrays
 - General scatter/gather (e.g., for unstructured grids)

Eigenvalue Problems

- ScaLAPACK and PLAPACK
- ARPACK
 - designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A.
 - most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w <- Av requires order n rather than the usual order n2 floating point operations
 - based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM)
 - Reverse Communication Interface
 - No need for user to pass the matrix to library
 - Can work with any user defined data structure or with matrices that are operatively defined

Fast Fourier Transform

- FFTW Fastest Fourier Transform in the West
- MPI parallel transforms are only available in 2.1.5
- Received the <u>1999 J. H. Wilkinson Prize for Numerical Software</u>
- Features
 - Speed. (Supports SSE/SSE2/3dNow!/Altivec, new in version 3.0.)
 - Both one-dimensional and **multi-dimensional** transforms.
 - Arbitrary-size transforms. (Sizes with small prime factors are best, but FFTW uses O(N log N) algorithms even for prime sizes.)
 - Fast transforms of **purely real** input or output data.
 - Parallel transforms: parallelized code for platforms with <u>Cilk</u> or for SMP machines with some flavor of <u>threads</u> (e.g. POSIX). An <u>MPI</u> version for distributed-memory transforms is also available, currently only as part of FFTW 2.1.5.
 - Portable to any platform with a C compiler.

DISCOV KENT STATE

12 January 2004

Load balancing

- Read about Graph Partitioning Algorithms
- Parmetis
 - MPI-based parallel library that implements a variety of algorithms for partitioning unstructured graphs, meshes, and for computing fill-reducing orderings of sparse matrices.
 - http://www-users.cs.umn.edu/~karvpis/metis/parmetis/
- Chaco
- Zoltan

Applications

- Gaussian
 - predicts the energies, molecular structures, and vibrational frequencies of molecular systems, along with numerous molecular properties derived from these basic computation types
- Fluent
 - Computational fluid dynamics
- MSC/Nastran
 - CAE/structural finite element code
- LS-DYNA
 - general purpose nonlinear finite element program
- NAMΓ
 - recipient of a <u>2002 Gordon Bell Award</u>, is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems
- NWChem
- provides many methods to compute the properties of molecular and periodic systems using standard quantum mechanical descriptions of the electronic wavefunction or density

DISCOV KENT STATE

12 January 2004

Getting MPI for your cluster

- MPI standard
 - http://www.mcs.anl.gov/mpi/
- MPICH
 - http://www.mcs.anl.gov/mpi/mpich
 - Either MPICH-1 or
 - MPICH-2
- LAM
 - http://www.lam-mpi.org
- MPICH-GM
 - http://www.myricom.com
- MPICH-G2
 - http://www.niu.edu/mpi
- Many other versions see book

Some Research Areas

- MPI-2 RMA interface
 - Can we get high performance?
- Fault Tolerance and MPI
 - Are intercommunicators enough?
- MPI on 64K processors
 - Umm...how do we make this work :)?
 - Reinterpreting the MPI "process"
- MPI as system software infrastructure
 - With dynamic processes and fault tolerance, can we build services on MPI?