Operating System - Linux

- What is Linux?
- Why Linux?
 - Most popular Open Source operating system
 - Marketed commercially now
 - Easily modified and tweaked
 - Pool of experienced users
 - Easily administered remotely
 - Can be trimmed down (to 600KB) reduce potential for bugs
 - Supports many processor architectures (Alpha, IA32, IA64, PowerP C, Opteron)
- Does it need to be modified for HPC? No.

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 1

Kernel v Distribution

- Linux is kernel which controls hardware, multitasking, virtual memory, shared libraries, demand laoding, shared copy-onwrite executables, TCP/IP, file systems
- Distribution usually includes installer and also includes many other public domain programs
 - RedHat, SuSe, Fedora, Mandrake, SlackWare,
- Also integrated hardware/software Beowulf solutions based on one of these
- Beowulf setup systems e.g. OSCAR, NPACI Rocks

DISCOV KENT STATE.

12 January 2004

GPL v Open Source

- Modifications of GPLed software must not be distributed as binary only . Source must be made available
 - Linux is GPLed
- Open Source software which is not GPLed may be modified and sold as binary only code.
 - Mozilla, X-windows, BSD, MPICH

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 3

Linux Distributions

Red Hat	www.redhat.com
SuSe	www.suse.com
Mandrake	www.mandrake.com
Debian	www.debian.org
SlackWare	www.slackware.com
TurboLinux	www.turbolinux.com
Connectiva	www.connectiva.com
Fedora	www.fedora.us
	fedora.redhat.com

DISCOV KENT STATE.

12 January 2004

Paul A. Farrell

Which Distribution for a Cluster?

- Local Familiarity
- Language Support
- Bundled Software/Hardware
- Cluster versions
 - OSCAR, NPACI Rocks
 - Essentially diffs of standard distributions
- LIcensing

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 5

Version Numbers

- Kernel
 - Linus Torvalds and Core Team (Donald Becker, Alan Cox, Stephen Tweedie, David
 - Contributions sent in may be incorporated
- Distribution version number and Kernel version number not related
- Kernel versions
 - Stable (even minor numbers) 2.2, 2.4
 - Development (odd minor numbers) 2.1, 2.5
- Distributions choose version numbers as they please
 - May also modify basic kernels
 - If so, generic upgrades will not work

DISCOV KENT STATE

12 January 2004

Tracking down kernel/driver issues

- Read the documentation
 - HOWTO documents in /usr/doc/HOWTO
- Web surf (start at Google!!)
- Consult local Linux users
- Read mailing lists & search for your topic
 - Archives like marc.theaimsgroups.com
- If you narrow down mail the appropriate mailing groups
- As a last resort look at source code and mail author

DISCOV KENT STATE. 12 January 2004

Paul A. Farrell Cluster Computing 7

Compiling the Linux Kernel

- /proc interface to kernel data structures
 - Is -I /proc/version; cat /proc/version
- Cd /usr/src this is often where the kernel source is (if you selected "kernel source" when you installed)
 - ls -ld linux see it is a symbolic link
- If you are lucky can compile with
 - make clean; make bzlmage
- Try
 - ls -I /usr/src/linux/arch/i386/boot/bzImage

DISCOV KENT STATE

12 January 2004

Loadable Kernel Modules

- Dynamic way to extend kernel functionality
 - Don't retain in memory, don't require kernel recompile
 - Helps to keep kernel small and aids stability
- Modules for device drivers, file systems, special features
- May get 500 or more loadable modules in a distribution

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 9

Slimming the Kernel

- Need to re-configure see README in kernel source directory
 - The graphic version popular (make xconfig)
- Start slow, remove a few features, recompile, test
- Think server
 - Remove things like radio, sound, IrDA, ISDN, ARCnet. Other networks not used, USB (if don't have USB keyboard/mouse), joystick, telephony
- Optimize for CPU
 - Compile to use most recent instruction set your processor supports

DISCOV KENT STATE.

12 January 2004

Slimming the Kernel (ctd.)

- Optimize for number of processors
 - If only one CPU remove SMP support
- Remove firewall or DoS protection
 - Intensive message passing can be mistaken for DoS??
 - Reduces overhead
- Could also compile all modules in and remove loadable module support
- Could reduce from 1.5MB with 10MB of loadable modules to 600Kb with no loadable modules

DISCOV KENT STATE. 12 January 2004

Paul A. Farrell Cluster Computing 11

Possibly Worth Supporting

- NFS for small clusters
- Serial console
- Kernel IP configuration get IP address using BOOTP or **DHCP**
- NFS root supports diskless booting by allowing mounting of root file systems
- Special high performance network drivers Gigabit Ethernet, Myrinet
- A file system

DISCOV KENT STATE

12 January 2004

Paul A. Farrell

Network Booting

- Allows kernel to be loaded from NAS (network attached storage)
- Need specialized BIOS or network adapter
- Most common standard Intel PXE 2.0
 - Firmware boot code requests address and kernel from NAS and gets kernel with TFTP
 - TFTP not scalable
 - Need to limit number of nodes booting or use multiple TFTP servers and segregate Ethernet collision domains

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 13

Diskless Operation

- Why?
 - Security reasons
 - If need to change kernels/distributions frequently
 - Only need to maintain one image
- See Diskless-HOWTO and Diskless-root-NFS-HOWTO
- Need NFS root to mount other needed configuration files (/etc/passwd etc) and dynamic libraries
- NFS is not scalable for large clusters (see later)

DISCOV KENT STATE

12 January 2004

Downloading and Compiling Kernel

- Download from www.kernel.org
- Read documentation may need to download other components (e.g. libc)
- Distribution kernels may have mods from stock kernel e.g. device drivers, tuning, etc
 - Can go to entirely generic
 - Can try to download from distribution company
 - Can try to add mods to stock kernel

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 15

Linux File Systems

- Default is EXT2 (extended file system version 2)
- EXT2 is not a journalling file system, one where writes ensure that file system is always or can always be put in a consistent state – avoids the need for fsck
- Slightly slower must write "journal" to disk first, which will enable restoration of consistent state
- So depends on whether want optimum disk performance on local nodes
- Journalling systems: EXT3, ReiserFS (SuSe, better for small files/large dirs), IBM JFS, SGI XFS (optimized for large block writes from virtual memory)

DISCOV KENT STATE

12 January 2004

Networked & Distributed File Systems

- Local file systems for scratch data
- Networked file system for sharing data
 - NFS (mounts file system over IP)
 - Problems: scalability and synchronization
 - Performance seriously degrades for > 64 nodes
 - Should not write files in expectation they will be available to other nodes
- Solutions are still experimental
 - E.g. PVFS

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 17

Pruning the Node

- Start from server option of installation
- Prune applications automatically started by inetd/xinetd and init.d
- Inetd/xinetd superserver spawns programs to serve requests on sets of ports (see /etc/inetd.conf & /etc/services or /etc/xinetd.d)
- Can eliminate services not needed
- In fact in secure systems where ssh run as daemon may be able to eliminate inetd process itself

DISCOV KENT STATE.

12 January 2004

Boot Scripts

- /etc/rc.d/init.d scripts run at boot time that often run daemons
- Run as enter or leave run level
- Some scripts only initialize hardware or change settings
- Not all scripts run which are run at each level can be seen by
 - chkconfig-list | grep '3;on'
- No need for lpd, mysql, httpd, named, sendmail, etc
- Normally no need for X windows
- Normally run level 4 is the highest run level on a compute node

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 19

Other Processes

- cron scripts
- slocate for indexing file system
- Use to see process and memory they use

ps -eo pid,pcpu,sz,vsize,user,fname -sort=vsize

DISCOV KENT STATE

12 January 2004

Scalable Services

- OS rely on network for services such as time and DNS
- Can cause performance bottlenecks
 - DNS lookups could access a campus server
 - TCP might do reverse DNS lookup per TCP connection
 - NFS, NIS similarly don't scale well

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 21

Virtual Memory Problems

- Demand paged virtual memory usually incurs small performance penalty
- But can be large
- Can lead to mystifying anomalies
 - Extra daemon on nodes causes swapping
- Consider server with 256MB memory
 - Program with 300MB memory usage causes massive swapping (377,093 page faults) and takes 5 minutes
 - With 150MB array only takes 0.5sec and 105 page faults
- May be able to tune to improve performance on clusters
 - Virtual memory/cache locality

DISCOV KENT STATE.

12 January 2004

Paul A. Farrell

Excessive Paging Example

```
#define MEGABYTES 300
main(){
    int *x, *p, t=1, I, numints=MEGABYTES*1024*1024/sizeof(int);
    x = (int *) malloc(numints*sizeof(int));
    if (!x) { printf"insufficient memory\n"); exit(1); }
    for (i=1; i<=5; i++) {
        printf(Loop %d\n",i);
        for(p=x; p<x+numints-1; p+=1024) {
            *p = *p + t;
        }
    }
}</pre>
Paul A. Farrell
```

TCP messaging

12 January 2004

- Normally tuned for general purpose computing
- In clusters, short low-latency and very long messages common
- 2.2 kernels needed tweaks to stack to improve performance
- See Paul A. Farrell, Hong Ong, <u>Communication Performance</u> over a <u>Gigabit Network</u>,

http://discov.cs.kent.edu/publications/2000/ipccc2000.pdf for some of this

• 2.4 kernels generally OK

DISCOV KENT STATE

- May need to tune for high speed networks like Myrinet
- Browse the Beowulf mailing lists

DISCOV KENT STATE

12 January 2004

Paul A. Farrell

Cluster Computing 24

Final Tuning with /proc

- Probably not much performance improvement unless something is wrong
- See www.linuxhq.com & linuxperf.nl.linux.org if you want to try
- Networking try
 - cat /proc/net/dev or run /sbin/ifconfig
 - Check using the correct interface
 - Look at collisions, errs, dropped, frame
 - If dropped growing by few packets per sec problem
- Tunable parameters are in /proc/sys/net
 - tcp_sack, tcp_window_scaling etc

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 25

Other /proc tuning

- Memory
 - cat /proc/meminfo to see parameters
 - Tune in /proc/sys/vm
- File system /proc/sys/fs
- Harddisk
 - /sbin/hdparam
- Kernel basics /proc/sys/kernel
 - E.g. /proc/sys/kernel/shmem is maximum size of shared memory segments

DISCOV KENT STATE.

12 January 2004