Setting Up Clusters

- · Software Provisioning Challenges
- · There are no homogeneous clusters
- · Functional Inhomogeneity
 - Login & computer nodes
 - Specialized service nodes
 - System logging, I/O, login, dedicated installation nodes
- · Hardware inhomogeneity
 - New nodes unlikely to be identical
 - Replacement parts may be different
 - Even parts in original machines may differ, even if they have the same part number
 - Ex: SCSI drives 980 & 981 cylinders defeat imaging program

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 1

System Software Consistency

- · Avoid small differences in C libraries
 - Performance and correctness problems
- New nodes must have identical software & configuration
- Diskless clusters avoid the problem by mounting a uniform file system through NFS

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 3

Functional Differentiation

- · Arises from need to scale services
- Mid-size cluster node types
- Head node/Frontend node
 - Computer node
 - I/O server
 - Web server
 - System logging server
 - Installation server
 - Grid gateway node
 - Batch Scheduler and cluster-wide monitoring

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 2

Hardware Provisioning Challenges

- Organization and labelling can help in debugging problems
- Four areas
 - Node layout rackmount v workstation tower v blades
 - Cable management
 Airflow management
 - Airflow management
 - Power management
- · Rack Units
 - 1U = 1.75", standard rack is 2m tall (42U)
 - With higher density (1U) CAP (cable, airflow, power) more important
 - Group cables by tie wrapping 4 ethernet or 8 power cables use wire ties every 6 to 12in

Rackmount

- · Ethernet cable lengths depend on node types
 - Workstation towers prebundle 2 each 5,6,7,8'
 - · Even on one end for switch
- 2U rackmount bank of 8 only 15in high
- · Power cables more complicated
 - Need to make sure power cables don't obstruct airflow
 - High-end nodes can dissipate 150-200W
- Need to ensure enough power circuits and distribution units are available
 - Use standard Power Distribution Units (PDUs) rather than power strips
 - · Thicker quality cabling which will not overheat

DISCOV KENT STATE 12 January 2004

Paul A. Farrell
Cluster Computing 5

Power Distribution Units

- Plug power cord from chassis (or towers) into them
- Some units are network addressible
 - Can control outlets via an ethernet network
- USD\$400 for 8 outlet PDU

SCOV KENT STATE. 12 January 2004 Paul A. Farrell
Cluster Computing 7

Chassis Heat Map

- Experience with IBM and Compaq
 - And a few white boxes
- Thermal design is important
 - Heat causes premature failures

DISCOV KENT STATE.

12 January 2004

Paul A. Farrell
Cluster Computing 6

Installation Management

- Open source management systems
 - NPACI Rocks, OSCAR, Score, Scyld, XCAT
- Have to choose range of distributions (RedHat, SuSE, Debian, Mandrake) and hardware supported
- Each distribution has own style, file layout, package formats & definitions, hardware support etc.
- Packaging definitions can cause problems in resolving dependencies
- Linux distributions do hardware detection to install right device drivers
- Hardware getting more diverse

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 8

Installation Management

- · Diverse hardware
 - Disks (IDE, EIDE, UATA, SATA, SCSI, SAN etc
 - Interconnects (GE, Scali, Myrinet, Quadrics, Infiniband)
 - Motherboards, chipsets, processors
- Cluster building toolkits tend to scale across hardware or distributions but not both

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 9

Approaches

- · Disk Imaging
 - Initially the normal choice for clusters
 - Image based programs: Norton Ghost, PowerQuest Drive Image, SystemImager, Chiba City Imager, PowerCockpit
 - Image based toolkits: OSCAR, Chiba City, CLIC
- · Description based installers
 - Use text files to specify files and instructions for configuration.
 - Programs: RedHat KickStart, SuSE YaST, Debian FAI
 - Toolkits: NPACI Rocks, IBM XCAT, European Data Grid LCFG
 - Capture disk partitioning, package listing, and software configuration
 - Description can work on many variants of hardware using distribution installer for low level details

DISCOV KENT STATE 12 January 2004 Paul A. Farrell
Cluster Computing 11

Scaling Choices

- · Scaling across distributions
 - Need to make generalizations
 - Take over base installation and hardware detection from distribution
 - Adv: more distribution choice
 - Disadv: a lot of diverse hardware to handle
- · Scaling across hardware
 - Use single distribution
 - Leverage built-in installation and hardware detection

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 10

Basic High Level Steps

- 1. Install head node
- 2. Configure Cluster Services on Head Node
- 3. Define Configuration of a Compute Node
- 4. For each compute node repeat
 - a) Detect Ethernet hardware address of new node
 - b) Install complete OS on new node
 - c) Complete configuration of new node
- Restart services on head node that are cluster aware (e.g. PBS, Sun Grid Engine)

1./2. Head Node

- OSCAR has user setup configuration separately from installing the toolkit
- · NPACI Rocks combines two

DISCOV KENT STATE. 12 January 2004 Paul A. Farrell Cluster Computing 13

4. For each compute node

- a. Detect Ethernet hardware address of new node
 - On boot uses DHCP
 - Sends MAC address
 - · Gets IP, netmask routing, node name, etc
 - Toolkits have mechanism to detect new MAC addresses
 - Rocks probes /var/log/messages for DHCPDISCOVER requests from new MAC addresses
 - OSCAR uses tcpdump
- b. Install complete OS on new node
 - Image based: download golden image, adjust for disk geometry, IP address etc, and install image
 - Description based: download text based description, and use native installer
 - · Pakages are downloaded from a distribution server

DISCOV KENT STATE 12 January 2004 Paul A. Farrell
Cluster Computing 15

3. Define Configuration of a Compute Node

- For disk imaging a *golden node* needs to be configured
 - OSCAR's System Installation Suite (SIS) uses a package list and a set of GUI's to configure this without first installing
 - Rocks uses a general description which works across hardware types

DISCOV KENT STATE. 12 January 2004 Paul A. Farrell Cluster Computing 14

4./5. For each compute node

- · Image: most information in golden image
- Description: most information in text configuration files
- c. To complete
 - Used to have to be done explicitly by sysadm
 - Now fully automated
- 5. Restart services on head node that are cluster aware

NPACI Rocks Toolkit - rocks.npaci.edu

- Techniques and software for easy installation, management, monitoring and update of clusters
- Installation
 - Bootable CD + floppy which contains all the packages and site configuration info to bring up an entire cluster
- - Management and update philosophies - Trivial to completely reinstall any (all) nodes.
 - Nodes are 100% automatically configured
 - Use of DHCP, NIS for configuration
 - Use RedHat's Kickstart to define the set of software that defines a
 - All software is delivered in a RedHat Package (RPM)
 - Encapsulate configuration for a package (e.g., Myrinet)
 - · Manage dependencies
 - Never try to figure out if node software is consistent
 - · If you ever ask yourself this question, reinstall the node

Paul A. Farrell KENT STATE 12 January 2004 Cluster Computing 17

Kickstart

- · Describes disk partitioning, package installation, post-configuration (site specific)
- Three sections
 - Command: answers to interactive installation questions
 - Packages: RPMs
 - Post: scripts to configure packages site specific

Paul A. Farrell KENT STATE 12 January 2004 Cluster Computing 19

NPACI Rocks

- · Software Repository
 - Red Hat derived distribution
 - Managed with rocks-dist
- Installation Instructions
 - Based on Kickstart
 - Variables in SQL (MvSQL)
 - OO Framework used to build configuration/ installation hierarchy
 - Functional decomposition into XML files
 - 100+ nodes
 - 1 graph
 - Python program to convert into Kickstart file (see Fig 6.3)
 - RedHat Anaconda used as installer to interpret Kickstart

DISCOV KENT STATE

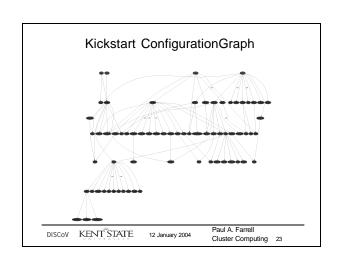
12 January 2004

Paul A. Farrell Cluster Computing 18

Rocks State - Ver. 2.1

- · Now tracking Redhat 7.1
 - 2.4 Kernel
 - "Standard Tools" PBS, MAUI, MPICH, GM, SSH, SSL, ...
- Could support other distros ... don't have staff for this.
- Designed to take "bare hardware" to cluster in a short period of
 - Linux upgrades are often "forklift-style". Rocks supports this as the default mode of admin
- Bootable CD
 - Kickstart file for Frontend created from Rocks webpage.
 - Use same CD to boot nodes. Automated integration "Legacy Unix config files" derived from mySQL database
- Re-installation (a single HTTP server, 100 Mbit)
 - One node: 10 Minutes
 - 32 nodes: 13 Minutes
 - Use multiple HTTP servers + IP -balancing switches for scale

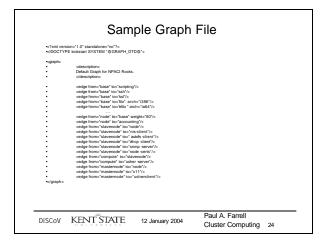
DISCOV KENT STATE

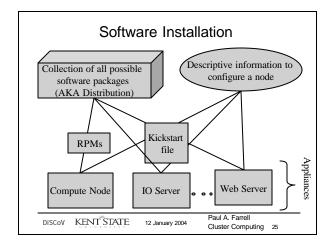

12 January 2004

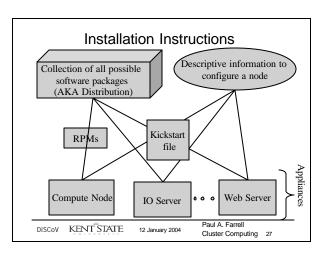
Paul A. Farrell Cluster Computing 20

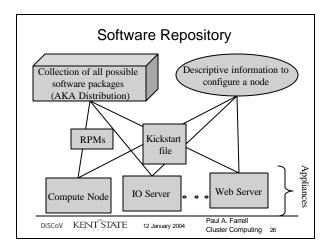
Rocks-dist · Integrate RedHat Packages from - Redhat (mirror) - base distribution + updates Contrib directory Locally produced packages - Local contrib (e.g. commerically bought code) - Packages from rocks.npaci.edu Produces a single updated distribution that resides on front-end Is a RedHat Distribution with patches and updates applied Kickstart (RedHat) file is a <u>text description</u> of what's on a node. Rocks automatically produces frontend and node files. · Different Kickstartfiles and different distribution can co-exist on a front-end to add flexibility in configuring nodes. Kickstart files do not contain package versions - Anaconda resolves generic references to package versions Paul A. Farrell KENT STATE

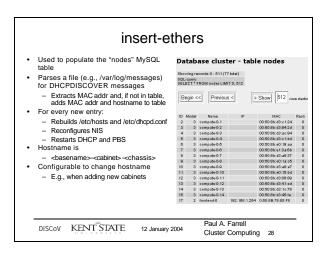
12 January 2004

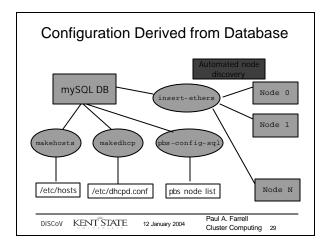

Cluster Computing 21

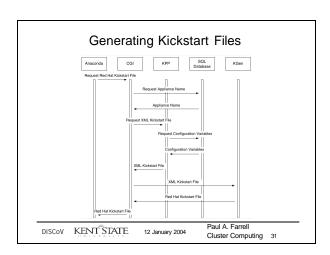



Component Based Configuration


- · Rocks used modules as building blocks for appliances
 - Small XML files
- · A framework describing inheritance is used
 - Directed graph
 - · Vertices : configuration of specific service
 - · Edges: relationships between services
- · When a node is built the kickstart file is generated onthe-fly by traversing the graph
- See 6.5.1 for more details


Paul A. Farrell DISCOV KENT STATE 12 January 2004 Cluster Computing 22





Creating Kickstart File

- · Node makes HTTP request to get configuration
 - Can be online or captured to a file
 - Node reports architecture type, IP address, [appliance type], [options]
- Kpp preprocessor
 - Start at appliance type (node) and make a single large XML file by traversing the graph
 - Node-specific configuration looked up in SQL database
- Kgen generation
 - Translation to kickstart format
 - Other formats could be supported

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 30

Rocks Basic High Level Steps

- 1. Install head node Boot Rocks-augmented CD
- 2. Configure Cluster Services on Head Node in step
- 3. Define Configuration of a Compute Node basic setup installed, can edit graph or nodes to customize
- 4. For each compute node repeat
 - a) Detect Ethernet hardware address of new node use insert-ethers tool
 - b) Install complete OS on new node Kickstart
 - c) Complete configuration of new node in Kickstart
- Restart services on head node that are cluster aware (e.g. PBS, Sun Grid Engine) – part of insertethers

OSCAR

Open Source Cluster Application Resources

Installed and configured items:

- Head node services, e.g. DHCP, NFS
- Internal cluster networking configured
- SIS bootstraps compute -node installation, OS installed via network (PXE) or floppy boot
- OpenSSH/OpenSSL configured
- C3 power tools setup
- OpenPBS and MAUI installed and configured
- Install message passing libs: LAM/MPI, MPICH, PVM
- Env-Switcher/Modules installed and defaults setup

DISCOV KENT STATE

12 January 2004

Paul A. Farrell Cluster Computing 33

Cluster Installation

- · Linux Utility for cluster Install (LUI)
 - Builds cluster nodes from ground up
 - Maintains cluster information database
 - Uses RPM standard, simplifying software installation and maintenance
 - Heterogeneous Nature Resource Based

SCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 35

OSCAR Components

- Functional Areas
 - Cluster Installation
 - Programming Environment
 - Workload Management
 - Security
 - General Administration & Maintenance
- Other
 - Packaging
 - Documentation

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 34

Programming Environment

- · Message Passing Paradigm
 - PVM Parallel Virtual Machine
 - MPI Message Passing Interface
 - MPICH
 - LAM/MPI

Workload Management

- Portable Batch System (OpenPBS)
 - Job management
 - Resource management
 - Default FIFO scheduler
- · Maui Scheduler

DISCOV KENT STATE. 12 January 2004 Paul A. Farrell Cluster Computing 37

General Administration & Maintenance

- Cluster Command & Control (C3)
 - Efficiently manage clusters where each node contains its own copy of OS & software
 - Functionality: cluster-wide command execution, file distribution & gathering, remote shutdown & restart, process status & termination, system image updates

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 39

Security

- OpenSSL
 - Open source implementation of the Secure Sockets Layer (SSL) protocol providing secure communications over a network
 - Export restricted
- OpenSSH
 - Open source implementation of the Secure Shell (SecSH) providing secure login, file transfer, and connections forwarding
 - Requires external encryption libraries ightarrow OpenSSL

DISCOV KENT STATE. 12 January 2004 Paul A. Farrell Cluster Computing 38

Package Name Version SIS 0.90-1/2.1.3oscar-1/1.25-1 СЗ OpenPBS 2.2p11 MAUI 3.0.6p9 LAM/MPI 6.5.6 MPICH 1.2.4 PVM 344+6 Ganglia 2.2.3

OSCAR 1.3 - base pkgs

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 40

1.0.4/3.1.6

Env-switcher/modules

OSCAR Cluster Installation Overview

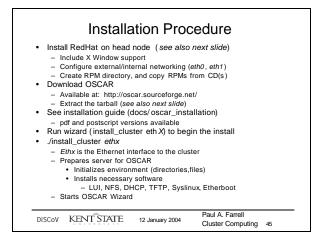
- · Set up hardware
- Install Linux on server (RedHat 7.1)
- · Get OSCAR distribution & unpack
- Do cluster install
 - OSCAR Wizard guides users through the seven step process
- · Test the cluster

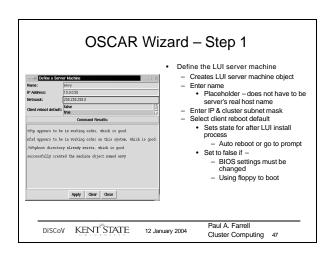
DISCOV KENT STATE. 12 January 2004 Paul A. Farrell Cluster Computing 41

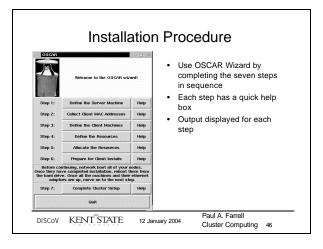
Hardware Considerations

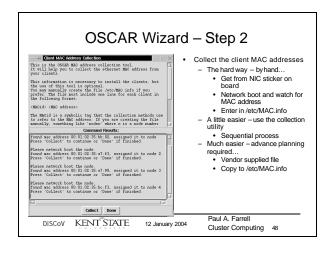
- Server & Clients
 - Must be x86
 - Must be connected by an Ethernet network (preferably a private one)
- Clients
 - Must contain identical hardware
 - PXE Enabled NIC or Floppy Drive

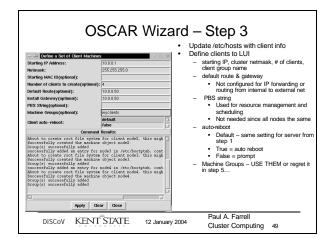
DISCOV KENT STATE. 12 January 2004 Paul A. Farrell
Cluster Computing 43

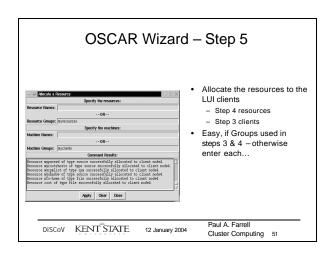

OSCAR cluster view

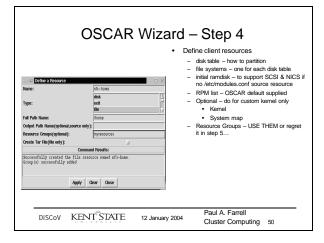

- Server node (1)
 - Service client requests
 - Gateway to external network
 - User home directories (NFS mounted)
 - Runs PBS server and scheduler
- Client nodes (many)
 - Dedicated to computation
 - On private network
 - Local copy of OS

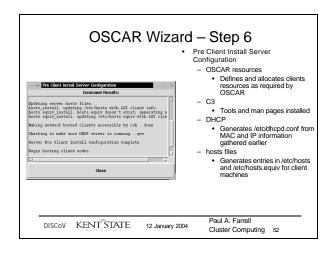

DISCOV KENT STATE. 12 January 2004 Paul A. Farrell Cluster Computing 42

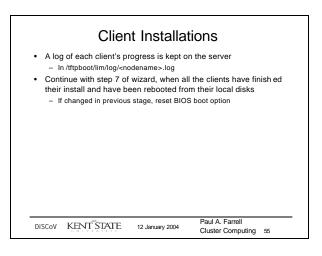

Install Linux on Server

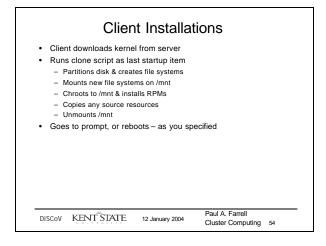

- · Distribution used must support RPM
- · Needs to have X
- Can use machine with Linux already installed as server, otherwise a typical workstation install is sufficient

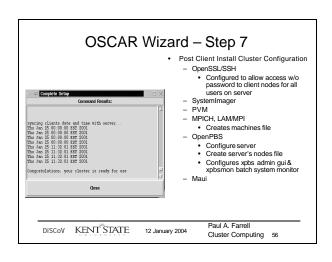












Client Installations Network Boot Clients Preboot eXecution Environment (PXE) • Use PXE v2.0 or later - more stable · BIOS boot option setup may be required Slow manual process for each box – yuck! · Not supported by all BIOSes & NICs - Some NIC & BIOS combos may try to fool you... - Etherboot · Floppy based · Typically used for older NICs Paul A. Farrell KENT STATE 12 January 2004

Cluster Computing 53

Testing the Cluster

- OSCAR Cluster Test
 - PBS name & date script
 - MPI calculate pi (cpi)
 - PVM master-slave
 - MPI & PVM tests run under PBS
- OSCAR benchmark suite removed as of v1.0 due to license issues

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 57

Credits for Slides Used

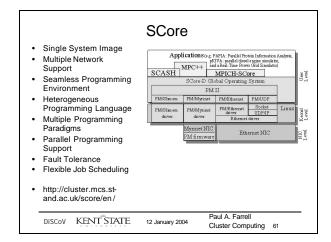
- ROCKS
 - Mason Katz
 - Greg Bruno
 - Philip Papadopoulos
 - San Diego Supercomputer Center
- OSCAR
 - Stephen Scott
 - Thomas Naughton
 - Oak Ridge National Laboratory

DISCOV KENT STATE. 12 January 2004 Paul A. Farrell Cluster Computing 59

OSCAR Basic High Level Steps

- 1. Install head node Hand install using Distribution installer
- 2. Configure Cluster Services on Head Node Follow installer setup script
- 3. Define Configuration of a Compute Node Use OSCAR wizard to define a client image
- 4. For each compute node repeat
 - a) Detect Ethernet hardware address of new node use OSCAR wizard
 - Install complete OS on new node SIS disk image downloaded and installed
 - c) Complete configuration of new node most customization already done in image
- Restart services on head node that are cluster aware (e.g. PBS, Sun Grid Engine) – part of OSCAR install wizard

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 58


Other Toolkits

- Score
- LCFG
- XCat
- · Chiba City Toolkit

DISCOV KENT STATE

12 January 2004 Paul A. Farrell

Cluster Computing 60

- xCAT (Extreme Cluster Administration Toolkit)
- · Limited support for SuSE Linux YaST
- License limited to IBM hardware
- A lot of initial description and scripting necessary
- Integrated with IBM poprietary management processor
 - BIOS updates, remote power cycling, etc

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 63

LCFG

- LCFG is a system for automatically installing and managing the configuration of large numbers of Unix systems. It is particularly suitable for sites with very diverse and rapidly changing configurations.
- · Description based
- Proprietary configuration language, custom compiler to create XML, uses own boot environment

DISCOV KENT STATE 12 January 2004 Paul A. Farrell Cluster Computing 62

Chiba City Toolkit

- Unsupported collection of tools from ANL
- Image based installer
- See Chapter 20 for longer description