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1 Continuous problem class

In this paper we examine the numerical performance of parameter–robust
numerical methods [1] for the following class of quasilinear singularly per-
turbed boundary value problems: Let Ω− := (0, d), Ω+ := (d, 1) and find
uε ∈ C1(Ω̄) ∩ C2(Ω− ∪ Ω+) such that

εu′′

ε + b(x, u)u′

ε = f, for all x ∈ Ω− ∪ Ω+, (1a)

uε(0) = A, uε(1) = B, (1b)

b(x, u) =

{

b1(u) = −1 + cu, x < d

b2(u) = 1 + cu, x > d
, f(x) =

{

−δ1, x < d

δ2, x > d
(1c)

−1 < uε(0) < 0, 0 < uε(1) < 1, 0 < c ≤ 1, (1d)

where δ1, δ2 are non–negative constants. Note the strict inequalities in (1d),
which are imposed in order to ensure that the solution exhibits a standard
shock layer, as opposed to a S-type layer.

In order to guarantee existence and uniqueness of the solution of the con-
tinuous problem, we need to impose additional conditions on the magnitudes
of ‖f‖ and the boundary values |uε(0)|, |uε(1)|. Further restrictions are re-
quired in the theoretical analysis in [4] to prove uniform in ε convergence of the
numerical method described below. These conditions are stated in (4) and (7).
A linear version of (1) was studied in [2], where a parameter–uniform numeri-
cal method based on a suitably designed piecewise–uniform mesh was shown to
be parameter-uniform of essentially first order for a linear convection-diffusion
problem with discontinuous data. The methodology in [2] was extended in [4]
to the quasilinear problem (1) under the conditions (4) and (7).

Let C1 be the class of problems defined by (1),(3); C2 be the class of
problems defined by (1),(4) and C3 be the class of problems defined by (1),(4)
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and (7). The proof in [4] restricts the problem to the smallest of these three
classes C3. Figure 1 displays some typical solutions for some sample problems
in C3. In this paper, we examine (via numerical experiments) the parameter-
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Fig. 1. Solution of (1) for sample problems in C3.

uniform performance of the numerical method under the weaker conditions
C1 or C2.

The reduced solution v0 : [0, 1] → (−1, 1) is defined to be the solution of
the following nonlinear first order problem

b(v0, x)v′

0 = f, x ∈ Ω− ∪ Ω+, v0(0) = uε(0), v0(1) = uε(1). (2)

A unique reduced solution v0 with the additional sign-pattern property of
v0(x) < 0, x ∈ Ω−; v0(x) > 0, x ∈ Ω+exists if the conditions [4]

δ1d < −uε(0) + 0.5cu2
ε(0), δ2(1 − d) < uε(1) + 0.5cu2

ε(1), (3)

are satisfied by the data. For a unique solution of the full continuous problem
to exist it suffices [4] that

δ1d < −uε(0), δ2(1 − d) < uε(1) (4a)

uε(1) − uε(0) < 1/c + min{
δ1d

1 − cuε(0)
,

δ2(1 − d)

1 + cuε(1)
}. (4b)

Note that (4a) implies (3) and hence C3 ⊂ C2 ⊂ C1.

2 Numerical method

The domain Ω is subdivided into the four subintervals

[0, d − σ1] ∪ [d − σ1, d] ∪ [d, d + σ2] ∪ [d + σ2, 1], (5a)

for some σ1, σ2 that satisfy 0 < σ1 ≤ d
2 , 0 < σ2 ≤ 1−d

2 . On each of the four

subintervals a uniform mesh with N
4 mesh-intervals is placed. The interior

points of the mesh are denoted by



Quasilinear differential equations with interior layers 3

ΩN
ε = {xi : 1 ≤ i ≤

N

2
− 1} ∪ {xi :

N

2
+ 1 ≤ i ≤ N − 1}. (5b)

Clearly xN

2

= d, Ω
N

ε = {xi}
N
0 and σ1, σ2 are taken to be the following

σ1 = min

{

d

2
, 2

ε

θ1
lnN

}

, σ2 = min

{

1 − d

2
, 2

ε

θ2
lnN

}

, (5c)

where θ1 = max{−cuε(0), 1−cuε(1)}; θ2 = max{cuε(1), 1+cuε(0)}. Then the
fitted mesh method for problem (1) is: Find a mesh function Uε such that

εδ2Uε(xi) + b(xi, Uε(xi))DUε(xi) = f(xi) for all xi ∈ ΩN
ε , (6a)

Uε(0) = uε(0), Uε(1) = uε(1), (6b)

D−Uε(xN

2

) = D+Uε(xN

2

), (6c)

where

δ2Zi =
D+Zi − D−Zi

(xi+1 − xi−1)/2
,DZi =

{

D−Zi, i < N/2,
D+Zi, i > N/2,

D+ and D− are the standard forward and backward finite difference opera-
tors, respectively. This is a nonlinear finite difference scheme. In practice, the
nonlinear system is solved using a continuation method similar to that in [3].

The same conditions required for existence of the solution of the full con-
tinuous problem are also sufficient for the existence (but not uniqueness) of
the solution of the discrete nonlinear problem.

In [4], it is established that, providing N is sufficiently large and ε is
sufficiently small, independently of each other, under the further implicit re-
striction that

b2(xi, Uε) − 4εcu′

ε > 0, xi 6= d, (7)

we can prove a uniform in ε error bound at all the mesh points of the form

‖Uε − uε‖Ω ≤ CN−1(lnN)2, (8)

where uε is the continuous solution, Uε is a discrete solution of (6), and C is
a constant independent of N and ε.

3 Robustness of the Solution Method

Example 1: For the uniform convergence result (8) to be valid, [4] requires
that (4) and (7) must be satisfied. For example, if

c = 1, δ1d < −uε(0) < 0.1 and δ2(1 − d) < uε(1) < 0.1

then the data constraints (4) and (7) in C3 are both satisfied. Thus a problem
with
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d = 0.25, δ2 = 0.13, δ1 < 0.4, 0.0975 < uε(1) < 0.1, − 0.1 < uε(0) < −δ1/4

satifies these constraints. We consider a problem with u(0) = -0.09, u(1)
=0.098, δ2 = 0.13 and δ1 varying from 0.1 to 0.35. This choice for the data
satisfies all three assumptions including the implicit one (7). We verify this
assertion numerically by computing

TN
ε (xi) =







b2(xi, U
N
ε ) − 4εD−UN

ε , xi < d

b2(xi, U
N
ε ) − 4εD+UN

ε , xi > d

and observing that TN
ε = mini TN

ε (xi) > 0 for all values of ε and N used. The
computed uniform rates of convergence pN , using the double mesh principle
and the uniform fine mesh errors EN (see [1] for details on how these quantities
are calculated) are given in Table 1, which confirm uniform convergence in this
range of the data. In passing we note that as expected an upwinded scheme

N 32 64 128 256 512 1024

δ1 = 0.1
EN 0.004962 0.003227 0.002017 0.001175 0.000637 0.000313
pN 0.46 0.75 0.63 0.72 0.68 0.84

δ1 = 0.2
EN 0.003583 0.002245 0.001346 0.000771 0.000413 0.000201
pN 0.57 0.76 0.72 0.72 0.72 0.85

δ1 = 0.3
EN 0.002549 0.001403 0.000809 0.000457 0.000243 0.000117
pN 0.70 0.90 0.79 0.76 0.73 0.86

δ1 = 0.35
EN 0.002205 0.001151 0.000584 0.000295 0.000155 0.000075
pN 0.90 0.94 0.96 0.93 0.72 0.88

Table 1. Maximum errors EN and computed rates of convergence pN for the nu-
merical method (5),(6) in the case of Example 1.

on a uniform mesh does not converge uniformly in ε as shown in Table 2.
Now consider the same problem with u(0) = -0.09, u(1) =0.098, δ2 = 0.13

and δ1 = 0.39. This does not satisfy (3) or (4a). However, this scheme does
numerically satisfy the implicit condition (7). The results presented in Table
3 imply that the scheme is still uniformly in ε convergent.

Example 2: For the existence of a continuous solution we have the
sufficient conditions (4). As an example, take

c = 1, uε(1) = 0.7, uε(0) = −0.5 d = 0.25.

Then (3) is satisfied when δ1 < 2.5 δ2 < 1.26. Also (4a) is satisfied when

δ1 < 2 δ2 <
2.8

3
≈ 0.933333

and (4b) is satisfied when
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N 32 64 128 256 512 1024

δ1 = 0.1
EN 0.007397 0.007215 0.007009 0.006685 0.006095 0.005002
pN 0.02 0.01 0.00 0.00 0.00 0.00

δ1 = 0.2
EN 0.005258 0.004944 0.004711 0.004445 0.004038 0.003341
pN 0.07 0.04 0.02 0.01 0.00 0.00

δ1 = 0.3
EN 0.003533 0.002921 0.002578 0.002332 0.002067 0.001680
pN 0.32 0.17 0.07 0.04 0.02 0.01

δ1 = 0.35
EN 0.003292 0.001887 0.001488 0.001252 0.001064 0.000841
pN 0.85 0.38 0.24 0.09 0.05 0.03

Table 2. Maximum errors EN and computed rates of convergence pN for scheme
(6) on a uniform mesh in the case of Example 1.

δ1 = 0.39
N 32 64 128 256 512 1024

EN 0.002282 0.001154 0.000578 0.000283 0.000133 0.000057
pN 0.98 0.96 0.98 0.99 0.99 1.00

Table 3. Maximum errors EN and computed rates of convergence pN when condi-
tions (3) and (4a) are not satisfied.

δ1 > 1.2 and δ2 >
1.36

3
≈ 0.453333.

We consider various values of δ1 which violate one or more of the conditions
(3) , (4a) or (4b). Table 4 gives the conditions that are violated for a number
of values of the parameter δ1. Illustrations of the corresponding solutions are
given in Figure 2, and the convergence results are given in Table 5. They
show that provided the reduced solution of the problem remains monotonic
increasing, the method is robust in the sense that the numerical method re-
mains uniformly in ε convergent. When the problem ceases to be monotonic
the layer type changes from a standard shock layer to an S-layer. As the S-
layer grows in amplitude the nonlinear solver does not converge and thus the
method ceases to be robust.

δ1 Condition violated
0.2 (4b)
1.1 (4b)
2.0 (4a)

2.49999 (4a)
2.5 (4a), (3)
3.8 (4a) (3)

Table 4. Conditions violated by Example 2 for various values of δ1.
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Fig. 2. Solution of (1) for problems which do not satisfy C3. In all these figures,
δ2 = 0.7, u(0) = −0.5, u(1) = 0.7, N = 64 and ε = 0.000001. From top left to
bottom right : δ1 = 0.2, 2.4999, 2.5, 3.5, 3.55, 3.9.

4 Sensitivity to the Position of the Transition points

We examine the effect of varying the fine mesh width by incorporating a
constant C∗ in a revised formula for σ1 and σ2 given by

σ1 = min

{

d

2
, C∗

ε

θ1
lnN

}

, σ2 = min

{

1 − d

2
, C∗

ε

θ2
lnN

}

, (9)

where θ1 = max{−cuε(0), 1 − cuε(1)} , θ2 = max{cuε(1), 1 + cuε(0)} and C∗

is a parameter.
Table 6 give the results for Example 2 with δ1 = 1.20010. The number of

iterations are at most twice for the different examples. Thus the method is not
particularly sensitive to the fine mesh width and, in fact, a choice of a value of
C∗ less than that of C∗ = 2 used in [4] seems to give better performance. In the
example considered here, the errors are smallest and the rate of convergence
best for C∗ = 0.5.
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N 32 64 128 256 512 1024

δ1 = 0.2
EN 0.085977 0.070653 0.045129 0.028786 0.016281 0.008038
pN 0.01 0.62 0.70 0.55 0.70 0.70

δ1 = 0.5
EN 0.081286 0.063318 0.039899 0.025084 0.014299 0.007035
pN 0.00 0.62 0.70 0.56 0.74 0.70

δ1 = 1.1
EN 0.071339 0.055289 0.034691 0.021476 0.012067 0.005918
pN 0.08 0.65 0.71 0.57 0.76 0.71

δ1 = 1.2
EN 0.069654 0.054195 0.033900 0.021033 0.011889 0.005824
pN 0.08 0.65 0.71 0.57 0.75 0.71

δ1 = 2.0
EN 0.054596 0.044248 0.028406 0.017600 0.009784 0.004840
pN 0.15 0.67 0.73 0.56 0.69 0.71

δ1 = 2.4

EN 0.045858 0.037679 0.024406 0.014925 0.008380 0.004132
pN 0.21 0.68 0.74 0.59 0.67 0.72

δ1 = 2.4999
EN 0.043529 0.035851 0.023213 0.014147 0.007960 0.003927
pN 0.23 0.67 0.74 0.60 0.68 0.72

δ1 = 3.0
EN 0.043328 0.025441 0.015947 0.009703 0.005490 0.002714
pN 0.83 0.63 0.79 0.69 0.68 0.71

δ1 = 3.5
EN 0.075558 0.032340 0.015213 0.007286 0.003408 0.001470
pN 1.32 1.12 1.04 1.00 0.99 0.98

δ1 = 3.8
EN 0.168256 0.056174 0.024782 0.011446 0.005227 0.002217
pN 1.84 1.24 1.10 1.05 1.02 1.01

Table 5. Maximum errors EN and computed rates of convergence pN for the nu-
merical method (5) in the case of Example 2.

5 Conclusions

The numerical results in this paper indicate a possible gap between the theory
in [4] and what is observed in practice. As was proven in [4] the scheme (5),
(6) is a parameter-uniform scheme under the conditions (4) and (7). However
these sufficient conditions appear to be overly restrictive, since, in practice,
the numerical approximations appear to converge for a wider range of data.
In any attempt to extend the theory in [4] to a wider class of problems, a
reasonable constraint on the data to aim for (in place of (4)) would be that
the reduced solution is monotonic increasing, which is a necessary condition
to exclude S-layers from appearing in the solution of (1).

The implicit condition (7) is not satisfied for some of the examples pre-
sented here, while the numerical approximations still converge uniformly in ε.
When the constraint (7) is violated it appears that TN

ε (xi) < 0 in a particu-
lar neighborhood of the point d and not at the transition points between the
fine and coarse mesh. Proving convergence without (7) being satisified would
require a method of proof other than the maximum principle arguments used
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N 32 64 128 256 512 1024

C∗ = 0.125
EN 0.077109 0.063909 0.052342 0.040499 0.028576 0.017859
pN 0.37 0.34 0.27 0.24 0.26 0.27

C∗ = 0.25
EN 0.055713 0.034658 0.020660 0.011906 0.006556 0.003274
pN 0.70 0.68 0.71 0.71 0.71 0.70

C∗ = 0.5
EN 0.039241 0.021406 0.012181 0.006681 0.003483 0.001645
pN 0.81 0.89 0.79 0.80 0.82 0.78

C∗ = 1.0
EN 0.052324 0.033291 0.020706 0.011990 0.006454 0.003099
pN 0.23 0.79 0.68 0.73 0.77 0.76

C∗ = 2.0
N 32 64 128 256 512 1024

EN 0.069652 0.054194 0.033899 0.021033 0.011889 0.005824
pN 0.08 0.65 0.71 0.57 0.75 0.71

Table 6. Maximum errors EN and computed rates of convergence pN for various
choices of the transition point in the case of Example 2 with δ1 = 1.20010.

in [4]. These numerical results also suggest that a different finite difference
equation (other than continuity of the discrete first derivative) at the point
of the discontinuity d may ensure that TN

ε > 0, which in turn might improve
the performance of the scheme and also assist in extending the scope of the
current theory.
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