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We present a heuristic algorithm for the optimization of transport on complex networks. Previously proposed
network transport optimization algorithms aim at avoiding or reducing link overload. Our algorithm balances
traffic on a network by minimizing the maximum node betweenness with as little path lengthening as possible,
thus being useful in cases when networks are jamming due to node congestion. By using the resulting routing,
a network can sustain significantly higher traffic without jamming than in the case of shortest path routing.
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Transport optimization is a problem encountered in con-
nection with many different types of complex networks. Ex-
amples include biological networks like the genetic regula-
tory system, social acquaintance networks, and a variety of
natural and human-made transport and communication net-
works. Moreover, the ever-increasing amount of information
and goods transported on complex human-made networks
raises a question about their ultimate transport capacity. The
transport capacity of a network is limited by two factors: link
capacity and node processing power �bandwidth and, respec-
tively, router latency in the case of communication net-
works�. In this paper we present an algorithm for transport
optimization in the case of communication networks. How-
ever, the scope of application for our algorithm is not limited
to this problem.

Generally, communication network routing is based on
the idea of using the shortest paths �or the best available
approximation of the shortest paths� between any two nodes
of the network �1,2�. The length of a path is computed as the
sum of the weights assigned to the links that form the path.
In the case of the Internet, link weights are typically assigned
manually by operators according to simple rules based on
experience �1�. Recently, a series of heuristic algorithms
have also been proposed for network traffic optimization
�1–5�. These rules and algorithms are aimed at avoiding or
reducing link overload by a judicious link weight assign-
ment. The cost of each link is assessed as a monotonically
increasing function of the ratio between traffic and capacity
and then the weights are adjusted to minimize the sum of the
costs of all links.

This approach, however, does not take into account node
congestion and has the disadvantage that too many of the
shortest paths pass through a few nodes, called hubs. As a
result, in situations of high network traffic, these hubs will
experience congestion and eventually jamming, causing the
network to break apart in a multitude of disconnected sub-
networks. In light of this behavior, the optimality of the
shortest path routing as currently implemented has been re-
cently questioned �6–15�. It has been shown, for example,
that dynamic routing protocols which allow for a certain de-

gree of stochasticity or take into account the congestion sta-
tus of the nearest neighbors significantly improve the trans-
port capacity of a network �9–15�.

A more systematic approach is to find better static routing
protocols that avoid the hubs whenever possible �i.e., when
avoiding a hub does not lead to congestion on another node�.
Recent studies �6,7� have shown that this is possible and
propose new routing algorithms which lead to improved
transport capacity �quantified by the packet insertion rate at
which jamming occurs�. An open question is how much
larger the actual transport capacity can be than the results
presented in Refs. �6,7�. We show that significant improve-
ment in the transport capacity of a network can be achieved
by systematically adjusting the traffic routing to minimize
the maximum betweenness on the network. Our algorithm
leads to higher transport capacity than those presented in
Refs. �6,7�. The transport capacity also exceeds the analytical
estimate for its maximum value given in �7�. Furthermore,
we argue that our algorithm achieves near-optimal routing
for uncorrelated scale-free networks.

To facilitate comparison, we use the same network model
as in Ref. �7�. We present results for undirected, uncorrelated
scale-free networks with an exponent of the power-law de-
gree distribution �=2.5, generated using the configuration
model. The number of nodes N varies between 25 and 1600.
For simplicity, we assume that all nodes have the same pro-
cessing capacity of 1 packet per time step and that new in-
formation packets are inserted at every node at the same
average rate of r packets per time step. The destinations of
the packets are chosen at random from among the other N
−1 nodes on the network. However, the algorithm can be
generalized for nodes with different processing capacities
and for arbitrary traffic demands.

Given a routing table, the betweenness Bi of node i is
defined �16� as the sum of all fractional paths that pass
through that node. The fraction of times a message passes
through node i on its way from a source node s to a target
node t is computed as follows: the source node s is assigned
a weight 1 and then the weight of every node along each path
is split evenly among its predecessors in the routing table on
the way from t to s and added to the weights of the prede-
cessors. The average number of packets passing through a
given node i is then �w�i=rBi / �N−1�. Jamming occurs at the
critical average insertion rate rc at which the average number
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of packets processed by the busiest node reaches unity. Con-
sequently, rc is given by �8�

rc =
N − 1

Bmax
, �1�

where Bmax is the highest betweenness of any node on the
network. Thus, to achieve optimal routing, the highest be-
tweenness Bmax should be minimized. An important point is
that, even though the minimization procedure pertains to a
single scalar quantity, such an optimization algorithm will
implicitly reshape the betweenness landscape across the
whole network, lowering traffic through the initially busy
nodes at the expense of increased traffic through the initially
idle nodes until the traffic spreads out and the narrowest
possible betweenness distribution is achieved.

The problem of finding the exact optimal routing is math-
ematically tied to the problem of finding the minimal sparsity
vertex separator �7�, which has been shown �17� to be an
NP-hard problem. This means that the number of flops nec-
essary for the computation of an exact solution increases
with the number of nodes N faster than any polynomial. We
propose a heuristic algorithm which finds near-optimal solu-
tions for the routing problem in time O�N4�, at worst �O�N3�
for one iteration, and requiring O�N� iterations�. In its sim-
plest form, the algorithm proceeds as follows:

�1� Assign weight 2 to every link and compute the shortest
paths between all pairs of nodes.

�2� Compute the betweenness of every node.
�3� Find the node which has the highest betweenness Bmax

and add 1 to the weight of every link that connects it to other
nodes.

�4� Recompute the shortest paths. Go back to step 2.
Note that the algorithm picks the “least fit” element of a

set and changes its parameters. Therefore, it is a form of
extremal optimization algorithm �18�. However, this algo-
rithm assigns parameters in a deterministic way, unlike many
of the other existing extremal optimization algorithms.

Before presenting the results, we note that the average

betweenness Bavg on a given network using a given routing
table provides an absolute lower bound for the maximum
betweenness. This lower bound would be achievable only if
one could optimize routing to the point where all nodes ex-
perience the same traffic. Moreover, the average betweenness
in the case of the shortest path routing with all weights set to
1, which henceforth will be called “shortest path routing,”
constitutes the lower bound for the average betweenness
computed using any arbitrary routing table. This is because
any changes in routing, including those resulting from an
optimization algorithm, will result in longer paths, thus add-
ing to the sum of all betweennesses on the network. It is thus
apparent that a good optimization algorithm is required to
have at least two properties: �1� minimize the difference be-
tween the maximum and average betweenness, and �2� do
this while keeping the difference between the average be-
tweenness computed using the optimized routing and the one
computed using the shortest path routing as low as possible.

In the following, networks of a given size N are charac-
terized by the ensemble averages of the maximum between-
ness �Bmax� and average betweenness �Bavg� computed over a
set of 100 realizations of the network. Computer simulation
results presented in Ref. �7� suggest a power-law functional
dependence of �Bmax� on the network size N. Our results
confirm this power-law dependence for �Bmax� and show a
similar dependence in the case of �Bavg�.

Results for the ensemble average of the maximum be-
tweenness �Bmax� as a function of the network size N for four
routing protocols are presented in Fig. 1. Similar results for
the ensemble average of the network average betweenness
�Bavg� are shown in Fig. 2. The results are for the shortest
path routing �SP�, for our optimal routing �OR�, and for the
efficient routing �ER� and hub avoidance �HA� protocols de-
scribed in Refs. �6� and �7�, respectively. The exponents re-
sulting from fitting the data points in each set are given in
Table I, where the quoted errors are 2� estimates. It is ap-
parent from Figs. 1 and 2 that our optimization algorithm
leads to a far smaller difference between the maximum and
the average betweenness than in the case of the other three

FIG. 1. �Color online� Ensemble average of the network maxi-
mum betweenness as a function of the number of nodes for four
routing protocols.

FIG. 2. �Color online� Ensemble average of the network average
betweenness as a function of the number of nodes for four routing
protocols.
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routing protocols. Moreover, the maximum and the average
betweenness scale with N with the same exponent, which is a
strong argument in favor of the optimality of the routing.
Finally, the difference �Bavg�OR− �Bavg�SP, while larger than
�Bavg�ER− �Bavg�SP or �Bavg�HA− �Bavg�SP �which is explained
by the need to have slightly longer paths around the hubs�, is
kept quite low and �Bavg�OR scales with the network size N
with an exponent only slightly higher than �Bavg�SP.

As expected with a heuristic algorithm, the evolution of
the maximum betweenness as a function of the number of
iterations is not monotonic, but exhibits a decreasing trend
and eventually the maximum betweenness “converges” in
the sense that it becomes confined to a narrow band. This is
exemplified in Fig. 3, which is a plot of Bmax versus the
number of iterations for a network with 196 nodes. Figure 4
provides insight into how the algorithm works by comparing
the initial and final betweenness distributions in the case of a
network with 400 nodes. Figure 4�a� shows histograms of the
betweenness distribution before and after optimization, while
Fig. 4�b� shows the betweennesses plotted against the vertex
index. Initially, the majority of the nodes have very low be-
tweenness, but a small number of them are spread over a
very wide range. After optimization, all node betweennesses
are confined to a narrow band, whose upper edge is quite
well-defined. Most of them are uniformly distributed within
the band, but there is a very sharp peak at the upper edge.

There is a significant decrease in the number of very low
betweenness nodes.

A plot of the final �OR� betweenness versus the initial
�SP� betweenness in the case of a network with 400 nodes is
shown in Fig. 5. It is apparent from this plot that the algo-
rithm performs remarkably well, by lowering traffic through
all nodes whose initial betweenness lies above a certain criti-
cal value until they all reach essentially the same critical
betweenness. On the other hand, virtually all nodes whose
initial betweenness lies below the critical value experience

TABLE I. Exponents of the �Bavg� and �Bmax� power-law scaling
with network size N.

SP OR ER HA

�Bavg� 1.088±0.019 1.186±0.024 1.165±0.009 1.080±0.009

�Bmax� 1.634±0.010 1.185±0.009 1.315±0.017 1.542±0.010

FIG. 3. �Color online� Maximum betweenness as a function of
the number of iterations for a network with 196 nodes.

FIG. 4. �Color online� Distribution of node betweennesses be-
fore �black shaded bins in �a� and black crosses in �b�� and after
�red hollow bins in �a� and red circles in �b�� optimization for a
network with 400 nodes.

FIG. 5. �Color online� Correlation plot of the final �OR� versus
initial �SP� betweenness for a network with 400 nodes.
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higher traffic, many of them �especially those with higher
initial betweenness� reaching the critical value. It is still an
open question whether an improved algorithm can achieve a
lower critical betweenness by further raising traffic through
some initially low betweenness nodes. On the other hand, it
is clear that not all low betweenness nodes can have their
betweenness increased without unduly lengthening paths or
increasing traffic through other nodes which are prone to
congestion. The simplest examples are those of a small sub-
network whose only connection to the rest of the network is
through a single link to a high degree �or otherwise high SP
betweenness� node, or a triangle connected to the rest of the
network only by containing such a node. In these cases, there
is no way of diverting any of the high SP betweenness node’s
traffic between other nodes through the structures mentioned
above. The latter will have low betweenness even in the case
of rigorously optimal routing.

The difference between the SP and OR distribution of the
travel times between the various nodes in situations when the
SP routing does not lead to jamming is still an open question
and will be the subject of a future study. However, we argue
that, at least in situations of congested traffic, most travel
times are shorter in the case of OR routing. It is known from
queuing theory that the average queue length �q� is given
�assuming unity processing power� by �8,19�

�q� =
�w�

1 − �w�
, �2�

with �w� defined above Eq. �1�. Due to this strongly nonlin-
ear relationship, which diverges as �w� approaches unity, it
seems reasonable to assume that by avoiding the passage
through hubs with very high betweenness, most travel times
become shorter, in spite of the fact that the routes pass
through more nodes. This conclusion is also supported by the
results for the average path length and average travel time
presented in Ref. �6�.

In summary, we have presented a simple heuristic algo-
rithm for routing optimization on complex networks and
demonstrated its usefulness for scale-free networks. This al-
gorithm is useful in situations when network jamming is pri-
marily due to node congestion. Our results show that the
application of this algorithm allows a network to bear sig-
nificantly higher traffic than in the case of shortest path rout-
ing. Network capacity is improved by a factor which in-
creases with network size according to a power law.
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