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Efficient routing on complex networks
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In this letter, we propose a new routing strategy to improve the transportation efficiency on
complex networks. Instead of using the routing strategy for shortest path, we give a generalized
routing algorithm to find the so-called efficient path, which considers the possible congestion in
the nodes along actual paths. Since the nodes with largest degree are very susceptible to traffic
congestion, an effective way to improve traffic and control congestion, as our new strategy, can be
as redistributing traffic load in central nodes to other non-central nodes. Simulation results indicate
that the network capability in processing traffic is improved more than 10 times by optimizing the
efficient path, which is in good agreement with the analysis.
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Since the seminal work on scale-free networks by
Barabási and Albert (BA model) [1] and on the small-
world phenomenon by Watts and Strogatz [2], the struc-
ture and dynamics on complex networks have recently
attracted a tremendous amount of interest and devotion
from physics community. The increasing importance of
large communication networks such as the Internet, upon
which our society survives, calls for the need for high ef-
ficiency in handling and delivering information. In this
light, to find optimal strategies for traffic routing is one
of the important issues we have to address.

There have been many previous studies to understand
and control traffic congestion on networks, with a ba-
sic assumption that the network has a homogeneous
structure[3]. However, many realistic networks like the
Internet display both scale-free and small-world features,
and thus it is of great interest to study the effect of net-
work topology on traffic flow and the effect of traffic on
network evolution. Guimerá et al present a formalism
that can cope simultaneously with the searching and traf-
fic dynamics in parallel transportation systems[4]. This
formalism can be used to optimal networks structure un-
der a local search algorithm, while to obtain the formal-
ism one should know the global information of the whole
networks. Holme and Kim provide an in-depth analy-
sis on the vertex/edge overload cascading breakdowns
based on evolving networks, and suggest a method to
avoid such avalanches[5]. Since the load of a certain ver-
tex/edge is defined at its betweenness[6], there is also
a latent assumption that the routing protocols involved
global knowledge of networks. By using global and dy-
namical searching algorithm aiming at shortest paths,
Zhao et al provide the theoretical estimates of the com-
munication capacity [7]. Since the global information

∗Electronic address: zhutou@ustc.edu

0 20 40 60 80 100120
0

100
200
300
400
500
600
700
800
900

0 2 4 6 8 10
0

100
200
300
400
500
600
700

H

R

Lattice, 
N=1225

(a)

 

 

(b)

BA network,
N=1225

 

 

FIG. 1: The order parameter H versus R for two-dimensional
lattice (a) and BA networks (b) with the same size N = 1225.
The routing algorithm at the shortest path yields RLattice ≈
60 and RBA ≈ 4.0.

is usually unavailable in large-scale networks, Tadić et
al investigate the traffic dynamics on WWW network
model[8] based on local knowledge, providing insights
into the relationship of global statistical properties and
microscopic density fluctuations[9]. The routing strate-
gies for Internet[10] and disordered networks[11] are also
studied. Another interesting issue is the interplay of traf-
fic dynamics and network structures, which suggests a
new scenario of network evolutionary[12].

In this context, the information processor are routers
that have the same function in the postal serves. For sim-
plicity, we treat all the nodes as both hosts and routers
[4]. In communication networks, routers deliver data
packets by ensuring that all converge to a best estimate
of the path leading to each destination address. In other
words, the routing process takes place following accord-
ing to the criterion of the shortest available path from a
given source to its destination. When the network size N

is not too large, it is possible to calculate all the shortest
paths between any nodes, and thus the traffic system can
use a fixed routing table to process information. As for
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FIG. 2: (Color online). The critical Rc versus β for scale-free
networks with size N = 1225. Both Simulation and analysis
indicate that the maximum of Rc corresponds to β ≈ 1.0. The
data shown here are the average over 10 independent runs.

any pair of source and destination, there may be several
shortest paths between them. We can randomly choose
one of them and put it into the fixed routing table which
is followed by all the information packets. Though it be-
comes impractical in huge communication systems, the
fixed routing algorithm is widely used in mid- or small-
systems [13]. It is because that the fixed routing method
has obvious advantages in economical and technical costs,
compared with dynamical routing algorithm and infor-
mation feed-back mechanism. The model is described as
follows: at each time step, there are R packets generated
in the system, with randomly chosen sources and destina-
tions. It is assumed that all the routers have the same ca-
pabilities in delivering and handling information packets,
that is, at each time step all the nodes can deliver at most
C packets one step toward their destinations according
to the fixed routing table. We set C = 1 for simplic-
ity. A packet, once reaching its destination, is removed
from the system. We are most interested in the critical
value Rc of information generation (as measured by the
number of packets created within the network per unit
time) where a phase transition takes place from free flow
to congested traffic. This critical value can best reflect
the maximum capability of a system handling its traffic.
In particular, for R < Rc, the numbers of created and
delivered packets are balanced, leading to a steady free
traffic flow. For R > Rc, traffic congestion occurs as the
number of accumulated packets increases with time, sim-
ply for that the capacities of nodes for delivering packets
are limited. We use the order parameter to characterize
the phase transition

H(R) = lim
t→∞

C

R

〈∆W 〉

∆t
, (1)

where ∆W = W (t + ∆t) − W (t) with 〈· · · 〉 indicates
average over time windows of width ∆t, and W(t) is the
total number of packets in the network at time t. Fig. 1
shows the order parameter H versus R for (a) the two-
dimensional lattice with periodical boundary condition
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FIG. 3: The load distribution when congestion occurs for BA
network with size N = 1225. (a) The case of β = 0 where
Rc = 4.0 and we set R = 10. (b) The case of β = 1 where
Rc = 45 and we set R = 60.

and (b) the scale-free BA network with average degree
〈k〉 = 4 [1], given all the packets follows their shortest
paths. We see that the critical point Rc in lattice is much
larger than that in scale-free network. This phenomena
can be simply explained by their different betweenness
centralities (BC) [6]. The BC of a node v is defined as

g(v) =
∑

s6=t

σst(v)

σst

, (2)

where σst is the number of shortest paths going from s to
t and σst(v) is the number of shortest paths going from
s to t and passing through v. This definition means that
central nodes are part of more shortest paths within the
network than peripheral nodes. Moreover, BC gives in
transport networks an estimate of the traffic handled by
the vertices, assuming that the number of shortest paths
is a zero-th order approximation to the frequency of use
of a given node. It is generally useful to represent the
average BC for vertices of the same degree

g(k) =
1

Nk

∑

v,kv=k

g(v), (3)

where Nk denotes the number of nodes with degree k. For
most networks, g(k) is strongly correlated with k. In gen-
eral, the larger the degree, the larger the centrality. For
scale-free networks it has been shown that the centrality
scales with k as g(k) ∼ kµ where µ depends on the net-
work. Hence in the scale-free networks, the betweenness
distribution also obeys a power-law form. In comparison,
the BC in lattice will behave a homogeneous distribution.
Noticeably, in scale-free networks, traffic congestion gen-
erally occurs at nodes with the largest degree (or BC),
and immediately spreads over all the nodes. When all
the packets follow their shortest paths, it will easily lead
to the overload of the heavily-linked router, which is just
the key of traffic congestion. To alleviate the congestion,
a feasible and effective way is to bypass such high-degree
nodes in traffic routing design. This leads us to question
the commonly used shortest-path routing mechanism.
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FIG. 4: (Color online). (a) The average actual path length
Lave versus the network size N under various values of β, by
using the efficient path routing. (b) and (c) show 〈T 〉 and H

versus R for β = 0.0 and β = 1.0 respectively.

Actually, the path with shortest length is not neces-
sarily the quickest way, considering the presence of possi-
ble traffic congestion and waiting time along the shortest
path (by “shortest” we mean the path with smallest num-
ber of links). Obviously, nodes with larger connections
are more likely to bear traffic congestion. Intuitively, a
packet will by average spends more time to travel through
a node with higher BC (for waiting time). All too often,
bypassing those high-BC nodes, a packet may reach its
destination quicker than taking the shortest path. In or-
der to find the optimal routing strategy, we define the
“efficient path”. For any path between nodes i & j as
P (i → j) := i ≡ x0, x1, · · ·xn−1, xn ≡ j, we define

L(P (i → j) : β) =
n−1∑

i=0

k(xi)
β . (4)

For any given β, the efficient path between i and j is
corresponding to the route that makes the sum L(P (i →
j) : β) minimum. Obviously, Lmin(β = 0) recovers the
traditionally shortest path length. We expect that the
system behaves better under the routing rule with β > 0
than it does traditionally, and we aim to find the optimal
β in this letter. In the following, the fixed routing table is
designed on the basis of efficient path. If there are several
efficient paths between two nodes, the one is chosen at
random. We are now interested in determining the phase-
transition point Rc under various β, in order to address
which kind of routing strategy is more flexible to traffic
congestion, and therefore find the optimal β.

Aiming to estimate the value of Rc for different β,
we define the efficient betweennes centralities(EBC) of
a node υ as,

gβ(υ) =
∑

s6=t

σ
β
st(υ)

σ
β
st

(5)

where σ
β
st is the number of efficient paths for a given

β going from s to t and σ
β
st(v) is the number of efficient

paths for a given β going from s to t and passing through
v. Since congestion occurs at the node with the largest
betweenness, Rc can be estimated as[4, 7],

Rc =
N(N − 1)

gmax

(6)

where N is the size of the network and gmax is the largest
BC of the network. Similarly, for different β, we can
estimate the Rc(β) as,

Rc(β) =
N(N − 1)

g
β
max

(7)

where gβ
max is the largest EBC for a given β.

In Fig. 2 we report the simulation results for the crit-
ical value Rc as a function of β on BA networks, which
is in good agreement with the analysis. As one can see,
Rc first increases with β and then decreases, with the
maximum of Rc corresponds to β ≈ 1.0. In comparison
with the shortest path routing case (i.e. β = 0), the ca-
pability of the network in freely handling information is
greatly improved, from Rc ≈ 4.0 when β = 0 to Rc ≈ 45
when β = 1.0; more than ten times. This result sug-
gests us the effectiveness of the routing strategy by our
efficient path length. Fig. 3 shows the optimized behav-
ior of (b) our efficient path routing in load distribution
when congestion just occurs, in comparison with that of
(a) the shortest path routing mechanism. Clearly, the
heavy load on central nodes (with highest connectivity)
is strongly redistributed to those nodes with less degree
by using efficient path routing table. We also report in
Fig.4(a) the average actual path length Lave versus the
network size N under various values of β. As one can see,
although Lave increases with β, the small-world property
Lave ∼ lnN is still kept. The system capability in pro-
cessing information is considerably enhanced at the cost
of increasing the average routing path length. Such a sac-
rifice may be worthwhile when a system requires large Rc.
Moreover, we investigate the average transporting time
〈T 〉 of packets. The results in Fig.4(b) and Fig.4(c) show
that 〈T 〉 and H indicate the same critical value Rc.

To realize the routing strategy we have studied, each
router must have the complete knowledge of the network
topology, which is often difficult for large-scale systems.
Anyway, it is possible to divide one large system into sev-
eral autonomous subsystems in which every router has its
local topological knowledge. Thus, the hierarchical struc-
ture of the network will make possible the implementa-
tion of our routing strategy. This paper has mainly dis-
cussed how to effectively design routing algorithm when
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the capabilities of processing information are the same
for all the nodes. To account for the network topology,
one can assume that the capabilities for processing in-
formation are different for different nodes, depending on
the numbers of links or the number of the shortest paths
passing through them [7]. In addition, the shortest path
is shortest just in a topological sense; in practice, it is
not necessarily the best. As for a single packet, its best
routing as we have argued is not absolutely the shortest
path. From the systematic view, the total information
load that a communication network can freely handle
without congestion depends on all the packets can reach
their destinations in a systematically optimal time. We
use Rc to denote the upper limit of the total information
load that a communication system can handle without
congestion. This parameter reflect the system capability
in processing information under certain routing strategy.
An effective way found to alleviate traffic congestion for
scale-free networks is to make the heavily linked nodes as
powerful and efficient as possible for processing informa-
tion. This is further supported by examining the effect
of enhancing the capabilities of these nodes. In addition,
some previous models aiming at communication networks
are closer to reality than BA networks, such as directed
scale-free model for World-Wide-Web [8] and positive-
feedback preference model for Internet [14]. To investi-
gate the present traffic model and routing strategy onto
these network models are significant in practice. These
will be among the future works.

While our model is based on computer networks, we

expect it to be relevant to other practical networks in
general. Our studies may be useful for designing com-
munication protocols for complex networks, considering
there appears no increase in its algorithmic complexity.
The optimized routing strategy studied in this paper can
be easily implemented in practice.

Many previous works focus on the relationship between
the distribution of BC and the capability of communica-
tion networks, with a latent assumption that the infor-
mation packets go along the shortest paths from source
to destination. Therefore, the BC is always considered
as a static topological measure of networks. Here we
argue that, this quantity is determined both by the rout-
ing algorithm and network topology, thus one should pay
more attention to the design of routing strategies. We
believe this work may enlighten readers on this subject
and be helpful for understanding the intrinsic mechanism
of network traffic. Finally, it is worthwhile to empha-
size that, we have found some evidences indicating there
may exist some common features between network traffic
and synchronization in dynamical level, thus the present
method may be also useful for enhancing the network
synchronizability[15].
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