
CS 4/53201, Operating Systems, Spring 2006

Department of Computer Science
Kent State University

Take Home Assignment#2

All problem and page numbers refer to your text book (6th Edition, OS Concepts,
Silberschartz).

1. (Problem 6.1) A CPU-scheduling algorithm determines an order for the execution of

its scheduled processes. Given n processes to be scheduled on one processor, how
many different schedules are possible? Give a formula in terms of n.

2. (Problem 6.3) Consider the following set of processes, with the length of the CPU-

burst time given in milliseconds:

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2

The process are ssumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

a. Draw four Grantt charts illustrating the execution of these processes using
FCFS, SJF, a nonpreemptive priority (a smaller priority number implies a
higher priority), and RR (quantum = 1) scheduling.

b. What is the turnaround time of each process for each of the scheduling
algorithms in part a?

c. What is the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the schedules in part a results in the minimal average waiting time
(over all processes)?

3. (Problem 6.4) Suppose that the following processes arrive for execution at the times

indicated. Each process will run the listed amount of time. In answering the questions,
use nonpreemptive scheduling and base all decisions on the information you have at
the time the decision must be made.

Process Arrival Time Burst Time

P1 0.0 8
P2 0.4 4
P3 1.0 1

a. What is the average turnaround time of these processes with the FCFS

scheduling algorithm?
b. What is the average turnaround time of these processes with the SJF

scheduling algorithm?
c. The SJF algorithm is supposed to improve performance, but notice that we

chose to run process P1 at time 0 because we did not know that two shorter

processes would arrive soon. Compute what the average turnaround time will
be if the CPU is left idle for the first 1 unit and then SJF is used. .Remember
that processes P1 and P2 are waiting during this idle time, so their waiting
time may increase. This algorithm could be known as future-knoeledge
scheduling.

4. (Problem 6.7) Consider a variant of the RR scheduling algorithm where the entries in

the ready queue are pointers to the PCBs.
a. What would be the effort of putting two pointers to the same process in the

ready queue?
b. What would be the major advantages and disadvantages of this scheme?
c. How would you modify the basic RR algorithm to achieve the same effect

without the duplicate pointers?

5. (Problem 7.2) Explain why spinlocks are not appropriate for uniprocessor systems
yet may be suitable for multiprocessor systems.

6. (Problem 7.4) The first known correct software solution to the critical-section problem

for two processs was developed by Dekker. The two processes, P0 and P1, share
the following variables:

Boolean flag[2]; /* initially false */

Int turn;

The structure of process Pi (i==0 or 1), with Pj (j == 1 or 0) being the other process,
is shown in Figure 7.27.
 Prove that the algorithm satisfies all three requirements for the critical-section
problem.

7. Show that message passing and semaphores have equivalent functionality by:
a. Implementing a message passing using semaphores. Hint: make use of a

shared buffer area to hold mailboxes, each one consisting of an array of
message slots.

b. Implementing a semaphore using message passing. Hint: introduce a
separate synchronization process.

8. (Problem 8.3) People have said that proper spooling would eliminate deadlocks.

Certainly, it eliminates from contention card readers, plotters, printers, and so on. It is
even possible to spool tapes (called staging them), which would leave the resources
of CPU time, memory, and disk space. Is it possible to have a deadlock involving
these resources? If it is , how could such a deadlock occur? If it is not, why not?
What deadlock scheme would seem best to eliminate these deadlocks (if any are
possible), or what condition is violated (if they are not possible)?

9. (Problem 8.6) In a real computer system, neither the resources available nor the

demands of processes for resources are consistent over long periods (months).
Resources break or are replaced, new processes come and go, new resources are
bought and added to the system. If deadlock is controlled by the banker’s algorithm,
which of the following changes can be made safely (without introducing the
possibility of deadlock), and under what circumstances?

a. Increase Available (new resources added)
b. Decrease Available (resource permanently removed from system)
c. Increase Max for one process (the process needs more resources than

allowed, it may want more)
d. Decrease Max for one process (the process decides it does not need

that many resources)
e. Increase the number of processes
f. Decrease the number of processes

10. (Problem 8.13) Consider the following snapshort of a system:

 Allocation Max Available
 A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P2 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:
a. What is the content of the matrix Need?
b. Is the system in a safe state?
c. If a request from process P1 arrives for (0, 4, 2, 0), can the request be granted

immediately?

