
1

Coupling and Cohesion

Software Engineering

Module: Definition

● A logical collection of related program entities
● Not necessarily a physical concept, e.g., file,

function, class, package
● Often requires multiple program entities to

express:
– Linked list module may require many class, e.g., list,

node, iterators, etc.

Why Use Modules?

● Simplify testing
● Increase program understanding
● Increase reuse
● Reduce maintenance costs for fixes and

enhancements
● Permit replacement

2

Desired Interaction

● Minimize external module interaction
– modules can be used independently
– easier to test
– easier to replace
– easier to understand

● Maximize internal module interaction
– easier to understand
– easier to test

Characteristics

● Cohesion – Internal interaction of the module.
Crisp abstraction of purpose

● Coupling – External interaction of the module
with other modules

● Action – Behavior of the module. What it does
● Logic – How it performs the behavior. Algorithm

used
● Context – Specific usage of the module

Cohesion

● In order from good (high) to bad (low)
– Informational
– Functional
– Communicational
– Procedural
– Temporal
– Logical
– Coincidental

3

Coincidental Cohesion

● Performs multiple, completely unrelated actions
● May be based on factors outside of the design,

i.e., skillset or interest of developers, avoidance
of small modules

● No reusability
● Poor correct maintenance and enhancement
● Break into smaller modules

/*
Joe's Stuff

*/

// converts a path in windows to one in linux
string win2lin(string);

// calculate the number of days since the beginning of time
int days(string);

// outputs a financial report
void outputreport(financedata, std::cout);

Logical Cohesion

● Module performs a series of related actions, one
of which is selected by the calling module

● Parts of the module are related in a logical way,
but not the primary logical association

4

Logical Cohesion (cont)

● May include high and low-level actions in the
same module

● May include unused parameters for certain uses
● Difficult to understand interface (in order to do

something you have to wade through a lot of
unrelated possible actions)

/*
Output Module

*/

// outputs a financial report
void outputreport(financedata);

// outputs the current weather
void outputweather(weatherdata);

// output a number in a nice formatted way
void outputint(int);

Temporal Cohesion

● Modules performs a series of actions that are
related by time

● Often happens in initialization or shutdown
● Degrades to temporal cohesion if time of action

changes
● Addition of parts to the system may require

additions to multiple modules

5

/*
initialization Module

*/

void init() {

// initializes financial report
initreport(financedata);

// initializes current weather
initweather(weatherdata);

// initializes master count
totalcount = 0;

}

Procedural Cohesion

● Action based on the ordering of steps
● Related by usage in ordering

– Module read part number from an input file and
update directory count

● Changes to the ordering of steps or purpose of
steps requires changing the module abstraction

● Limited situations where this particular sequence
is used is limited

Communicational Cohesion

● Action based on the ordering of steps on all the
same data

● Actions are related but still not completely
separated
– Module update record in database and write it to

the audit trail
– Module calculate new trajectory and send it to the

printer

● Module cannot be reused

6

Functional Cohesion

● Module that performs a single action or achieves
a single goal

● Maintenance involves the entire single module
● Very reusable because the module is completely

independent in action of other modules
● Can be replaced easily

Information Cohesion

● Performs a number of actions
● Each action has its own entry point and

independent code
● All actions are performed on a shared data

structure
● Object-Oriented

Coupling

● In order from good (low) to bad (high)
– Data Coupling
– Stamp Coupling
– Control Coupling
– Common Coupling
– Content Coupling

7

Content Coupling

● A module directly references the content of
another module
– Module p modifies a statement of module q
– Module p refers to local data of module q (in terms

of a numerical displacement)
– Module p branches to a local label of module q

Content Coupling (cont)

● Content coupled modules are inextricably
interlinked
– Change to module p requires a change to module q

(including recompilation)
– Reusing module p requires using module q also

Common Coupling

● Using global variables
● All modules have read/write access to a global

data block
● Modules exchange data using the global data

block (instead of arguments)
● Single module with write access where all other

modules have read access is not common
coupling

8

Common Coupling (cont)
– Have to look at many modules to determine the

current state of a variable
– Side effects require looking at all the code in a

function to see if there are any global effects
– Changes in one module to the declaration requires

changes in all other modules
– Identical list of global variables must be declared for

module to be reused
– Module is exposed to more data than is needed

Control Coupling

● One module passes an element of control to
another module

● One module explicitly controls the logic of
another
– Control switch is passed as an argument
– Module p passes an argument to module q that

directly tells it what control structure path to take

Control Coupling (cont)

● Control coupling?
– Module p calls module q and q passes a flag back

to p that indicates an error
– Module p calls module q and q passes a flag back

to p that tells p that it must output the error “I
goofed up”

● Modules should pass data and leave control
path decisions private to a module

● Independent reuse is not possible

9

Stamp Coupling

● One module passes more data then needed to
another module
– void swap(int v[], int i, int j);
– double calcsalary(Employee& e);

● Often involves records (structs) with lots of fields
● Entire record is passed, but only a few fields are

used
● Efficiency considerations?

Data Coupling

● Only required data is passed from one module to
another

● All arguments are homogenous data items
– simple data type
– complex data type, but all parts are used

● Holy grail
● Allows for reuse, maintenance, understanding,

etc.

