
Software Engineering  
Introduction & Background

Department of Computer Science
Kent State University

Complaints

• Software production is often done by amateurs
• Software development is done by tinkering or by

the “million monkey” approach
• Software is unreliable and needs permanent

maintenance
• Software is messy, lacks transparency, prevents

improvement or building on (or costs too much to
do so)

General Problems

• 50% of all software projects fail
– Never delivered/completed
– Do not meet requirements or user needs
– Excessive failures (bugs)
– Excessively over budget or late

• Quality and reliability of many software
systems can not be formally assessed

Problems with Software Production
• Complexity
• Conformity - conform to the existing process or have the

process conform to the software
• Changeability - Software can “easily” be changed, but a

bridge is almost impossible to move
• Invisibility - software is very hard to visualize
• Brook’s “No Silver Bullet” [IEEE Computer 9(4), 1987]

– Software is very difficult to develop, and most likely will not get
easier.

– Reuse is one solution suggested.
– In 20 years, 6% per year production improvement.

Questions

• Why does it take so long to get software
completed?

• Why are costs so high?
• Why can’t all errors be found before the

software is put into production?
• Why is it difficult to measure the progress at

which software is being developed?

Some Facts

• Software is developed not manufactured.

• Software does not wear out.

• Most software is custom built rather than
assembled from existing components.

Software Engineering

Quality Focus

Process

Methods

Tools

A Layered Approach

• Focus on quality
– Power plant vs. Word processor

• Process layer that enables rational and
timely development of software (e.g., Agile)
– Key process areas must be established for

effective delivery of software technology

• Methods provide support for process (OO)
• Tools provide support for methods (.net)

Building Software

• What is the problem to be solved?
• What characteristics of the entity are used to solve

the problem?
• How will the entity (and solution) be realized?
• How will the entity be constructed?
• What approach will be used to uncover errors?
• How will it be supported over the long term?

Phases of Software Life Cycle
• Definition Phase - behavior of the system
• Development Phase - How to obtain the desired

behavior
• Maintenance - change the behavior

– Corrective - fix uncovered defect
– Adaptive - Platform change
– Enhancement - Perfective, additional functionality
– Preventive - re-engineering, make system more

maintainable

Cost to fix faults

Cost

Req Spec Design Maintenance

Development Phase

Cost to fix faults

Cost

Definition Development Post Release

1*

1.5* to 6*

60* to 100*

Software Applications
• System Software
• Real time
• Business
• Engineering and Scientific
• Embedded systems
• Personal Computing

What types of Development Models fit for which
applications?

Software Process Models
• Classical Process Models

– Waterfall
– Linear Sequential
– Prototyping Model
– Rapid Application Development

• Evolutionary Process Models
– Incremental Model
– Spiral Model
– Component Assembly Model
– Concurrent Development Model

Classical Lifecycle Model aka Waterfall
• Requirements Phase
• Specification Phase (Analysis)
• Planning Phase
• Design Phase
• Implementation Phase
• Integration and Testing
• Maintenance
• Retirement

Sequential Model
Requirements
Testing/Verify

Integration
Testing/Verify

Operations
Mode

Specification
Testing/Verify

Planning
Testing/Verify

Design
Testing/Verify

Implementation
Testing/Verify

Maintenance

Sequential Model

• Feedback loops to correct uncovered faults
• Testing and Verification at each phase
• Documentation at each phase
• Each phase is completed before next phase

can begin

Sequential Model: Problems

• Real projects don’t often run sequentially
• Customers must have patience
• Development is often delayed, i.e.,

“blocking states”
• Specifications may not reflect client

expectations
• Staffing problems, e.g., “tall, narrow”

developers versus “short, wide” developers

Prototyping
• Modified Sequential Model

• A prototype is constructed to determine system
requirements and specifications

• Prototype is used as a tool to determine clients needs
• Numerous problems can be uncovered during prototype

development and evaluation

Prototyping: Problems

• Prototype is viewed by the customer and management as a
completed system

• Design decisions, e.g., language, platform, API, etc., chosen
for prototype are difficult to have changed, but may be
inappropriate for completed system

• Small, visible changes between prototype and finished
system are easily perceived by the customer

Rapid Application Development
• High-speed modification of linear sequential mode.
• Component-based construction of system
• Very short time frame
• Typically used for information systems
• Difficult for applications in which the parts are not already

components
• Unsuited for projects with high technical risk

Software Evolution
• All software evolves (changes) over time
• Requirements change over the lifetime of the project
• Time to market means we cannot wait until the very end of

the project for a solution
• Must make efficient use of team members

• Iterative model
• Develop increasingly more complex versions of the

software

Incremental Model
• Combines linear sequential model with prototyping

• Produces increments of a system.
• First produce the core product
• A set of new functionality is added in each new increment
• The first increment can be viewed as a prototype that is

used by the client
• Overlapping sequences of process stages
• Focus on a set of deliverables
• Allows workers dedicated to a particular stage, e.g., “short,

wide” developers

Spiral Model
• Software is developed in a set of incremental releases
• Early iterations may be prototypes or paper models
• Later iterations are increasingly more complex versions of

the software

• Divided into a number of framework activities or task
regions (typically between 3 and 6)

• Allows for efficient use of resources

Spiral Model

Customer
Communica tion

Pla nning

Construc tion & Release
Customer
Evaluation

Engineering

Risk Analysis

Component Assembly Model
• Use a set of pre-existing components to construct a new

system
• Need a library of existing component
• Need a method of indexing these components

• Narrow domain
• Subset of system uses existing components

Which process to use?
• Based on needs and goal of the organization
• Problem domain
• Application area
• Composition of development team

• Customized process to fit the organization
• It’s not a process unless it’s written down.
• Define:

– Goals, processes, methods, tools

Methods: OO Analysis and Design
• Object Oriented Analysis - Method of analysis which

examines requirements from a perspective of the classes
and objects found in the vocabulary of the problem domain.

• Object Oriented Design - Method of Design encompassing
the process of object oriented decomposition. Logical and
physical as well as static and dynamic models are depicted.

Software Testing
• Verification - whether something has been

correctly carried out. Are we building the product
right?

• Validation - whether something satisfies its
specification. Are we building the right product?

• Software testing process:
– Software Quality Assurance (SQA)
– Independent Verification and Validation (IV&V)

SQA Activities
• Evaluations to be performed
• Audits and reviews to be performed
• Standards that are applicable to the project
• Procedures for error reporting and tracking
• Documents to be produced by SQA group
• Amount of feedback provided to software project team

Types of Testing
• Execution based testing
• Non-execution based testing

• Non-execution based testing:
– Walkthroughs
– Inspections

Walkthroughs
• Informal examination of a product (document)

• Made up of:
– developers
– client
– next phase developers
– SQA leader

• Produces:
– list of items not understood
– list of items thought to be incorrect

Inspections
• Formalized examination of a product (document)

• Formal steps:
– Overview
– Preparations
– Inspection
– Rework
– Follow-up

Inspections
• Overview - of the document is made
• Preparation - participants understand the product in detail
• Inspection - a complete walk through is made, covering

every branch of the product. Fault finding is done
• Rework - faults are fixed
• Follow - up check fixed faults. If more than say 5% of

product is reworked then a complete inspection is done
again.

• Statistics are kept: fault density

Execution Based Testing
“Program testing can be a very effective way to show the

presents of bugs but is hopelessly inadequate for showing
their absence” [Dijkstra]

• Fault: “bug” incorrect piece of code
• Failure: result of a fault
• Error: mistake made by the programmer/developer

Behavioral Properties
• Correctness - does it satisfy its output specification?
• Utility - are the user’s needs met
• Reliability - frequency of the product failure.

– How long to repair it?
– How lone to repair results of failure?

• Robustness - How crash proof in an alien environment?
– Does it inform the user what is wrong?

• Performance - response time, memory usage, run time, etc.

Methods of Testing
• Test to specification:

– Black box,
– Data driven
– Functional testing
– Code is ignored: only use specification document to develop test

cases

• Test to code:
– Glass box/White box
– Logic driven testing
– Ignore specification and only examine the code.

Feasibility
• Pure black box testing (specification) is realistically

impossible because there is (in general) too many test cases
to consider.

• Pure testing to code requires a test of every possible path in
a flow chart. This is also (in general) infeasible. Also
every path does not guarantee correctness.

• Normally, a combination of Black box and Glass box
testing is done.

Can you Guarantee a Program is Correct?

• This is called the Halting Problem (Theory of Computer
Science stuff).

• Write a program to test if any given program is correct.
The output is correct or incorrect.

• Test this program on itself.
• If output is incorrect, then how do you know the output is

correct?

• Conundrum, Dilemma, or Contradiction?

Development of Test Cases
• Test cases and test scenarios comprise much of a

software systems testware.
• Testware is all the “wares” that go with testing.

• Black box test cases are developed by domain
analysis and examination of the system
requirements and specification.

• Glass box test cases are developed by examining
the behavior of the source code.

Pairing down test cases
• Use methods that take advantage of symmetries,

data equivalencies, and independencies to reduce
the number of necessary test cases.

• Equivalence Testing
• Boundary Value Analysis

• Determine the ranges of working system
• Develop equivalence classes of test cases
• Examine the boundaries of these classes carefully

Equivalence Testing
• Example: sort(lst, n)

– Sort a list of numbers
– The list is between 2 and 1000 elements

• Domains:
– The list has some item type (of little concern)
– n is an integer value (subrange)

• Equivalence classes;
– n<2
– n>1000
– 2 <= n <= 1000

Equivalence Testing (example)
• What do you test?
• Not all cases of integers
• Not all cases of positive integers
• Not all cases between 1 and 1001

• Highest payoff for detecting faults is to test around
the boundaries of equivalence classes.

• Test n=1, n=2, n=1000, n=1001, and say n= 10
• Five tests versus 1000.

Structural Testing
• Statement coverage -

– Test cases which will execute every statement at least once.
– Tools exist for help
– No guarantee that all branches are properly tested. Loop exit?

• Branch coverage
– All branches are tested once

• Path coverage - Restriction of type of paths:
– Linear code sequences
– Definition/Use checking (all definition/use paths)
– Can locate dead code

Proofs of Correctness
• Mathematical proofs (as complex and error prone as

coding)

• Leavenworth ‘70 did an informal proof of correctness of a
simple text justification program. (Claims it’s correct!)

• London ‘71 found four faults, then did a formal proof.
(Claims it’s now correct!)

• Goodenough and Gerhar ‘75 found three more faults.

• Testing would have found these errors with much difficulty.

Software Metrics
• Measure - quantitative indication of extent, amount,

dimension, capacity, or size of some attribute of a product
or process.

• Metric - quantitative measure of degree to which a system,
component or process possesses a given attribute.

• Number of errors
• Number of errors found per person hours expended

• Metric: A handle or guess about a give attribute.

Process and Product Metrics
• Process -

– Insights of process paradigm, software engineering tasks, work
product, or milestones.

– Lead to long term process improvement.

• Product -
– Assesses the state of the project
– Track potential risks
– Uncover problem areas
– Adjust workflow or tasks
– Evaluate teams ability to control quality

Some Metrics
• Defects rates
• Errors rates

• Measured by:
– individual
– module
– during development

• Errors should be categorized by origin, type, cost

Some Metrics
• Direct measures - cost, effort, LOC, etc.
• Indirect Measures - functionality, quality, complexity,

reliability, maintainability

• Size Oriented:
– Lines of code - LOC
– Effort - person months
– errors/KLOC
– defects/KLOC
– cost/KLOC

Complexity Metrics
• LOC - a function of complexity
• language dependent

• Halstead’s Software Science (entropy measures)
– n1 - number of distinct operators
– n2 - number of distinct operands
– N1 - total number of operators
– N2 - total number of operands

Halstead’s Metrics

• Length: N = N1 + N2

• Vocabulary: n = n1 + n2

• Estimated length: N’ = n1 log2 n2 + n1 log2 n2

• Volume: V = N log2 n

• Number of bits to provide a unique designator for
each of the n items in the program vocabulary.

Estimating Software Size
• Standard Component Method
• Function Point
• Proxy Based Estimation

Standard Component Method
• Gather data about various level of program abstraction,

subsystems, modules, reports, screens.

• Compare these to what is predicted in the system

• Estimate= Smallest
value
estimate

Most likely or
common
estimate

Largest
value
estimate

++ 4*

Function Point Method
• Functions:

• Inputs: screens, forms (UI) or other programs which add
data to the system. Inputs that require unique processing

• Outputs: Screens, reports, etc
• Inquiries: Screens which allow users to interrogate or ask

for assistance or information
• Data files: logical collections of records, tables in a DB
• Interfaces: Shared files, DB, parameters lists

Function Point Method
• Review requirements

• Count number of each function point type

• Use historical data on each function point type to determine
estimate

• Function point does not map to physical part of source.
• Can not measure FP in a given system (automatically)

