Software Engineering
Introduction & Background

Department of Computer Science
Kent State University

Complaints

Software production 1s often done by amateurs

Software development 1s done by tinkering or by
the “million monkey” approach

Software 1s unreliable and needs permanent
maintenance

Software 1s messy, lacks transparency, prevents
improvement or building on (or costs too much to

do so)

General Problems

* 50% of all software projects fail
— Never delivered/completed
— Do not meet requirements or user needs
— Excessive failures (bugs)
— Excessively over budget or late

* Quality and reliability of many software
systems can not be formally assessed

Problems with Software Production

Complexity

Conformity - conform to the existing process or have the
process conform to the software

Changeability - Software can “easily” be changed, but a
bridge 1s almost impossible to move

Invisibility - software is very hard to visualize

Brook’s “No Silver Bullet” [IEEE Computer 9(4), 1987]
— Software is very difficult to develop, and most likely will not get
casier.
— Reuse 1s one solution suggested.
— In 20 years, 6% per year production improvement.

Questions

Why does 1t take so long to get software
completed?

Why are costs so high?

Why can’t all errors be found before the
software 1s put into production?

Why 1s 1t difficult to measure the progress at
which software 1s being developed?

Some Facts

» Software 1s developed not manufactured.
» Software does not wear out.

* Most software 1s custom built rather than
assembled from existing components.

Software Engineering

A Layered Approach

Focus on quality
— Power plant vs. Word processor

Process layer that enables rational and

timely development of software (e.g., Agile)

— Key process areas must be established for
effective delivery of software technology

Methods provide support for process (OO)

Tools provide support for methods (.net)

Building Software

What is the problem to be solved?

What characteristics of the entity are used to solve
the problem?

How will the entity (and solution) be realized?
How will the entity be constructed?

What approach will be used to uncover errors?
How will 1t be supported over the long term?

Phases of Software Life Cycle

* Definition Phase - behavior of the system

* Development Phase - How to obtain the desired
behavior

* Maintenance - change the behavior
— Corrective - fix uncovered defect
— Adaptive - Platform change
— Enhancement - Perfective, additional functionality
— Preventive - re-engineering, make system more
maintainable

Cost to fix faults

Cost

Req Spec Design Maintenance

Development Phase >

Cost to fix faults

Cost

Definition Development Post Release

Software Applications

* System Software

e Real time

* Business

* Engineering and Scientific
 Embedded systems

e Personal Computing

What types of Development Models fit for which
applications?

Software Process Models

e C(lassical Process Models
— Waterfall
— Linear Sequential
— Prototyping Model
— Rapid Application Development

* Evolutionary Process Models
— Incremental Model
— Spiral Model
— Component Assembly Model
— Concurrent Development Model

Classical Lifecycle Model aka Waterfall

* Requirements Phase

» Specification Phase (Analysis)
* Planning Phase

* Design Phase

« Implementation Phase

* Integration and Testing

« Maintenance

« Retirement

Sequential Model

Y

<

Requirements
Testing/Verify

Specification

|

Maintenance

Testing/Verify [«
g Planning 4J

Testing/Verify [«

Design <

[> Testing/Verify
v

Implementation 4J
Testing/Verify |,

Integration 4J
Testing/Verify

Operations
Mode

Sequential Model

* Feedback loops to correct uncovered faults
» Testing and Verification at each phase
* Documentation at each phase

» Each phase 1s completed before next phase
can begin

Sequential Model: Problems

* Real projects don’t often run sequentially
» Customers must have patience

* Development is often delayed, 1.e.,
“blocking states”™

* Specifications may not reflect client
expectations

» Staffing problems, e.g., “tall, narrow™
developers versus “short, wide” developers

Prototyping

« Modified Sequential Model

* A prototype 1s constructed to determine system
requirements and specifications

* Prototype 1s used as a tool to determine clients needs

e Numerous problems can be uncovered during prototype
development and evaluation

Prototyping: Problems

* Prototype 1s viewed by the customer and management as a
completed system

* Design decisions, e.g., language, platform, API, etc., chosen
for prototype are difficult to have changed, but may be
inappropriate for completed system

e Small, visible changes between prototype and finished
system are easily perceived by the customer

Rapid Application Development

» High-speed modification of linear sequential mode.
« Component-based construction of system

e Very short time frame

* Typically used for information systems

 Difficult for applications in which the parts are not already
components

* Unsuited for projects with high technical risk

Software Evolution

« All software evolves (changes) over time
« Requirements change over the lifetime of the project

* Time to market means we cannot wait until the very end of
the project for a solution

 Must make efficient use of team members

e [terative model

« Develop increasingly more complex versions of the
software

Incremental Model

* Combines linear sequential model with prototyping

* Produces increments of a system.
 First produce the core product
* A set of new functionality is added in each new increment

« The first increment can be viewed as a prototype that 1s
used by the client

* Overlapping sequences of process stages
* Focus on a set of deliverables

« Allows workers dedicated to a particular stage, e.g., “short,
wide” developers

Spiral Model

« Software 1s developed 1n a set of incremental releases
 Early iterations may be prototypes or paper models

» Later iterations are increasingly more complex versions of
the software

 Divided into a number of framework activities or task
regions (typically between 3 and 6)

 Allows for efficient use of resources

Spiral Model

Planning
Risk Analyss

Customer
Communication

L T T T En g In ee rln g

Customer
Evaluation Construction & Release

Component Assembly Model

« Use a set of pre-existing components to construct a new
system

* Need a library of existing component
* Need a method of indexing these components

e Narrow domain
* Subset of system uses existing components

Which process to use?

* Based on needs and goal of the organization
* Problem domain

* Application area

* Composition of development team

« Customized process to fit the organization

e It’s not a process unless 1t’s written down.
* Define:

— QGoals, processes, methods, tools

Methods: OO Analysis and Design

* Object Oriented Analysis - Method of analysis which
examines requirements from a perspective of the classes
and objects found in the vocabulary of the problem domain.

* Object Oriented Design - Method of Design encompassing
the process of object oriented decomposition. Logical and
physical as well as static and dynamic models are depicted.

Software Testing

* Verification - whether something has been

correctly carried out. Are we building the product
right?

« Validation - whether something satisfies 1ts
specification. Are we building the right product?

« Software testing process:
— Software Quality Assurance (SQA)
— Independent Verification and Validation (IV&V)

SQA Activities

« Evaluations to be performed

« Audits and reviews to be performed

« Standards that are applicable to the project

e Procedures for error reporting and tracking

e Documents to be produced by SQA group

« Amount of feedback provided to software project team

Types of Testing

* Execution based testing
« Non-execution based testing

« Non-execution based testing:
— Walkthroughs
— Inspections

Walkthroughs

e Informal examination of a product (document)

e Made up of:
— developers
— client

— next phase developers
— SQA leader

e Produces:

— list of items not understood
— list of items thought to be incorrect

Inspections

 Formalized examination of a product (document)

* Formal steps:
— Overview
— Preparations
— Inspection
— Rework
— Follow-up

Inspections

* Overview - of the document 1s made
« Preparation - participants understand the product in detail

* Inspection - a complete walk through 1s made, covering
every branch of the product. Fault finding 1s done

» Rework - faults are fixed

* Follow - up check fixed faults. If more than say 5% of
product 1s reworked then a complete inspection 1s done
again.

 Statistics are kept: fault density

Execution Based Testing

“Program testing can be a very effective way to show the
presents of bugs but 1s hopelessly inadequate for showing
their absence” [Dijkstra]

« Fault: “bug” incorrect piece of code
o Failure: result of a fault

* Error: mistake made by the programmer/developer

Behavioral Properties

e Correctness - does 1t satisfy its output specification?
e Ultility - are the user’s needs met
e Reliability - frequency of the product failure.

— How long to repair it?
— How lone to repair results of failure?

 Robustness - How crash proof in an alien environment?
— Does it inform the user what is wrong?

e Performance - response time, memory usage, run time, etc.

Methods of Testing

» Test to specification:
— Black box,
— Data driven
— Functional testing
— Code 1s 1gnored: only use specification document to develop test
cases

» Test to code:
— Glass box/White box
— Logic driven testing
— Ignore specification and only examine the code.

Feasibility

« Pure black box testing (specification) 1s realistically
impossible because there is (in general) too many test cases
to consider.

» Pure testing to code requires a test of every possible path in
a flow chart. This 1s also (in general) infeasible. Also
every path does not guarantee correctness.

« Normally, a combination of Black box and Glass box
testing 1s done.

Can you Guarantee a Program 1s Correct?

This 1s called the Halting Problem (Theory of Computer
Science stuff).

e Write a program to test if any given program 1s correct.
The output is correct or incorrect.

 Test this program on itself.

 [f output 1s incorrect, then how do you know the output 1s
correct?

e (Conundrum, Dilemma, or Contradiction?

Development of Test Cases

* Test cases and test scenarios comprise much of a
software systems festware.

* Testware 1s all the “wares” that go with testing.

 Black box test cases are developed by domain
analysis and examination of the system
requirements and specification.

* (Glass box test cases are developed by examining
the behavior of the source code.

Pairing down test cases

« Use methods that take advantage of symmetries,
data equivalencies, and independencies to reduce
the number of necessary test cases.

* Equivalence Testing
* Boundary Value Analysis

* Determine the ranges of working system
* Develop equivalence classes of test cases
« Examine the boundaries of these classes carefully

Equivalence Testing

« Example: sort(Ist, n)
— Sort a list of numbers
— The list 1s between 2 and 1000 elements

e Domains:
— The list has some item type (of little concern)
— n1s an integer value (subrange)

* Equivalence classes;
— n<2
— n>1000
— 2<=n<=1000

Equivalence Testing (example)

 What do you test?

* Not all cases of integers

* Not all cases of positive integers
* Not all cases between 1 and 1001

» Highest payoff for detecting faults 1s to test around
the boundaries of equivalence classes.

e Test n=1, n=2, n=1000, n=1001, and say n= 10
e Five tests versus 1000.

Structural Testing

e Statement coverage -
— Test cases which will execute every statement at least once.
— Tools exist for help
— No guarantee that all branches are properly tested. Loop exit?

« Branch coverage
— All branches are tested once

« Path coverage - Restriction of type of paths:

— Linear code sequences
— Definition/Use checking (all definition/use paths)
— Can locate dead code

Proofs of Correctness

Mathematical proofs (as complex and error prone as
coding)

« Leavenworth ‘70 did an informal proof of correctness of a
simple text justification program. (Claims it’s correct!)

 London ‘71 found four faults, then did a formal proof.
(Claims it’s now correct!)

e Goodenough and Gerhar 75 found three more faults.

» Testing would have found these errors with much difficulty.

Software Metrics

« Measure - quantitative indication of extent, amount,
dimension, capacity, or size of some attribute of a product
Or Process.

* Metric - quantitative measure of degree to which a system,
component or process possesses a given attribute.

e Number of errors
« Number of errors found per person hours expended

« Metric: A handle or guess about a give attribute.

Process and Product Metrics

* Process -
— Insights of process paradigm, software engineering tasks, work
product, or milestones.
— Lead to long term process improvement.

* Product -
— Assesses the state of the project
— Track potential risks
— Uncover problem areas
— Adjust workflow or tasks
— Evaluate teams ability to control quality

Some Metrics

Detects rates

 Errors rates

Measured by:

— 1individual

— module

— during development

Errors should be categorized by origin, type, cost

Some Metrics

* Direct measures - cost, effort, LOC, etc.

» Indirect Measures - functionality, quality, complexity,
reliability, maintainability

e Size Oriented:
— Lines of code - LOC
— Effort - person months
— errors/KLOC
— defects/KLOC
— cost/KLOC

Complexity Metrics

 LOC - a function of complexity
« language dependent

« Halstead’s Software Science (entropy measures)
— n, - number of distinct operators

— n, - number of distinct operands
— N, - total number of operators
— N, - total number of operands

Halstead’s Metrics

o Length: N=N, + N,
« Vocabulary: n=n, + n,

o Estimated length: N’ =n, log2 n, + n, log2 n,
* Volume: V=N log2 n

* Number of bits to provide a unique designator for
cach of the n items 1n the program vocabulary.

Estimating Software Size

e Standard Component Method
* Function Point
* Proxy Based Estimation

Standard Component Method

e Gather data about various level of program abstraction,
subsystems, modules, reports, screens.

e Compare these to what is predicted in the system

Smallest Most likely or Largest
value + 4% common 4+ Vvalue
estimate estimate estimate

 Estimate=

Function Point Method

 Functions:

 Inputs: screens, forms (UI) or other programs which add
data to the system. Inputs that require unique processing

e Qutputs: Screens, reports, etc

 Inquiries: Screens which allow users to interrogate or ask
for assistance or information

« Data files: logical collections of records, tables in a DB
» Interfaces: Shared files, DB, parameters lists

Function Point Method

* Review requirements
e Count number of each function point type

e Use historical data on each function point type to determine
estimate

* Function point does not map to physical part of source.
e (Can not measure FP in a given system (automatically)

