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Software Metrics

Software Engineering

Definitions
• Measure - quantitative indication of extent, 

amount, dimension, capacity, or size of some 
attribute of a product or process.
– Number of errors

• Metric - quantitative measure of degree to which 
a system, component or process possesses a 
given attribute.  “A handle or guess about a 
given attribute.”
– Number of errors found per person hours expended

Why Measure Software?

• Determine quality of the current product or 
process

• Predict qualities of a product/process

• Improve quality of a product/process
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Example Metrics

• Defects rates
• Errors rates
• Measured by:

– individual
– module
– during development

• Errors should be categorized by origin, 
type, cost

Metric Classification

• Products
– Explicit results of software development 

activities.
– Deliverables, documentation, by products

• Processes
– Activities related to production of software

• Resources
– Inputs into the software development activities
– hardware, knowledge, people

Product vs. Process
• Process Metrics-

– Insights of process paradigm, software engineering 
tasks, work product, or milestones.  

– Lead to long term process improvement.

• Product Metrics-
– Assesses the state of the project
– Track potential risks
– Uncover problem areas
– Adjust workflow or tasks
– Evaluate teams ability to control quality
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Types of Measures

• Direct Measures (internal attributes)
– Cost, effort, LOC, speed, memory

• Indirect Measures (external attributes)
– Functionality, quality, complexity, efficiency, 

reliability, maintainability

Size Oriented Metrics

• Size of the software produced
• Lines Of Code (LOC)  
• 1000 Lines Of Code KLOC
• Effort measured in person months
• Errors/KLOC
• Defects/KLOC
• Cost/LOC
• Documentation Pages/KLOC
• LOC is programmer & language dependent

LOC Metrics

• Easy to use
• Easy to compute
• Can compute LOC of existing systems but 

cost and requirements traceability may be 
lost 

• Language & programmer dependent 
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Function Oriented Metrics

• Function Point Analysis [Albrecht ’79, ’83]
• International Function Point Users Group 

(IFPUG)
• Indirect measure
• Derived using empirical relationships 

based on countable (direct) measures of 
the software system (domain and 
requirements)

Computing Functions Points
• Number of user inputs

– Distinct input from user
• Number of user outputs

– Reports, screens, error messages, etc
• Number of user inquiries

– On line input that generates some result
• Number of files

– Logical file (database)
• Number of external interfaces

– Data files/connections as interface to other systems

Compute Function Points

• FP = Total Count * [0.65 + .01*Sum(Fi)]

• Total count is all the counts times a 
weighting factor that is determined for 
each organization via empirical data

• Fi (i=1 to 14) are complexity adjustment 
values
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Complexity Adjustment
• Does the system require reliable backup and 

recovery?
• Are data communications required?
• Are there distributed processing functions?
• Is performance critical?
• Will the system run in an existing heavily utilized 

operational environment?
• Does the system require on-line data entry?
• Does the online data entry require the input 

transaction to be built over multiple screens or 
operations?

Complexity Adjustment (cont)
• Are the master files updated on line?
• Are the inputs, outputs, files, or inquiries 

complex?
• Is the internal processing complex?
• Is the code designed to be reusable?
• Are conversions and installations included in the 

design?
• Is the system designed for multiple installations 

in different organizations?
• Is the application designed to facilitate change 

and ease of use by the user?

Using FP

• Errors per FP
• Defects per FP
• Cost per FP
• Pages of documentation per FP
• FP per person month
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FP and Languages

Language
Assembly

C
COBOL

FORTRAN
Pascal
C++
Ada
VB

SQL

LOC/FP
320
128
106
106
90
64
53
32
12

Using FP
• FP and LOC based metrics have been found to 

be relatively accurate predictors of effort and 
cost

• Need a baseline of historical information to use 
them properly

• Language dependent
• Productivity factors: People, problem, process, 

product, and resources
• FP can not be reverse engineered from existing 

systems easily

Complexity Metrics

• LOC - a function of complexity
• Language and programmer dependent
• Halstead’s Software Science (entropy 

measures)
– n1 - number of distinct operators
– n2 - number of distinct operands
– N1 - total number of operators
– N2 - total number of operands
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Example
if (k < 2) 
{

if (k > 3)
x = x*k;

}

• Distinct operators: if ( ) { } > < = * ;
• Distinct operands: k 2 3 x
• n1 = 10
• n2 = 4
• N1 = 13
• N2 = 7

Halstead’s Metrics
• Amenable to experimental verification [1970s]

• Length:  N = N1 + N2
• Vocabulary:  n = n1 + n2

• Estimated length:     = n1 log2 n1 + n2 log2 n2
– Close estimate of length for well structured programs

• Purity ratio: PR =    /N

N̂

N̂

Program Complexity

• Volume: V = N log2 n
– Number of bits to provide a unique designator for each of the n 

items in the program vocabulary.

• Program effort: E=V/L
– L = V*/V
– V* is the volume of most compact design implementation
– This is a good measure of program understandability
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McCabe’s Complexity Measures

• McCabe’s metrics are based on a control 
flow representation of the program.

• A program graph is used to depict control 
flow.

• Nodes represent processing tasks (one or 
more code statements)

• Edges represent control flow between 
nodes

Flow Graph Notation

Sequence

If-then-else

While

Until

Cyclomatic Complexity

• Set of independent paths through the 
graph (basis set)

• V(G) = E – N + 2
– E is the number of flow graph edges
– N is the number of nodes

• V(G) = P + 1
– P is the number of predicate nodes
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Example
i = 0;
while (i<n-1) do
j = i + 1;
while (j<n) do
if A[i]<A[j] then
swap(A[i], A[j]);

end do;
i=i+1;

end do;

Flow Graph
1

3

54

6

7

2

Computing V(G)

• V(G) = 9 – 7 + 2 = 4
• V(G) = 3 + 1 = 4
• Basis Set

– 1, 7
– 1, 2, 6, 1, 7
– 1, 2, 3, 4, 5, 2, 6, 1, 7 
– 1, 2, 3, 5, 2, 6, 1, 7
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Another Example
1

6

7

4

5

8

3

9
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What is V(G)?

Meaning

• V(G) is the number of (enclosed) 
regions/areas of the planar graph

• Number of regions increases with the 
number of decision paths and loops.

• A quantitative measure of testing difficulty 
and an indication of ultimate reliability

• Experimental data shows value of V(G) 
should be no more then 10.  Testing is 
very difficulty above this value.

McClure’s Complexity Metric

• Complexity = C + V
– C is the number of comparisons in a module
– V is the number of control variables 

referenced in the module

• Similar to McCabe’s but with regard to 
control variables.
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Metrics and Software Quality

FURPS

• Functionality  - features of system
• Usability – aesthesis, documentation
• Reliability – frequency of failure, security
• Performance – speed, throughput
• Supportability – maintainability 

Measures of Software Quality
• Correctness

– Defects/KLOC
– Defect is a verified lack of conformance to requirements
– Failures/hours of operation

• Maintainability
– Mean time to change
– Change request to new version (Analyze, design etc)
– Cost to correct

• Integrity
– Fault tolerance, security & threats

• Usability
– Training time, skill level necessary to use, Increase in 

productivity, subjective questionnaire or controlled experiment

Quality Model

product

operation revision transition

reliability efficiency usability maintainability testability portability reusability 

Metrics
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High level Design Metrics

• Structural Complexity
• Data Complexity
• System Complexity
• Card & Glass ’80

• Structural Complexity S(i) of a module i.
– S(i) = fout

2(i)
– Fan out is the number of modules immediately 

subordinate (directly invoked).

Design Metrics

• Data Complexity D(i)
– D(i) = v(i)/[fout(i)+1]
– v(i) is the number of inputs and outputs 

passed to and from i.
• System Complexity C(i)

– C(i) = S(i) + D(i)
– As each increases the overall complexity of 

the architecture increases.

System Complexity Metric

• Another metric:
– length(i) * [fin(i) + fout(i)]2

– Length is LOC
– Fan in is the number of modules that invoke i.

• Graph based:
– Nodes + edges
– Modules + lines of control
– Depth of tree, arc to node ratio
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Coupling
• Data and control flow

– di – input data parameters
– ci input control parameters
– do output data parameters
– co output control parameters

• Global
– gd global variables for data
– gc global variables for control

• Environmental
– w fan in number of modules called
– r fan out number modules that call module

Metrics for Coupling

• Mc = k/m, k=1

– m = di + aci + do + bco + gd + cgc + w + r
– a, b, c, k can be adjusted based on actual 

data

Component Level Metrics

• Cohesion (internal interaction)
• Coupling (external interaction)
• Complexity of program flow

• Cohesion – difficult to measure
– Bieman ’94, TSE 20(8)
– Data slice – from a program slice
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Using Metrics
• The Process

– Select appropriate metrics for problem
– Utilized metrics on problem
– Assessment and feedback

• Formulate
• Collect
• Analysis
• Interpretation
• Feedback

Metrics for the Object Oriented

• Chidamber & Kemerer ’94 TSE 20(6)
• Metrics specifically designed to address 

object oriented software
• Class oriented metrics
• Direct measures

Weighted Methods per Class

WMC = 

• ci is the complexity (e.g., volume, 
cyclomatic complexity, etc.) of each 
method

• Must normalize
• What about inherited methods?  

– Be consistent

∑
=

n

i
ic

1
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Depth of Inheritance Tree

• DIT is the maximum length from a node to 
the root (base class)

• Lower level subclasses inherit a number of 
methods making behavior harder to 
predict

• However, more methods are reused in 
higher DIT trees.

Number of Children

• NOC is the number of subclasses 
immediately subordinate to a class

• As NOC grows, reuse increases
• But the abstraction may be diluted

Coupling between Classes

• CBO is the number of collaborations 
between two classes

• As collaboration increases reuse 
decreases

• CRC – lists the number of collaborations
– Classes, Responsibilities, and Collaborations 
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Response for a Class

• RFC is the number of methods that could 
be called in response to a message to a 
class

• Testing effort increases as RFC increases

Lack of Cohesion in Methods

• LCOM – poorly described in Pressman

• Class Ck with n methods M1,…Mn

• Ij is the set of instance variables used by 
Mj

LCOM

• There are n such sets I1 ,…, In
– P = {(Ii, Ij) | (Ii ∩ Ij ) = ∅}
– Q = {(Ii, Ij) | (Ii ∩ Ij ) ≠ ∅}

• If all n sets Ii are ∅ then P = ∅

• LCOM = |P| - |Q|, if |P| > |Q|
• LCOM = 0 otherwise
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Example LCOM

• Take class C with M1, M2, M3
• I1 = {a, b, c, d, e}
• I2 = {a, b, e}
• I3 = {x, y, z}
• P = {(I1, I3), (I2, I3)}
• Q = {(I1, I2)}

• Thus LCOM = 1

Explanation

• LCOM is the number of empty 
intersections minus the number of non-
empty intersections

• This is a notion of degree of similarity of 
methods.  

• If two methods use common instance 
variables then they are similar

• LCOM of zero is not maximally cohesive
• |P| = |Q| or |P| < |Q|

Class Size

• CS 
– Total number of operations (inherited, private, 

public)
– Number of attributes (inherited, private, 

public)

• May be an indication of too much 
responsibility for a class
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Number of Operations Overridden

• NOO

• A large number for NOO indicates 
possible problems with the design 

• Poor abstraction in inheritance hierarchy

Number of Operations Added

• NOA

• The number of operations added by a 
subclass

• As operations are added it is farther away 
from super class

• As depth increases NOA should decrease

Specialization Index

SI = [NOO * L] / Mtotal

• L is the level in class hierarchy
• Mtotal is the total number of methods

• Higher values indicate class in hierarchy 
that does not conform to the abstraction
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Method Inheritance Factor

MIF =                .

• Mi(Ci) is the number of methods inherited 
and not overridden in Ci

• Ma(Ci) is the number of methods that can 
be invoked with Ci

• Md(Ci) is the number of methods declared 
in Ci
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MIF

• Ma(Ci) = Md(Ci)  + Mi(Ci) 
• All that can be invoked = new or 

overloaded + things inherited

• MIF is [0,1]
• MIF near 1 means little specialization 
• MIF near 0 means large change

Coupling Factor

CF=                                      .

• is_client(x,y) = 1 iff a relationship exists between 
the client class and the server class.  0 
otherwise.

• (TC2-TC) is the total number of relationships 
possible (Total Classes2 – diagonal)

• CF is [0,1] with 1 meaning high coupling
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Polymorphism Factor

PF =                                    .

• Mn() is the number of new methods
• Mo() is the number of overriding methods
• DC() number of descendent classes of a base 

class
• The number of methods that redefines inherited 

methods, divided by maximum number of 
possible distinct polymorphic situations

[ ]∑
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Operational Oriented Metrics

• Average operation size (LOC, volume)

• Number of messages sent by an operator

• Operation complexity – cyclomatic

• Average number of parameters/operation
– Larger the number the more complex the 

collaboration

Encapsulation

• Lack of cohesion

• Percent public and protected

• Public access to data members
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Inheritance

• Number of root classes

• Fan in – multiple inheritance

• NOC, DIT, etc.


