
1

Software Metrics

Software Engineering

Definitions
• Measure - quantitative indication of extent,

amount, dimension, capacity, or size of some
attribute of a product or process.
– Number of errors

• Metric - quantitative measure of degree to which
a system, component or process possesses a
given attribute. “A handle or guess about a
given attribute.”
– Number of errors found per person hours expended

Why Measure Software?

• Determine quality of the current product or
process

• Predict qualities of a product/process

• Improve quality of a product/process

2

Example Metrics

• Defects rates
• Errors rates
• Measured by:

– individual
– module
– during development

• Errors should be categorized by origin,
type, cost

Metric Classification

• Products
– Explicit results of software development

activities.
– Deliverables, documentation, by products

• Processes
– Activities related to production of software

• Resources
– Inputs into the software development activities
– hardware, knowledge, people

Product vs. Process
• Process Metrics-

– Insights of process paradigm, software engineering
tasks, work product, or milestones.

– Lead to long term process improvement.

• Product Metrics-
– Assesses the state of the project
– Track potential risks
– Uncover problem areas
– Adjust workflow or tasks
– Evaluate teams ability to control quality

3

Types of Measures

• Direct Measures (internal attributes)
– Cost, effort, LOC, speed, memory

• Indirect Measures (external attributes)
– Functionality, quality, complexity, efficiency,

reliability, maintainability

Size Oriented Metrics

• Size of the software produced
• Lines Of Code (LOC)
• 1000 Lines Of Code KLOC
• Effort measured in person months
• Errors/KLOC
• Defects/KLOC
• Cost/LOC
• Documentation Pages/KLOC
• LOC is programmer & language dependent

LOC Metrics

• Easy to use
• Easy to compute
• Can compute LOC of existing systems but

cost and requirements traceability may be
lost

• Language & programmer dependent

4

Function Oriented Metrics

• Function Point Analysis [Albrecht ’79, ’83]
• International Function Point Users Group

(IFPUG)
• Indirect measure
• Derived using empirical relationships

based on countable (direct) measures of
the software system (domain and
requirements)

Computing Functions Points
• Number of user inputs

– Distinct input from user
• Number of user outputs

– Reports, screens, error messages, etc
• Number of user inquiries

– On line input that generates some result
• Number of files

– Logical file (database)
• Number of external interfaces

– Data files/connections as interface to other systems

Compute Function Points

• FP = Total Count * [0.65 + .01*Sum(Fi)]

• Total count is all the counts times a
weighting factor that is determined for
each organization via empirical data

• Fi (i=1 to 14) are complexity adjustment
values

5

Complexity Adjustment
• Does the system require reliable backup and

recovery?
• Are data communications required?
• Are there distributed processing functions?
• Is performance critical?
• Will the system run in an existing heavily utilized

operational environment?
• Does the system require on-line data entry?
• Does the online data entry require the input

transaction to be built over multiple screens or
operations?

Complexity Adjustment (cont)
• Are the master files updated on line?
• Are the inputs, outputs, files, or inquiries

complex?
• Is the internal processing complex?
• Is the code designed to be reusable?
• Are conversions and installations included in the

design?
• Is the system designed for multiple installations

in different organizations?
• Is the application designed to facilitate change

and ease of use by the user?

Using FP

• Errors per FP
• Defects per FP
• Cost per FP
• Pages of documentation per FP
• FP per person month

6

FP and Languages

Language
Assembly

C
COBOL

FORTRAN
Pascal
C++
Ada
VB

SQL

LOC/FP
320
128
106
106
90
64
53
32
12

Using FP
• FP and LOC based metrics have been found to

be relatively accurate predictors of effort and
cost

• Need a baseline of historical information to use
them properly

• Language dependent
• Productivity factors: People, problem, process,

product, and resources
• FP can not be reverse engineered from existing

systems easily

Complexity Metrics

• LOC - a function of complexity
• Language and programmer dependent
• Halstead’s Software Science (entropy

measures)
– n1 - number of distinct operators
– n2 - number of distinct operands
– N1 - total number of operators
– N2 - total number of operands

7

Example
if (k < 2)
{

if (k > 3)
x = x*k;

}

• Distinct operators: if () { } > < = * ;
• Distinct operands: k 2 3 x
• n1 = 10
• n2 = 4
• N1 = 13
• N2 = 7

Halstead’s Metrics
• Amenable to experimental verification [1970s]

• Length: N = N1 + N2
• Vocabulary: n = n1 + n2

• Estimated length: = n1 log2 n1 + n2 log2 n2
– Close estimate of length for well structured programs

• Purity ratio: PR = /N

N̂

N̂

Program Complexity

• Volume: V = N log2 n
– Number of bits to provide a unique designator for each of the n

items in the program vocabulary.

• Program effort: E=V/L
– L = V*/V
– V* is the volume of most compact design implementation
– This is a good measure of program understandability

8

McCabe’s Complexity Measures

• McCabe’s metrics are based on a control
flow representation of the program.

• A program graph is used to depict control
flow.

• Nodes represent processing tasks (one or
more code statements)

• Edges represent control flow between
nodes

Flow Graph Notation

Sequence

If-then-else

While

Until

Cyclomatic Complexity

• Set of independent paths through the
graph (basis set)

• V(G) = E – N + 2
– E is the number of flow graph edges
– N is the number of nodes

• V(G) = P + 1
– P is the number of predicate nodes

9

Example
i = 0;
while (i<n-1) do
j = i + 1;
while (j<n) do
if A[i]<A[j] then
swap(A[i], A[j]);

end do;
i=i+1;

end do;

Flow Graph
1

3

54

6

7

2

Computing V(G)

• V(G) = 9 – 7 + 2 = 4
• V(G) = 3 + 1 = 4
• Basis Set

– 1, 7
– 1, 2, 6, 1, 7
– 1, 2, 3, 4, 5, 2, 6, 1, 7
– 1, 2, 3, 5, 2, 6, 1, 7

10

Another Example
1

6

7

4

5

8

3

9

2

What is V(G)?

Meaning

• V(G) is the number of (enclosed)
regions/areas of the planar graph

• Number of regions increases with the
number of decision paths and loops.

• A quantitative measure of testing difficulty
and an indication of ultimate reliability

• Experimental data shows value of V(G)
should be no more then 10. Testing is
very difficulty above this value.

McClure’s Complexity Metric

• Complexity = C + V
– C is the number of comparisons in a module
– V is the number of control variables

referenced in the module

• Similar to McCabe’s but with regard to
control variables.

11

Metrics and Software Quality

FURPS

• Functionality - features of system
• Usability – aesthesis, documentation
• Reliability – frequency of failure, security
• Performance – speed, throughput
• Supportability – maintainability

Measures of Software Quality
• Correctness

– Defects/KLOC
– Defect is a verified lack of conformance to requirements
– Failures/hours of operation

• Maintainability
– Mean time to change
– Change request to new version (Analyze, design etc)
– Cost to correct

• Integrity
– Fault tolerance, security & threats

• Usability
– Training time, skill level necessary to use, Increase in

productivity, subjective questionnaire or controlled experiment

Quality Model

product

operation revision transition

reliability efficiency usability maintainability testability portability reusability

Metrics

12

High level Design Metrics

• Structural Complexity
• Data Complexity
• System Complexity
• Card & Glass ’80

• Structural Complexity S(i) of a module i.
– S(i) = fout

2(i)
– Fan out is the number of modules immediately

subordinate (directly invoked).

Design Metrics

• Data Complexity D(i)
– D(i) = v(i)/[fout(i)+1]
– v(i) is the number of inputs and outputs

passed to and from i.
• System Complexity C(i)

– C(i) = S(i) + D(i)
– As each increases the overall complexity of

the architecture increases.

System Complexity Metric

• Another metric:
– length(i) * [fin(i) + fout(i)]2

– Length is LOC
– Fan in is the number of modules that invoke i.

• Graph based:
– Nodes + edges
– Modules + lines of control
– Depth of tree, arc to node ratio

13

Coupling
• Data and control flow

– di – input data parameters
– ci input control parameters
– do output data parameters
– co output control parameters

• Global
– gd global variables for data
– gc global variables for control

• Environmental
– w fan in number of modules called
– r fan out number modules that call module

Metrics for Coupling

• Mc = k/m, k=1

– m = di + aci + do + bco + gd + cgc + w + r
– a, b, c, k can be adjusted based on actual

data

Component Level Metrics

• Cohesion (internal interaction)
• Coupling (external interaction)
• Complexity of program flow

• Cohesion – difficult to measure
– Bieman ’94, TSE 20(8)
– Data slice – from a program slice

14

Using Metrics
• The Process

– Select appropriate metrics for problem
– Utilized metrics on problem
– Assessment and feedback

• Formulate
• Collect
• Analysis
• Interpretation
• Feedback

Metrics for the Object Oriented

• Chidamber & Kemerer ’94 TSE 20(6)
• Metrics specifically designed to address

object oriented software
• Class oriented metrics
• Direct measures

Weighted Methods per Class

WMC =

• ci is the complexity (e.g., volume,
cyclomatic complexity, etc.) of each
method

• Must normalize
• What about inherited methods?

– Be consistent

∑
=

n

i
ic

1

15

Depth of Inheritance Tree

• DIT is the maximum length from a node to
the root (base class)

• Lower level subclasses inherit a number of
methods making behavior harder to
predict

• However, more methods are reused in
higher DIT trees.

Number of Children

• NOC is the number of subclasses
immediately subordinate to a class

• As NOC grows, reuse increases
• But the abstraction may be diluted

Coupling between Classes

• CBO is the number of collaborations
between two classes

• As collaboration increases reuse
decreases

• CRC – lists the number of collaborations
– Classes, Responsibilities, and Collaborations

16

Response for a Class

• RFC is the number of methods that could
be called in response to a message to a
class

• Testing effort increases as RFC increases

Lack of Cohesion in Methods

• LCOM – poorly described in Pressman

• Class Ck with n methods M1,…Mn

• Ij is the set of instance variables used by
Mj

LCOM

• There are n such sets I1 ,…, In
– P = {(Ii, Ij) | (Ii ∩ Ij) = ∅}
– Q = {(Ii, Ij) | (Ii ∩ Ij) ≠ ∅}

• If all n sets Ii are ∅ then P = ∅

• LCOM = |P| - |Q|, if |P| > |Q|
• LCOM = 0 otherwise

17

Example LCOM

• Take class C with M1, M2, M3
• I1 = {a, b, c, d, e}
• I2 = {a, b, e}
• I3 = {x, y, z}
• P = {(I1, I3), (I2, I3)}
• Q = {(I1, I2)}

• Thus LCOM = 1

Explanation

• LCOM is the number of empty
intersections minus the number of non-
empty intersections

• This is a notion of degree of similarity of
methods.

• If two methods use common instance
variables then they are similar

• LCOM of zero is not maximally cohesive
• |P| = |Q| or |P| < |Q|

Class Size

• CS
– Total number of operations (inherited, private,

public)
– Number of attributes (inherited, private,

public)

• May be an indication of too much
responsibility for a class

18

Number of Operations Overridden

• NOO

• A large number for NOO indicates
possible problems with the design

• Poor abstraction in inheritance hierarchy

Number of Operations Added

• NOA

• The number of operations added by a
subclass

• As operations are added it is farther away
from super class

• As depth increases NOA should decrease

Specialization Index

SI = [NOO * L] / Mtotal

• L is the level in class hierarchy
• Mtotal is the total number of methods

• Higher values indicate class in hierarchy
that does not conform to the abstraction

19

Method Inheritance Factor

MIF = .

• Mi(Ci) is the number of methods inherited
and not overridden in Ci

• Ma(Ci) is the number of methods that can
be invoked with Ci

• Md(Ci) is the number of methods declared
in Ci

∑

∑

=

=
n

i
ia

n

i
ii

CM

CM

1

1

)(

)(

MIF

• Ma(Ci) = Md(Ci) + Mi(Ci)
• All that can be invoked = new or

overloaded + things inherited

• MIF is [0,1]
• MIF near 1 means little specialization
• MIF near 0 means large change

Coupling Factor

CF= .

• is_client(x,y) = 1 iff a relationship exists between
the client class and the server class. 0
otherwise.

• (TC2-TC) is the total number of relationships
possible (Total Classes2 – diagonal)

• CF is [0,1] with 1 meaning high coupling

)(
),(_

2 TCTC
CCclientisi j ji

−
∑∑

20

Polymorphism Factor

PF = .

• Mn() is the number of new methods
• Mo() is the number of overriding methods
• DC() number of descendent classes of a base

class
• The number of methods that redefines inherited

methods, divided by maximum number of
possible distinct polymorphic situations

[]∑
∑

∗
i iin

i io

CDCCM
CM

)()(
)(

Operational Oriented Metrics

• Average operation size (LOC, volume)

• Number of messages sent by an operator

• Operation complexity – cyclomatic

• Average number of parameters/operation
– Larger the number the more complex the

collaboration

Encapsulation

• Lack of cohesion

• Percent public and protected

• Public access to data members

21

Inheritance

• Number of root classes

• Fan in – multiple inheritance

• NOC, DIT, etc.

