Static Program Analysis Part II

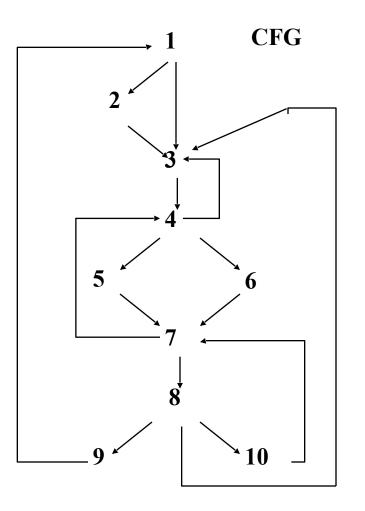
Control Flow Graph

- A control flow graph *CFG* = (*N*, *E*) is a directed graph
- $N = \{n_1, n_2, \dots, n_k\}$ is a finite set of nodes (basic blocks of a program)
- $E = \{(n_i, n_j) \mid n_i, n_j N \& \text{ the flow of control} goes from <math>n_i$ to $n_j\}$

Dominators

- Given a Control Flow Graph (CFG) with nodes D and N:
 - D dominates N if every path from the initial node to N goes through D
- Properties of dominance:
 - 1. Every node dominates itself
 - 2. Initial node dominates all others

Dominators - example

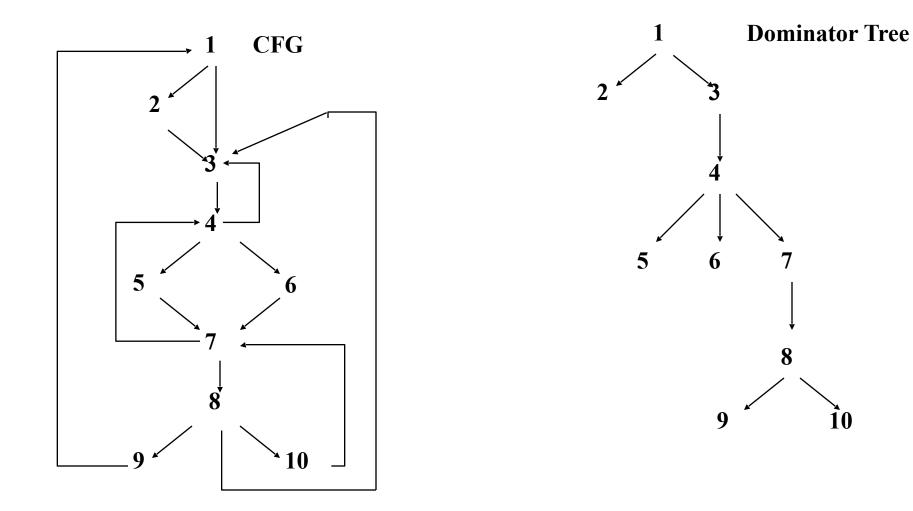


Node	Dominates
1	1,2,,10
2	2
3	3,4,5,6,7,8,9,10
4	4,5,6,7,8,9,10
5	5
6	6
7	7,8,9,10
8	8,9,10
9	9
10	10

Dominator Trees

- In a dominator tree
 - The initial node *n* is the root of the Control Flow Graph
 - The parent of a node n is its *immediate dominator* (i.e., the last dominator of n on any path); the immediate dominator for n is unique

Dominators - dominator tree example

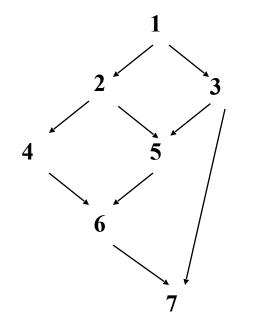


Post-Dominators

- Given a Control Flow Graph with nodes PD and N:
 - PD post dominates N if every path from N to the final nodes goes through PD

Post-Dominators - Example

CFG

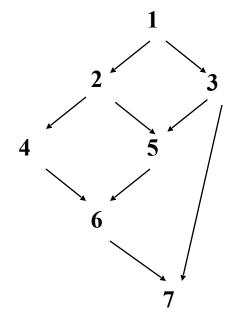


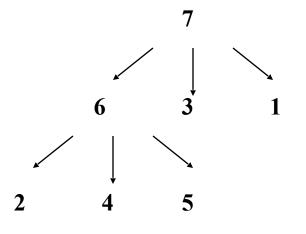
Node	Postdominates
1	
2	
3	
4	
5	
6	2,4,5
7	1,2,3,4,5,6

Post Dominators - Dominator Tree

- In a post dominator tree
 - The initial node *n* is the exit node of the Control Flow Graph
 - The parent of a node n is its *immediate post dominator* (i.e., the first post dominator of n on any path); the immediate post dominator for n is unique

Post Dominators - Dominator Tree Example CFG Post dominator Tree

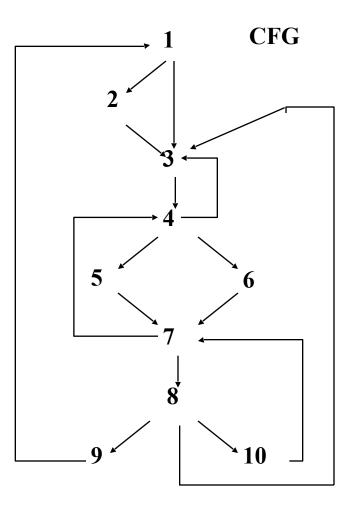




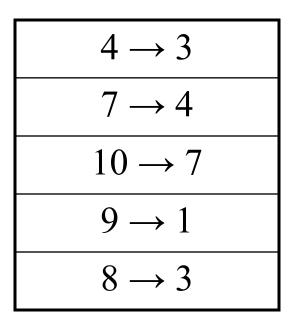
Finding Loops

- We'll consider what are known as natural loops
 - Single entry node (header) that *dominates* all other nodes in the loop
 - The nodes in the loop form a strongly connected component, that is, from every node there is at least one path back to the header
 - There is a way to iterate there is a back
 edge (n,d) whose target node d (called the head) dominates its source node n (called the tail)
 tail
- If two back edges have the same target, then all nodes in the loop sets for these edges are in the same loop

Loops - Example



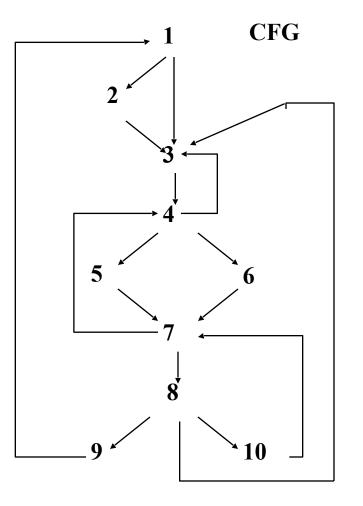
Which edges are back edges?



Construction of loops

- 1. Find dominators in Control Flow Graph
- 2. Find back edges
- 3. Traverse back edge in reverse execution direction until the target of the back edge is reached; all nodes encountered during this traversal form the loop. The result is all nodes that can reach the source of the edge without going through the target

Loops - Example



Back Edge	Loop Induced
$4 \rightarrow 3$	{3,4,5,6,7,8,10}
$7 \rightarrow 4$	{4,5,6,7,8,10}
10 → 7	{7,8,10}
$8 \rightarrow 3$	{3,4,5,6,7,8,10}
9 → 1	{1,2,,10}

Applications of Control Flow

- Complexity
 - Cyclomatic (McCabe's) Indication of number of test case needed; indication of difficulty of maintaining
- Testing
 - branch, path, basis path
- Program understanding

 program structure and flow is explicit