
Static Program Analysis Part III

Data Flow Analysis

• Data-flow analysis provides information for
compiling and SE tasks by computing the flow of
different types of data to points in the program

• For structured programs, data-flow analysis can be
performed on an AST

• In general, intra-procedural (global) data-flow
analysis is performed on the Control Flow Graph

• Exact solutions to most problems are undecidable
– May depend on input
– May depend on outcome of a conditional statement
– May depend on termination of loop

• We compute approximations of the exact solution

Data Flow Analysis for Testing

• Data-flow testing
– suppose that a statement assigns a value but the use of that value is

never executed under test

– need definition-use pairs (du-pairs): associations between
definitions and uses of the same variable or memory location

a=c+10

d=a+y“a” not used on
this path

Data Flow Analysis for Debugging

• Debugging
– suppose that a has the incorrect value in the statement

– need data dependence information: statements that can affect the
incorrect value at this point

a=c+y

• Compute the flow of data to points
in the program - e.g.,
– Where does the assignment to I in

statement 1 reach?
– Where does the expression computed

in statement 2 reach?
– Which uses of variable J are reachable

from the end of B1?
– Is the value of variable I live after

statement 3?
• Interesting points before and after

basic blocks or statements

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Data Flow Problems – Reaching & Uses

Data Flow Problems – Reaching Definitions
• A definition of a variable or memory

location is a point or statement where that
variable gets a value - e.g., input statement,
assignment statement.

• X reaches a point P if there exists a control-
flow path in the CFG from the definition to
P with no other definitions of X on the path
(called a definition-clear path)

• Such a path may exist in the graph but may
not be executable (i.e., there may be no
input to the program that will cause it to be
executed); such a path is infeasible.

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

• A use of a variable or memory location is
a point or statement where that variable is
referenced but not changed - e.g., used in
a computation, used in a conditional,
output

• Use of X is reachable from a point P if
there exists a control-flow path in the
CFG from the P to the use with no
definitions of X on the path

• Reachable uses also called upwards
exposed uses

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Data Flow Problems – Reachable Uses

• Definitions:
– I: 1, 3
– J: 2, 4, 5

• Uses:
– I: 2, 4
– J: 4, 5

• Reachable Uses:
– I from 1: 2
– I from 3: 4
– J from 2: 4
– J from 4: 4, 5
– J from 5:

1. I := 2
2. J := I + 1

3. I := 1

4. J := I + J

5. J := J - 4

B1

B2

B3

B4

Reachable Uses Example

DU-Chains, UD-chains, Webs

• A definition-use chain or DU-chain for a
definition D of variable V connects the D to
all uses of V that it can reach

• A use-definition chain or UD-chain for a use
U of variable V connects U to all definitions
of V that reach it

• A web for a variable is the maximal union of
intersecting DU-chains

Data-Dependence

• A data-dependence graph has one node for every basic block and
one edge representing the flow of data between the two nodes

• X is data dependent on Y iff there exists a variable v such that:
– Y has a definition of v and
– X has a use of v and
– There exists a control path from Y to X along which v is not redefined

• Different types of data dependence edges can be defined
– Flow: def to use (most common)
– Anti: use to def
– Out: def to def

Data (flow) Dependence Graph
entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

Control flow
graph

Control Dependence

• A statement S1 is control dependent on a statement
S2 if the outcome of S2 determines whether S1 is
reached in the CFG

• We define control dependence for language
constructs

• Control dependencies can be derived for arbitrary
control flow using the concept of post dominator of
conditional instructions

Definitions

if Y then B1 else B2;
• X is control dependent on Y iff X is in B1 or

B2

while Y do B;
• X is control dependent on Y iff X is in B

Program-Dependence Graph

• A program dependence graph (PDG) for a
program P is the combination of the control-
dependence graph for P and the data-
dependence graph for P

• Can be used for
– Redundant code analysis
– I/O relation analysis
– Program slicing

Compute a PDG
1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Identify control dependencies
via CFG and conditionals

Identify data dependencies via
definition/uses

Computing a PDG
1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

6,7,8 are control dependent
on 5

DU-Chains:
(1,5)
(2,5), (2,6), (2,7), (2,8),
(8,5), (8,6), (8,7), (8,8)
(3,6), (3,9), (6,6), (6,6),
(6,9)
(4,7), (4,10), (7,7), (7,10)

PDG
Control
Data1,2,3,4

5

9,10 6,7,8

