
Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 1

Software Size
Estimation I

 Material adapted from:
 Disciplined Software Engineering
 Software Engineering Institute
 Carnegie Mellon University
 Pittsburgh, PA 15213

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 2

Size Estimating
 Why estimate size?

 Some estimating background

 Size estimating principles

 Estimating approaches

 Estimating proxies

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 3

Why Estimate Size?
 To make better plans

•to better size the job
•to divide the job into separable elements

 To assist in tracking progress
•can judge when job scope changes
•can better measure the work

 Value in this course
•learn estimating methods
•build estimating skills

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 4

Estimating Background
 Estimating models in other fields

•large base of history
•in wide use
•generate detailed planning data
•require a size estimate as input

 Software size estimating experience
•100% + errors are normal
•few developers make estimates
•fewer still use orderly methods

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 5

Size Estimating Principles - 1
 Estimating is an uncertain process.

•no one knows how big the product will be
•the earlier the estimate, the less is known
•estimates can be biased by business and
other pressures

 Estimating is an intuitive learning process.
•ability improves with experience
•some people will be better at estimating than
others

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 6

 Estimating is a skill.
•improvement will be gradual
•you may never get very good

 The objective, however, is to get consistent.
•you will then understand the variability of your
estimates

•you seek an even balance between under and
over estimates

Size Estimating Principles - 2

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 7

Size Estimating Errors - 12
Students

Program Number

-100

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

Max

Class

Min

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 8

Time Estimating Errors - 12
Students

Program Number

-100

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

Max

Class

Min

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 9

 The principal advantages of using a defined
estimating method are
•you have known practices that you can work
to improve

•it provides a framework for gathering
estimating data

•by using consistent methods and historical
data, your estimates will get more consistent

Size Estimating Principles - 3

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 10

Define
Requirements

Produce
Conceptual

Design

Estimate
Size

Estimate
Resources

Produce
Schedule

Develop
Product

Size, Resource
Schedule

Data

Process
Analysis

Resources
Available

Productivity
Database

Size
Database

Product
Delivery

Tracking
Reports

The Size Estimating Framework

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 11

Estimating Approaches
 Fuzzy logic

 Function points

 Standard components

 Delphi

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 12

Fuzzy Logic Size Estimating - 1
 Gather size data on previously developed
programs

 Subdivide these data into size categories:
•very large, large, medium, small, very small
•establish size ranges
•include all existing and expected products

 Subdivide each range into subcategories

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 13

Fuzzy Logic Size Estimating - 2

 Allocate the available data to the categories.

 Establish subcategory size ranges.

 When estimating a new program, judge which
category and subcategory it most closely
resembles.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 14

A Fuzzy Logic Example - 1
 You have historical data on 5 programs as
follows:
•a file utility of 1,844 LOC
•a file management program of 5,834 LOC
•a personnel record keeping program of 6,845
LOC

•a report generating package of 18,386 LOC
•an inventory management program of 25,943
LOC

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 15

A Fuzzy Logic Example - 2
 You thus establish 5 size ranges, as follows

•log(1844) = 3.266
•log(25,943) = 4.414
•the difference is 1.148
•1/4th this difference is 0.287
•the logs of the five ranges are thus spaced
0.287 apart

•the limits or these ranges are at 0.1435 above
and below the midpoint of each range

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 16

A Fuzzy Logic Example - 3
 The 5 size ranges are thus

•very small - 1,325 to 2,566: file utility
•small - 2,566 to 4970: no members
•medium - 4,970 to 9,626: file management and
personnel record program

•large - 9,626 to 18,641: report generator
•very large - 18,641 to 36, 104: inventory
management

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 17

A Fuzzy Logic Example - 4
 Your new program has the following
requirements
•analyze marketing performance by product
line

•project the likely sales in each product
category

•allocate these sales to marketing regions and
time periods

•produce a monthly report of these projections
and the actual results

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 18

A Fuzzy Logic Example - 5
 In comparing the new program to the historical
data you make the following judgments
•it is a substantially more complex application
than either the file management or personnel
programs

•it is not as complex as the inventory
management program

•it appears to have significantly more function
than the report package

 You conclude that the new program is in the
lower end of “very large,” or from 18 to 25
KLOC.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 19

Fuzzy Logic - Summary
 To make a fuzzy logic estimate:

 1 - Divide the historical produce size data into
size ranges.

 2 - Compare the planned product with these
prior products.

 3 - Based on this comparison, select the size
that seems most appropriate for the new
product.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 20

Fuzzy Logic Size Estimating -
Advantages

 Fuzzy logic estimating
•is based on relevant historical data
•is easy to use
•requires no special tools or training
•provides reasonably good estimates where
new work is like prior experience

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 21

Fuzzy Logic Size Estimating -
Disadvantages

 The disadvantages of fuzzy logic are
•it requires a lot of data
•the estimators must be familiar with the
historically developed programs

•it only provides a crude sizing
•it is not useful for new program types
•it is not useful for programs much larger or
smaller than the historical data

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 22

Function Point Estimating - 1
 A function point is an arbitrary unit

•based on application functions
-inputs, outputs, files, inquiries

•scaled by simple, average, complex

 For job complexity:

•adjust a further +/- 35%

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 23

Function Point Estimating - 2
 Procedure

•determine numbers of each function type in
the application

•judge the scale and complexity of each
function

•calculate function point total
•use historical data on development cost per
function point to make the estimate

•multiply function points times rate to get the
estimate

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 24

A Function Point Example - 1
 Your new program has the following
requirements
•analyze marketing performance by product
line

•project the likely sales in each product
category

•allocate these sales to marketing regions and
time periods

•produce a monthly report of these projections
and the actual results

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 25

A Function Point Example - 2
 You first estimate the numbers of raw function
points as follows:
•inputs: 12 x 4 = 48
•outputs: 7 x 5 = 35
•inquiries: 0
•logical files: 3 x 10 = 30
•interfaces: 2 x 7 = 14
•total raw function points: 127

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 26

A Function Point Example - 3
 You next adjust for influence factors:

•data communication: 4
•on-line data entry: 4
•complex processing: 3
•operational ease: 5
•facilitate change: 5
•total influence factors: 21

 Complexity multiplier = 0.65+21x0.01=0.86

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 27

A Function Point Example - 4
 The function point total is thus:
127x0.86=109.22

 Using historical data on hours per function
point, calculate the development time for the
project.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 28

Function Point Advantages
 The advantages of function points are:

•they are usable in the earliest requirements
phases

•they are independent of programming
language, product design, or development
style

•there exists a large body of historical data
•it is a well documented method
•there is an active users group

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 29

Function Point Disadvantages
 The disadvantages of function points are:

•you cannot directly count an existing
product’s function point content

•without historical data, it is difficult to improve
estimating skill

•function points do not reflect language,
design, or style differences

•function points are designed for estimating
commercial data processing applications

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 30

Standard Component Sizing - 1
 Establish the principal product size levels

•components, modules, screens, etc.
•determine typical sizes of each level

 For a new product:
•determine the component level at which
estimation is practical

•estimate how many of those components will
likely be in the product

•determine the maximum and minimum
numbers possible

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 31

Standard Component Sizing - 2
 Calculate the size as the

•number of components of each type
•times typical sizes of each type
•total to give size

 Calculate for the maximum, minimum, and likely
numbers of components.

 Calculate size as:
•{maximum+4*(likely)+minimum}/6

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 32

Standard Component Sizing
Example - 1

 Your new program has the following
requirements:
•analyze marketing performance by product
line

•project the likely sales in each product
category

•allocate these sales to marketing regions and
time periods

•produce a monthly report of these projections
and the actual results

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 33

Standard Component Sizing -
Example - 2

 You have the following historical data on a
number of standard components
•data input component: 1,108 LOC
•output component: 675 LOC
•file component: 1,585 LOC
•control component: 2,550 LOC
•computation component: 475 LOC

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 34

Standard Component Sizing -
Example - 3

 First, estimate the maximum, minimum, and
likely numbers of the components like these in
the new product
•data input component: 1, 4, 7
•output component: 1, 3, 5
•file component: 2, 4, 8
•control component: 1, 2, 3
•computation component: 1, 3, 7

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 35

Standard Component Sizing -
Example - 4

 Second, calculate the minimum, likely, and
maximum size of the product components
•data input component: 1108, 4432, 7756
•output component: 675, 2025, 3375
•file component: 3170, 6340, 12680
•control component: 2550, 5100, 7650
•computation component: 475, 1425, 3325

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 36

Standard Component Sizing -
Example - 5

 Third, calculate the minimum, likely, and
maximum LOC of the new product
•minimum: 7,978
•likely: 13,616
•maximum: 34,786

 The size estimate is then
•LOC = (7978+4*13616+34786)/6 = 16,205 LOC
•the standard deviation is (34786-7978)/6=4468
•the estimate range is: 11,737 to 20,673 LOC

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 37

Standard Component Sizing -
Advantages and Disadvantages

 Advantages
•based on relevant historical data
•easy to use
•requires no special tools or training
•provides a rough estimate range

 Disadvantages
•must use large components early in a project
•limited data on large components

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 38

Delphi Size Estimating
 Uses several estimators

•each makes an independent estimate
•each submits estimate to a coordinator

 Coordinator

•calculates average estimate
•enters on form: average, other estimates
(anonymous), and previous estimate

 When reestimates stabilize
•average is the estimate
•range is range of original estimates

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 39

Delphi Example - 1
 3 estimators are asked to estimate the product.

 Their initial estimates are
• A - 13,800 LOC
• B - 15,700 LOC
• C - 21,000 LOC

 The coordinator then

•calculates average estimate as 16,833 LOC
•returns this with their original estimates to the
estimators

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 40

Delphi Example - 2
 The estimators then meet and discuss the
estimates.

 Their second estimates are
• A - 18,500 LOC
• B - 19,500 LOC
• C - 20,000 LOC

 The coordinator then

•calculates average estimate as 19,333 LOC
•asks the estimators if they agree with this as
the estimate

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 41

Delphi Size Estimating - 2
 Advantages

•can produce very accurate results
•utilizes organization’s skills
•can work for any sized product

 Disadvantages
•relies on a few experts
•is time consuming
•is subject to common biases

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 42

Size Estimating Proxies - 1
 The basic issue

•good size measures are detailed
•early estimators rarely can think in detail

 Alternatives
•wait to estimate until you have the detail
•make your best guess
•identify a suitable proxy

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 43

Size Estimating Proxies - 2
 A good proxy should correlate closely to
development costs.

 A good proxy would be easy to visualize early in
development.

 It should also be a physical entity that can be
counted.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 44

Example Proxies
 Function points

 Objects

 Product elements

•components
•screens, reports, scripts, files
•book chapters

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 45

Function Points as Proxies - 1
 Data show that function point counts correlate
well with development time.

 Function points can be visualized early in
development.

 To use function points properly, trained
estimators are required.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 46

Function Points as Proxies - 2
 Function points cannot directly be counted.

 Conversion factors are available for counting
LOC and calculating function points from the
LOC value.

 The function point users group (IFPUG) is
refining the function point method.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 47

Standard Components as Proxies
 Component count correlation with development
depends on the components.

 A lot of development data is required.

 Component counts are hard to visualize early in
development.

 Components are machine countable.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 48

Objects as Proxies - 1
 Correlation with development hours

•numbers of objects correlate reasonably well
•object lines of code (LOC) correlate very
closely

•object LOC can be estimated using the
standard component estimating method

•then calculate LOC estimate from historical
relationship between object LOC and program
LOC

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 49

Objects as Proxies - 2
 When objects are selected as application
entities, they can be visualized early in
development.

 Functions and procedures can often be
estimated in the same way.

 Objects, functions, procedures, and their LOC
can be automatically counted.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 50

Object LOC Correlation With
Development Hours

Object LOC

H
ou

rs

0
20
40
60
80

100
120
140
160
180

0 500 1000 1500 2000

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 51

Example Proxies - Other
 Possible candidates

•screens, reports, scripts, files
•book chapters

 If the number of items correlates with
development, you estimate the number of items.

 With a suitable proxy size measure, you can
often estimate proxy size.

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 52

Chapter Pages vs. Time

Pages

Ti
m

e
(h

ou
rs

)

0

20

40

60

80

100

120

0 10 20 30 40

Copyright © 1994 Carnegie Mellon University Disciplined Software Engineering - Lecture 3 53

Messages to Remember
 1 - Accurate size estimates will help you to
 make better development plans.

 2 - Size estimating skill improves with practice.

 3 - A defined and measured process provides a
 repeatable basis for improvement.

 4 - There are several ways to make size
 estimates.

