Software Testing

Part 3 of 4

Black-box Testing

An approach to testing where the program
IS considered as a ‘black-box’

The program test cases are based on the
system specification

Test planning can begin early in the
software process

Black-box testing

Inputs causing
anomalous

Input test data behaviour

System

Outputs which reveal

the presence of
defects

Output test results »

Pairing Down Test Cases

Use methods that take advantage of
symmetries, data equivalencies, and
independencies to reduce the number of

necessary test cases.
— Equivalence Testing
— Boundary Value Analysis

Determine the ranges of working system
Develop equivalence classes of test cases

Examine the boundaries of these classes
carefully

Equivalence Partitioning

Input data and output results often fall into
different classes where all members of a
class are related

Each of these classes is an equivalence
partition where the program behaves in an
equivalent way for each class member

Test cases should be chosen from each
partition

Equivalence Partitioning

>

Invalid inputs Valid inputs

Boundary Value Testing

Partition system inputs and outputs into

“equivalence sets’

— Ifinput is a 5-digit integer between 10,000 and
99,999, equivalence partitions are < 10,000,
10,000 - 99, 999 and > 10, 000

Choose test cases at the boundary of these

sets
— 00000, 09999, 10000, 99999, 10001

Equivalence Partitions

IR

Less than 4 Between 4 and 10 Morte than 10

Number of input values

9999 100000
10000 50000 9999

Y

Less than 10000 Between 10000 and 99999 | More than 99999

Input values

Search Routine Specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
TFIRST <= T'LAST
Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)
or
-- the element is not in the array
(not Found and
not (exists i, T’"FIRST >=i<=T'LAST, T (i) = Key))

Search Routine - Input Partitions

Inputs which conform to the pre-conditions
Inputs where a pre-condition does not hold

Inputs where the key element is a member of
the array

Inputs where the key element is not a member
of the array

Testing Guidelines - Sequences

Test software with sequences which have
only a single value

Use sequences of different sizes in
different tests

Derive tests so that the first, middle and
last elements of the sequence are
accessed

Test with sequences of zero length

Search Routine - Input Partitions

Array Element

Single value In sequence

Single value Not in sequence

More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1

17 0 false, 77
17,29, 21, 23 17 true, 1

41, 18, 9, 31, 30, 16, 45 45 true, 7
17,18, 21, 23, 29, 41, 38 23 true, 4

21, 23,29, 33, 38 25 false, 7?

Sorting Example

« Example: sort (Ist, n)
— Sort a list of numbers
— The list is between 2 and 1000 elements

 Domains:
— The list has some item type (of little concern)
— nis an integer value (sub-range)

« Equivalence classes;
— n<2
— n>1000
— 2<=n<=1000

Sorting Example

What do you test?

Not all cases of integers

Not all cases of positive integers
Not all cases between 1 and 1001

Highest payoff for detecting faults is to test around the
boundaries of equivalence classes.

Test n=1, n=2, n=1000, n=1001, and say n= 10
Five tests versus 1000.

White-box Testing

Sometime called structural testing or glass-box
testing

Derivation of test cases according to program
structure

Knowledge of the program is used to identify
additional test cases

Obijective is to exercise all program statements
(not all path combinations)

Types of Structural Testing

« Statement coverage -
— Test cases which will execute every statement at least once.
— Tools exist for help
— No guarantee that all branches are properly tested. Loop
exit?

« Branch coverage
— All branches are tested once

« Path coverage - Restriction of type of paths:
— Linear code sequences
— Definition/Use checking (all definition/use paths)
— Can locate dead code

White-box testing

Test data

Tests Derives
Component Test
code outputs

White Box Testing - Binary Search

int search (int key, int [] elemArray)
{
int bottom = 0;
int top = elemArray.length - 1;
int mid;
int result = -1;
while (bottom <= top)
{
mid = (top + bottom) / 2;
if (elemArray [mid] == key)
{
result = mid;
return result;
} // if part
else
{
if (elemArray [mid] < key)
bottom = mid + 1;
else
top = mid - 1;
}
} //while loop
return result;
} // search

Binary Search Equivalence Partitions

Pre-conditions satisfied, key element in array

Pre-conditions satisfied, key element not in
array

Pre-conditions unsatisfied, key element in array
Pre-conditions unsatisfied, key element not in array
Input array has a single value

Input array has an even number of values

Input array has an odd number of values

Y

Binary Search Equivalence Partitions

Equivalence class boundaries

YYY

Y

Elements < Mid Elements > Mid

Mid-point

Binary Search - Test Cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1

17 0 false, ??

17, 21, 23, 29 17 true, 1

9, 16, 18, 30, 31, 41, 45 45 true, 7

17,18, 21, 23,29, 38, 41 23 true, 4

17, 18, 21, 23, 29, 33, 38 21 true, 3

12, 18,21, 23, 32 23 true, 4

21, 23,29, 33, 38 25 false, 7?

