
Software Testing

Part 3 of 4

Black-box Testing

• An approach to testing where the program
is considered as a ‘black-box’

• The program test cases are based on the
system specification

• Test planning can begin early in the
software process

Black-box testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

Pairing Down Test Cases

• Use methods that take advantage of
symmetries, data equivalencies, and
independencies to reduce the number of
necessary test cases.
– Equivalence Testing
– Boundary Value Analysis

• Determine the ranges of working system
• Develop equivalence classes of test cases
• Examine the boundaries of these classes

carefully

Equivalence Partitioning

• Input data and output results often fall into
different classes where all members of a
class are related

• Each of these classes is an equivalence
partition where the program behaves in an
equivalent way for each class member

• Test cases should be chosen from each
partition

Equivalence Partitioning

System

Outputs

Invalid inputs Valid inputs

• Partition system inputs and outputs into  
“equivalence sets”
– If input is a 5-digit integer between 10,000 and

99,999, equivalence partitions are < 10,000,  
10,000 - 99, 999 and > 10, 000

• Choose test cases at the boundary of these  
sets
– 00000, 09999, 10000, 99999, 10001

Boundary Value Testing

Equivalence Partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

Search Routine Specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
 Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
T’FIRST <= T’LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and

 not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

• Inputs which conform to the pre-conditions
• Inputs where a pre-condition does not hold

• Inputs where the key element is a member of  
the array

• Inputs where the key element is not a member  
of the array

Search Routine - Input Partitions

Testing Guidelines - Sequences

• Test software with sequences which have
only a single value

• Use sequences of different sizes in
different tests

• Derive tests so that the first, middle and
last elements of the sequence are
accessed

• Test with sequences of zero length

Search Routine - Input Partitions

Array Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

Sorting Example

• Example: sort (lst, n)
– Sort a list of numbers
– The list is between 2 and 1000 elements

• Domains:
– The list has some item type (of little concern)
– n is an integer value (sub-range)

• Equivalence classes;
– n < 2
– n > 1000
– 2 <= n <= 1000

Sorting Example

• What do you test?
• Not all cases of integers
• Not all cases of positive integers
• Not all cases between 1 and 1001

• Highest payoff for detecting faults is to test around the
boundaries of equivalence classes.

• Test n=1, n=2, n=1000, n=1001, and say n= 10
• Five tests versus 1000.

• Sometime called structural testing or glass-box
testing

• Derivation of test cases according to program
structure

• Knowledge of the program is used to identify
additional test cases

• Objective is to exercise all program statements
(not all path combinations)

White-box Testing

Types of Structural Testing

• Statement coverage -
– Test cases which will execute every statement at least once.
– Tools exist for help
– No guarantee that all branches are properly tested. Loop

exit?
• Branch coverage

– All branches are tested once
• Path coverage - Restriction of type of paths:

– Linear code sequences
– Definition/Use checking (all definition/use paths)
– Can locate dead code

White-box testing

Component
code

Test
outputs

Test data

DerivesTests

White Box Testing - Binary Search
int search (int key, int [] elemArray)
{
 int bottom = 0;
 int top = elemArray.length - 1;
 int mid;
 int result = -1;
 while (bottom <= top)
 {
 mid = (top + bottom) / 2;
 if (elemArray [mid] == key)
 {
 result = mid;
 return result;
 } // if part
 else
 {
 if (elemArray [mid] < key)
 bottom = mid + 1;
 else
 top = mid - 1;
 }
 } //while loop
 return result;
} // search

• Pre-conditions satisfied, key element in array
• Pre-conditions satisfied, key element not in  

array
• Pre-conditions unsatisfied, key element in array
• Pre-conditions unsatisfied, key element not in array
• Input array has a single value
• Input array has an even number of values
• Input array has an odd number of values

Binary Search Equivalence Partitions

Binary Search Equivalence Partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries

Binary Search - Test Cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

