
Software Testing

Part 4 of 4

Path Testing

• The objective of path testing is to ensure that the
set of test cases is such that each path through
the program is executed at least once

• The starting point for path testing is a program
flow graph that shows nodes representing
program decisions and arcs representing the
flow of control

• Statements with conditions are therefore nodes
in the flow graph

• Describes the program control flow. Each branch
is shown as a separate path and loops are
shown by arrows looping back to the loop
condition node

• Used as a basis for computing the cyclomatic  
complexity

• Cyclomatic complexity = Number of edges -
Number of nodes +2

Program Flow Graphs

• The number of tests to test all control
statements equals the cyclomatic complexity

• Cyclomatic complexity equals number of
conditions in a program

• Useful if used with care. Does not imply
adequacy of testing

• Although all paths are executed, all
combinations of paths are not executed

Cyclomatic Complexity

1

2

3

4

65

7

while bottom <= top

if (elemArray [mid] == key

(if (elemArray [mid]< key8

9

bottom > top

Binary Search Flow Graph

• 1, 2, 3, 8, 9
• 1, 2, 3, 4, 6, 7, 2
• 1, 2, 3, 4, 5, 7, 2
• 1, 2, 3, 4, 6, 7, 2, 8, 9
• Test cases should be derived so that all of

these paths are executed
• A dynamic program analyzer may be used

to check that paths have been executed

Independent Paths

Feasibility

• Pure black box testing (specification) is
realistically impossible because there are (in
general) too many test cases to consider.

• Pure testing to code requires a test of every
possible path in a flow chart. This is also (in
general) infeasible. Also every path does not
guarantee correctness.

• Normally, a combination of Black box and Glass
box testing is done.

Integration Testing

• Tests complete systems or subsystems
composed of integrated components

• Integration testing should be black-box testing
with tests derived from the specification

• Main difficulty is localising errors
• Incremental integration testing reduces this

problem

Incremental integration testing

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence
1

Test sequence
2

Test sequence
3

Approaches to Integration Testing

• Top-down testing
– Start with high-level system and integrate from the

top-down replacing individual components by stubs
where appropriate

• Bottom-up testing
– Integrate individual components in levels until the

complete system is created
• In practice, most integration involves a

combination of these strategies

Top-down Testing

Level 2Level 2Level 2Level 2

Level 1 Level 1Testing
sequence

Level 2
stubs

Level 3
stubs

. . .

Bottom-up Testing

Level NLevel NLevel NLevel NLevel N

Level N–1 Level N–1Level N–1

Testing
sequence

Test
drivers

Test
drivers

Software Testing Metrics

• Defects rates
• Errors rates
• Number of errors
• Number of errors found per person hours

expended
• Measured by:

– Individual, module, during development
• Errors should be categorized by origin, type,

cost

More Metrics

• Direct measures - cost, effort, LOC, etc.
• Indirect Measures - functionality, quality,

complexity, reliability, maintainability

• Size Oriented:
– Lines of code - LOC
– Effort - person months
– errors/KLOC
– defects/KLOC
– cost/KLOC

Proofs of Correctness

• Assertions, preconditions, post conditions, and
invariants are used

• Assertion – something that is true at a particular
point in the program

• Pre conditions must be true before something is
executed

• Post conditions are true after something has
executed

• Invariants are always true with a give scope
(e.g., construct, loop, ADT)

Logical Properties

• Assertions describe the logical properties
which hold at each statement in a program

• Assertions can be added to each line to
describe the program

• Utilize a formal approach (e.g., first order
predicate calculus, Z, spec#, etc.)

Example
//PRE: n in {1,2,3…}
int k, s;
int y[n];
k=0;
//ASSERT: k==0
s=0;
//ASSERT: s==0 && k==0
//LOOP INV: (k<=n) && (s==y[0]+y[1]+…+y[k-1])
While (k<n)
{
 //ASSERT: (k<n) && (s==y[0]+y[1]+…+y[k-1])
 s=s+y[k];
 //ASSERT: (k<n) && (s==y[0]+y[1]+…+y[k])
 k=k+1;
 //ASSERT: (k<=n) && (s==y[0]+y[1]+…+y[k-1])
}
//POST: (k==n) && (s==y[0]+y[1]+…+y[n-1])

Proving the Program

• Prove correct based on the loop invariant
• Use induction

• Basis:
– Before loop is entered
– k=0 and s=0 therefore
– s=y[0-1]=y[-1]=0
– Also k<=n since n in {1,2,3,…}

Using Induction

• Inductive Hypothesis
– Assume for some k>=0,
– s = y[0]+y[1]+…y[n-2]+y[n-1]
– when ever n<=k

• Inductive step show s = y[0]+y[1]+…y[n-2]+y[n-1]
is true for k+1
– s = y[0]+y[1]+…+y[k+1-2]+y[k+1-1]
– s = y[0]+y[1]+…+y[k-1]+y[k]
– s = (y[0]+y[1]+…+y[k-1]) + y[k] Q.E.D

Proving can be Problematic
• Mathematical proofs (as complex and error prone as

coding)
• Need tool support for theorem proving

• Leavenworth ‘70 did an informal proof of correctness of a
simple text justification program. (Claims it’s correct!)

• London ‘71 found four faults, then did a formal proof.
(Claims it’s now correct!)

• Goodenough and Gerhar ‘75 found three more faults.

• Testing would have found these errors without much
difficulty

Automated Testing Tools

• Code analysis tools

• Static analysis
– No execution

• Dynamic analysis
– Execution based

Static Analysis

• Code analyzers: syntax, fault prone
• Structure checker

– Generates structure graph from the components with
logical flow checked for structural flaws (dead code)

• Data analyzer – data structure review. Conflicts
in data definitions and usages

• Sequence checker – checks for proper
sequences of events (open file before modify)

Dynamic Analysis

• Program monitors record snapshot of the
state of the system and watch program
behaviors

• List number of times a component is called
(profiler)

• Path, statement, branch coverage
• Examine memory and variable information

Test Execution Tools

• Capture and replay
– Tools capture keystrokes, input and responses while

tests are run
– Verify fault is fixed by running same test cases

• Subs and drivers
• Generate stubs and drivers for integration testing

– Set appropriate state variables, simulate key board
input, compare actual to expected

– Track paths of execution, reset variables to prepare for
next test, interact with other tools

Test Execution Tools

• Automated testing environments
• Test case generators

– Structural test case generators based on
source code – path or branch coverage

– Data flow

