
1

OO Frameworks

Jonathan I. Maletic, Ph.D.
<SDML>

Department of Computer Science
Kent State University

Introduction

• Frameworks support reuse of detailed
designs and architectures

• An integrated set of components
• Components collaborate to provide a

reusable architecture for a family of related
applications

Using Frameworks
• Frameworks are semi-complete software

applications
• Complete applications are developed by

– Inheriting from and
– Instantiating parameterized framework components

• Frameworks provide domain specific
functionality
– Business, telecom, databases, OS, etc.

• The framework determines which objects and
methods to invoke in response to events

2

Frameworks vs. Libraries vs.
Patterns

• Frameworks
– Reusable semi-complete application
– Main body and algorithm

• Class library
– Self contained
– Pluggable ADTs

• Patterns
– Problem, solution, context

Framework Architecture

Library Architecture

3

Framework Characteristics

• User defined (derived) methods invoked
by the framework code

• Framework plays the role of the main body
• This inversion of control allows

frameworks to serve as extensible code
skeletons

• User supplied and/or specialized methods
tailor generic framework algorithms for a
specific application

Component Integration

• Framework components are loosely coupled via
callbacks

• Callbacks allow independently developed
software to be connected together

• Callbacks provide a connection point
– Generic framework objects communicate with

application objects
– Framework provides common template methods
– Application provides the variant hook methods

Frameworks vs. Patterns

• Patterns and frameworks play
complementary cooperative roles

• Patterns can be more abstract
descriptions of frameworks

• Frameworks are implemented (and
running) in a specific language

• Complex frameworks may involve dozens
of patterns

• Patterns help document frameworks

4

Object Oriented Frameworks

• Aka Object oriented abstract design
• Consists of:

– Abstract class for each major component
– Interfaces between components defined in terms of

sets of messages
– Normally a library of subclasses that can be used as

components in the design
• Examples:

– Modern UI toolkits – JavaAWT, MFC
– HippoDraw

Open vs. Closed
• Determining common and variable components

is important
– Insufficient variation makes it difficult for users to

customize framework components
– Insufficient commonality makes it hard for users to

understand and depend upon framework behavior
• Generally, dependency should always be in the

direction of stability
– Components should not depend on any component

less stable than itself
• Open/Closed Principle:

– Allows most stable components to be extensible

Open/Closed Principle

• Components should be:
– Open for extension
– Closed for modification

• Implications:
– Abstractions is good
– Inheritance and polymorphism are good
– Public/global data is bad
– Runtime type identification can be bad

5

Wrong Way – static type check
Class shape;
Class square : public shape;
Class circle : public shape;
Void draw_square (const square&);
Void draw_circle (const circle&);
Void draw_shape(const shape &s)
{
switch (s.shapeType) {
case SQUARE: draw_square(s); break;
case CIRCLE: draw_circle(s); break;
.. ..

}
}

Right Way - polymorphism
Class shape
{
public:
virtual void draw () const = 0;

};

Void draw_all (const shape &s)
{
s.draw();

}

Applying Frameworks

• Use of framework

• Training and understanding framework

• Evaluation of framework

• Development of framework

6

Building Applications

• An application developed using a
framework includes:
– Framework
– Concrete subclasses
– Scripts that specified which concrete classes

to use and how to interconnect them
– Objects that have no relationship to

framework (utilities and domain specific)

Blackbox Frameworks
• Customize framework by supplying it with a set of components that

provide application specific behavior (e.g., GUI frameworks)
• Connect existing components
• Does not require changes to framework and no new concrete

subclasses
• Reuses framework’s interface and rules
• Analogous to building from legos and connecting ICs
• Application programmers only need to know:

– Type A objects can be connected to type B objects
– Don’t need to know exact specifics of A and B

• Implications
– Each component is required to understand a particular protocol
– Interfaces between components defined by protocol – only need to

understand external interfaces of components
– Less flexible
– Information passed to application must be explicitly passed

Graybox

• Define new concrete subclasses and use them
to build application

• Subclasses are tightly coupled to super classes
• Requires more explicit knowledge about abstract

classes
• Subclasses must meet specifications implied by

super class
• Programmers must understand framework’s

interface in detail

7

Whitebox Frameworks
• Program skeleton

– Subclasses are the additions to the skeleton
• Change the abstract classes that form the core of the

framework – add new operators and/or attributes
• Requires the actual source code of framework (versus

just the interface)
• Implications

– Framework implementation must be understood to use it
– Every application requires the creation of many new subclasses
– Can be difficult to learn – need to know hierarchical structure
– State of each instance is implicitly available to all methods in

framework
– Changes to abstract classes can break existing concrete classes

Training
• Learning a framework is more challenging than learning

a class library
– Not just individual classes
– Learn a set of classes with specific interconnections
– Many abstract classes

• Must have concrete examples (complex to simple)
• Documentation should include

– Purpose of framework
– How to use it (cookbook) – domain specific design patterns
– How it works

• interaction between objects
• how responsibility is allocated between objects

Evaluation
• Most application domains have no commercially

available domain specific frameworks
• Criteria

– Platform/environment
– Programming language
– Standards
– Tradeoffs between simplicity and power

• Framework objects:
– Features that must be supported – distributed,

networking issues, interaction styles, …

8

Development of Frameworks

• Design of a framework is analogous to design of
any reusable software
– Domain analysis
– First version should implement examples – typically

whitebox
– Then use it to build applications

• Will uncover weak areas in the framework
• Parts that are difficult to change

– Experience leads to improvement in the framework
• Migrates towards a more blackbox system

Development Model

• Iteration (evolution) is important
• Domain analysis will gain more information
• Framework make explicit the parts of the

system that will change
– Components should implement changeable

parts
• Frameworks are abstractions

– Design of a framework depends on original
examples

Hooks, Beacons, Hinges
• Hooks, beacons, hinges are points in the

framework that are meant to be adapted or
changed
– Filling in parameters
– Creating new subclasses

• Hook description
– Describes problem and requirements that framework

developer anticipates application developer will have
– Provides guidance wrt use of hook
– Details the required changes to the framework
– Constraints to be satisfied
– Effects on the framework

9

Hooks Adapt Framework

• Enabling/Disabling a feature

• Replacing a feature

• Augmenting a feature

• Adding a feature

Benefits of Frameworks

• Modularity
– Encapsulate volatile implementation details

behind stable interfaces
– Localize impact of design and implementation

changes
• Reusability

– Stable interfaces enhance reusability of
generic components

– Leverages domain knowledge and prior
experience

Benefits
• Extensibility

– Hook methods allow applications to extend its stable interfaces
– Hook methods decouple stable interfaces and behaviors of an

application domain
• Inversion of Control

– Application processing customized by event handler objects
invoked via framework’s reactive dispatching mechanism

– Allow framework rather than each application to determine which
set of application specific methods to invoke in response to
external events

• Window messages from end users
• Packets arriving on communications ports

10

Trade offs

• Benefits of frameworks
– Enable direct reuse of code
– Enable large amounts of reuse vs standalone

functions/classes
• Drawbacks

– High initial learning curve
– Flow of control for reactive dispatching is often non-

intuitive
– Verification/validation of generic components is often

quite difficult

Classification of Frameworks

• System infrastructure

• Middleware integration

• Enterprise application

System Infrastructure

• Simplify development of portable and
efficient system infrastructure

• Examples: UI and language processing
tools

• Primarily used internally within a software
development organization

11

Middleware Integration

• Commonly used to integrate distributed
applications and components

• Designed to enhance ability of software
developers to modularize, reuse, and
extend software infrastructure in
distributed environments

• Examples: ORB, Transactional DB

Enterprise Applications
• Address broad application domains

– Telecom, manufacturing, financial
• Expensive to develop and/or purchase
• Good investment

– Support development of end-user applications and
products efficiently

• System infrastructure/middleware frameworks
– Focus largely on internal development concerns
– Contribute significantly to rapid creation of high

quality applications

