Reusable Software Assets

Jonathan |. Maletic, Ph. D.

<SDML>
Department of Computer Science
Kent State University

What is Reuse

¢ Black box Reuse —
« reuse of an asset as is
* Plug and play
« No modification of asset is needed.

¢ Glass box Reuse —

« modification of asset is needed in order to utilize it for
the specific problem.

Ksu J. Maletic

Reuse Process

Find the proper asset

Understand it

Modify it

Integration and testing

KSuU J. Maletic 3

Reusable Software

« Consists of not only of source code, but includes
a wide variety of software-related products and
concepts.

« These concepts are at varying degrees of
abstraction.

« Software asset = item that costs money to build,
store, and train others to use properly.

KsSuU J. Maletic 4

Types of Assets:

« Architectures [Monroe97] and Architectural Styles
[Shaw96, Monroe97]

« Idioms [Coplien97]

« Design Patterns [Gamma95]

« Pattern Languages [Kerth97]

* Frameworks [Johnson97, Schmid97]
« Components [Kerth97]

* Objects/Classes

« Kits/Libraries

* Domain Models

Ksu J. Maletic 5

Architectures

« Software Architecture involves the description of
elements from which systems are build,
interactions among those elements, patterns that
guide their composition, and constraints on
these patterns [Shaw96].

« Sometimes architecture and design are equated.
Although an architecture may represent a
design, not all designs are also architectures.

« Domain specific. High level of abstraction.

KSuU J. Maletic 6

Architectural Styles (1)

« Define a family of architectures.

« Define a vocabulary of components, connector
(interactions among the components) types, and
a set of constraints on how they can be
combined.

¢ Slightly domain specific. High level of
abstraction.

« Example: client-server, pipe-and-filter,
blackboard architectures.

KsSuU J. Maletic 7

Architectural Styles (2)

« The term architectural styles is often used
interchangeably with architectural patterns, or
architectural idioms.

« The exact definition of a style is an active
research issue and debate.

Ksu J. Maletic 8

Idioms

Typical styles or methods about methods which
are used to build a software systems

A philosophy of use
« Domain independent
¢ High level of abstraction

« Examples:
¢ Coding styles
¢ GUI look and feel

KSuU J. Maletic 9

Frameworks (1)

¢ A set of reusable classes or components used to
develop a specific type of software system or
subsystem. High level definitions (design
patterns) of the way the components interact are
also contained.

* Reusable designs of all or part of system.
 Are actual programs.

« A framework’s purpose is to provide a
system/application skeleton that developers can
customize.

KsSuU J. Maletic 10

Frameworks (2)

¢ Domain specific. Contains elements of high and
low level of abstraction.

¢ Types of frameworks:
« Domain Specific - Accounting framework
* Generic GUI Framework for information visualization

Ksu J. Maletic 11

Design Patterns

« Description of methods (communicating objects
and classes) that can be customized to solve a
general design (recurring) problem in a
particular context.

« Design patterns vary in their granularity and
level of abstraction.

< Patterns are classified by their purpose
(creational, structural, behavioral) and scope
(class, object).

KSuU J. Maletic 12

Design Patterns - examples

¢ Factory method (creational, class) — allows a
class to defer instantiation to subclasses.

¢ Facade (structural, object) — provides a unified
interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that
makes the subsystem easier to use.

« lterator (behavioral, object) - provides a way to
access an aggregation of objects or elements.

¢ Could be both domain dependent and
independent. High level of abstraction.

KsSuU J. Maletic 13

Pattern Languages

¢ A system of patterns organized in a structure
that guides the pattern’s application.

< Simply put, pattern languages are collections of
related patterns.

« Pattern languages order the high (meta) level
problem solving processes.

« Domain dependent. High level of abstraction.

Ksu J. Maletic 14

Components

¢ Areusable concrete (implemented) piece of
software (program) that is concise with respect
to problem type.

¢ Usually, a component provides a particular
function or group of related functions.

« Black box component - no modification required,
typically parameterizable.

« White box component - modification required to
solve problem at hand.

« Domain dependent. Low level of abstraction.

KSuU J. Maletic 15

Kits/Libraries

¢ A set of useful routines, classes, functions.
« Domain dependent. Low level of abstraction.

« Examples:

¢ STL (Standard Template Library)
« Math library

¢ They are used, but not really reused.

J. Maletic 16

The Relationships

¢ Use standard UML descriptions and
relationships
« Dependency
* Aggregation
« Association
« Inheritance and instantiation

J. Maletic 17

Architectures

J. Maletic 18

Design Patterns

I— S S
Architectural Style
Idioms
Design Pattern * 1 Pattern Language
Domain Model for X
Pattern Languages are used to help
describe idioms and/or philosophies (be they
architectural, or design)
Frameworks
\
9 1 ‘—‘
idioms +philosophy +design Pattern Language

Components

,,,,,,,,,,,,,,

KsSuU J. Maletic 22

1 Component

Unified Overview x

Library/Kit

Ksu J. Maletic 23

Final Notes

« One of the main success factors to the reuse of

anything (software, ideas, or circuit designs) is
standardization of terms and concepts.

¢ Given a standard vocabulary people can covey

ideas to each other more quickly and reuse
ideas and concepts over and over.

¢ Training is a very important part of reuse.

KSuU J. Maletic 24

Chitectural Style Domain Model

Idioms Design Pattern

Framework

References

[Baumer97] Baumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D., Zullighoven, H.,
“Framework Development for Large Systems", CACM Vol. 40, No. 10, Oct. 1997,
pp. 52-59.

[Copllen97] Coplien, J., "Idioms and Patterns as Architectural Literature”, IEEE Software,

. 14, No. 1, Jan. 1997, pp. 36-42.

[Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., De5|gn Patterns Elements
of Reusable Object ‘Oriented Software, Addison Wesley

[Johnson97] Johnson, R., "Frameworks = (Components + Panems) , CACM Vol. 40, No.

10, Oct. 1997, pp. 39-42.

[Kerth97] Kerth, N., Cunningham, W., "Using Patterns to Improve Our Architectural
Vision", IEEE Software, Vol. 14, No. 1, Jan. 1997, pp. 53-59.

[Monroe97] Monroe, R., Kompanek, A., Melton, R., Garlan, 'Architectural Styles,
Design Patterns, and Objects", |EEE Software, Vol. 14, No. 1, Jan. 1997, pp. 43-52.

[Schmid97] Schmid, H., "Systematic Framework Design by Generalization", CACM Vol.
40, No. 10, Oct. 1997, pp. 48-51.

[Shaw96] Shaw, M., Garlan, D. Software Architecture perspectives on an emerging
Discipline, Prentice Hall, 1996.

[Tepfenhart97] Tepfenhart, W., Cusick, J., "A Unified Object Topology", IEEE Software,
Vol. 14, No. 1, Jan. 1997, pp. 31-35.

KsSuU J. Maletic 25

