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What is Reuse

¢ Black box Reuse —
« reuse of an asset as is
* Plug and play
« No modification of asset is needed.

¢ Glass box Reuse —

« modification of asset is needed in order to utilize it for
the specific problem.
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Reuse Process

Find the proper asset

Understand it

Modify it

Integration and testing
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Reusable Software

« Consists of not only of source code, but includes
a wide variety of software-related products and
concepts.

« These concepts are at varying degrees of
abstraction.

« Software asset = item that costs money to build,
store, and train others to use properly.
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Types of Assets:

« Architectures [Monroe97] and Architectural Styles
[Shaw96, Monroe97]

« Idioms [Coplien97]

« Design Patterns [Gamma95]

« Pattern Languages [Kerth97]

* Frameworks [Johnson97, Schmid97]
« Components [Kerth97]

* Objects/Classes

« Kits/Libraries

* Domain Models
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Architectures

« Software Architecture involves the description of
elements from which systems are build,
interactions among those elements, patterns that
guide their composition, and constraints on
these patterns [Shaw96].

« Sometimes architecture and design are equated.
Although an architecture may represent a
design, not all designs are also architectures.

« Domain specific. High level of abstraction.
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Architectural Styles (1)

« Define a family of architectures.

« Define a vocabulary of components, connector
(interactions among the components) types, and
a set of constraints on how they can be
combined.

¢ Slightly domain specific. High level of
abstraction.

« Example: client-server, pipe-and-filter,
blackboard architectures.
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Architectural Styles (2)

« The term architectural styles is often used
interchangeably with architectural patterns, or
architectural idioms.

« The exact definition of a style is an active
research issue and debate.
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Idioms

Typical styles or methods about methods which
are used to build a software systems

A philosophy of use
« Domain independent
¢ High level of abstraction

« Examples:
¢ Coding styles
¢ GUI look and feel
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Frameworks (1)

¢ A set of reusable classes or components used to
develop a specific type of software system or
subsystem. High level definitions (design
patterns) of the way the components interact are
also contained.

* Reusable designs of all or part of system.
 Are actual programs.

« A framework’s purpose is to provide a
system/application skeleton that developers can
customize.
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Frameworks (2)

¢ Domain specific. Contains elements of high and
low level of abstraction.

¢ Types of frameworks:
« Domain Specific - Accounting framework
* Generic GUI Framework for information visualization
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Design Patterns

« Description of methods (communicating objects
and classes) that can be customized to solve a
general design (recurring) problem in a
particular context.

« Design patterns vary in their granularity and
level of abstraction.

< Patterns are classified by their purpose
(creational, structural, behavioral ) and scope
(class, object).
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Design Patterns - examples

¢ Factory method (creational, class) — allows a
class to defer instantiation to subclasses.

¢ Facade (structural, object) — provides a unified
interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that
makes the subsystem easier to use.

« lterator (behavioral, object) - provides a way to
access an aggregation of objects or elements.

¢ Could be both domain dependent and
independent. High level of abstraction.
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Pattern Languages

¢ A system of patterns organized in a structure
that guides the pattern’s application.

< Simply put, pattern languages are collections of
related patterns.

« Pattern languages order the high (meta) level
problem solving processes.

« Domain dependent. High level of abstraction.
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Components

¢ Areusable concrete (implemented) piece of
software (program) that is concise with respect
to problem type.

¢ Usually, a component provides a particular
function or group of related functions.

« Black box component - no modification required,
typically parameterizable.

« White box component - modification required to
solve problem at hand.

« Domain dependent. Low level of abstraction.
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Kits/Libraries

¢ A set of useful routines, classes, functions.
« Domain dependent. Low level of abstraction.

« Examples:

¢ STL (Standard Template Library)
« Math library

¢ They are used, but not really reused.
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The Relationships

¢ Use standard UML descriptions and
relationships
« Dependency
* Aggregation
« Association
« Inheritance and instantiation
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Architectures
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Design Patterns
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Architectural Style
Idioms
Design Pattern * 1 Pattern Language
Domain Model for X
Pattern Languages are used to help
describe idioms and/or philosophies (be they
architectural, or design)
Frameworks
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1 Component

Unified Overview x

Library/Kit
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Final Notes

« One of the main success factors to the reuse of

anything (software, ideas, or circuit designs) is
standardization of terms and concepts.

¢ Given a standard vocabulary people can covey

ideas to each other more quickly and reuse
ideas and concepts over and over.

¢ Training is a very important part of reuse.
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