
1

Reusable Software Assets

Jonathan I. Maletic, Ph. D.

<SDML>
Department of Computer Science

Kent State University

KSU J. Maletic 2

What is Reuse

• Black box Reuse –
• reuse of an asset as is
• Plug and play
• No modification of asset is needed.

• Glass box Reuse –
• modification of asset is needed in order to utilize it for

the specific problem.

KSU J. Maletic 3

Reuse Process

• Find the proper asset

• Understand it

• Modify it

• Integration and testing

2

KSU J. Maletic 4

Reusable Software

• Consists of not only of source code, but includes
a wide variety of software-related products and
concepts.

• These concepts are at varying degrees of
abstraction.

• Software asset = item that costs money to build,
store, and train others to use properly.

KSU J. Maletic 5

Types of Assets:

• Architectures [Monroe97] and Architectural Styles
[Shaw96, Monroe97]

• Idioms [Coplien97]
• Design Patterns [Gamma95]
• Pattern Languages [Kerth97]
• Frameworks [Johnson97, Schmid97]
• Components [Kerth97]
• Objects/Classes
• Kits/Libraries
• Domain Models

KSU J. Maletic 6

Architectures

• Software Architecture involves the description of
elements from which systems are build,
interactions among those elements, patterns that
guide their composition, and constraints on
these patterns [Shaw96].

• Sometimes architecture and design are equated.
Although an architecture may represent a
design, not all designs are also architectures.

• Domain specific. High level of abstraction.

3

KSU J. Maletic 7

Architectural Styles (1)

• Define a family of architectures.
• Define a vocabulary of components, connector

(interactions among the components) types, and
a set of constraints on how they can be
combined.

• Slightly domain specific. High level of
abstraction.

• Example: client-server, pipe-and-filter,
blackboard architectures.

KSU J. Maletic 8

Architectural Styles (2)

• The term architectural styles is often used
interchangeably with architectural patterns, or
architectural idioms.

• The exact definition of a style is an active
research issue and debate.

KSU J. Maletic 9

Idioms

• Typical styles or methods about methods which
are used to build a software systems

• A philosophy of use
• Domain independent
• High level of abstraction

• Examples:
• Coding styles
• GUI look and feel

4

KSU J. Maletic 10

Frameworks (1)

• A set of reusable classes or components used to
develop a specific type of software system or
subsystem. High level definitions (design
patterns) of the way the components interact are
also contained.

• Reusable designs of all or part of system.
• Are actual programs.
• A framework’s purpose is to provide a

system/application skeleton that developers can
customize.

KSU J. Maletic 11

Frameworks (2)

• Domain specific. Contains elements of high and
low level of abstraction.

• Types of frameworks:
• Domain Specific - Accounting framework
• Generic GUI Framework for information visualization

KSU J. Maletic 12

Design Patterns

• Description of methods (communicating objects
and classes) that can be customized to solve a
general design (recurring) problem in a
particular context.

• Design patterns vary in their granularity and
level of abstraction.

• Patterns are classified by their purpose
(creational, structural, behavioral) and scope
(class, object).

5

KSU J. Maletic 13

Design Patterns - examples

• Factory method (creational, class) – allows a
class to defer instantiation to subclasses.

• Facade (structural, object) – provides a unified
interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that
makes the subsystem easier to use.

• Iterator (behavioral, object) - provides a way to
access an aggregation of objects or elements.

• Could be both domain dependent and
independent. High level of abstraction.

KSU J. Maletic 14

Pattern Languages

• A system of patterns organized in a structure
that guides the pattern’s application.

• Simply put, pattern languages are collections of
related patterns.

• Pattern languages order the high (meta) level
problem solving processes.

• Domain dependent. High level of abstraction.

KSU J. Maletic 15

Components

• A reusable concrete (implemented) piece of
software (program) that is concise with respect
to problem type.

• Usually, a component provides a particular
function or group of related functions.

• Black box component - no modification required,
typically parameterizable.

• White box component - modification required to
solve problem at hand.

• Domain dependent. Low level of abstraction.

6

KSU J. Maletic 16

Kits/Libraries

• A set of useful routines, classes, functions.
• Domain dependent. Low level of abstraction.

• Examples:
• STL (Standard Template Library)
• Math library

• They are used, but not really reused.

KSU J. Maletic 17

The Relationships

• Use standard UML descriptions and
relationships
• Dependency
• Aggregation
• Association
• Inheritance and instantiation

KSU J. Maletic 18

Architectures

7

KSU J. Maletic 19

Design Patterns

KSU J. Maletic 20

Idioms

Pattern Languages are used to help
describe idioms and/or philosophies (be they
architectural, or design)

KSU J. Maletic 21

Frameworks

8

KSU J. Maletic 22

Components

KSU J. Maletic 23

Unified Overview

KSU J. Maletic 24

Final Notes

• One of the main success factors to the reuse of
anything (software, ideas, or circuit designs) is
standardization of terms and concepts.

• Given a standard vocabulary people can covey
ideas to each other more quickly and reuse
ideas and concepts over and over.

• Training is a very important part of reuse.

9

KSU J. Maletic 25

References
[Baumer97] Baumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D., Zullighoven, H.,

"Framework Development for Large Systems", CACM Vol. 40, No. 10, Oct. 1997,
pp. 52-59.

[Coplien97] Coplien, J., "Idioms and Patterns as Architectural Literature", IEEE Software,
Vol. 14, No. 1, Jan. 1997, pp. 36-42.

[Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns Elements
of Reusable Object Oriented Software, Addison Wesley, 1995.

[Johnson97] Johnson, R., "Frameworks = (Components + Patterns)", CACM Vol. 40, No.
10, Oct. 1997, pp. 39-42.

[Kerth97] Kerth, N., Cunningham, W., "Using Patterns to Improve Our Architectural
Vision", IEEE Software, Vol. 14, No. 1, Jan. 1997, pp. 53-59.

[Monroe97] Monroe, R., Kompanek, A., Melton, R., Garlan, D., "Architectural Styles,
Design Patterns, and Objects", IEEE Software, Vol. 14, No. 1, Jan. 1997, pp. 43-52.

[Schmid97] Schmid, H., "Systematic Framework Design by Generalization", CACM Vol.
40, No. 10, Oct. 1997, pp. 48-51.

[Shaw96] Shaw, M., Garlan, D. Software Architecture perspectives on an emerging
Discipline, Prentice Hall, 1996.

[Tepfenhart97] Tepfenhart, W., Cusick, J., "A Unified Object Topology", IEEE Software,
Vol. 14, No. 1, Jan. 1997, pp. 31-35.

