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Static Program Analysis 

Automated Static Analysis 

•  Static analyzers are software tools for source text 
processing 

•  They parse the program text and try to discover 
potentially erroneous conditions and bring these 
to the attention of the V & V team 

•  Very effective as an aid to inspections.  
•  A supplement to but not a replacement for  

inspections 
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Types of Static Analysis Checks 
Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used
between assignments
Possible array bound violations  
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

Static Models of the Source Code 
•  Low level 

–  Source code text 
•  Intermediate level 

–  Symbol table 
–  Parse tree 

•  High level 
–  Control flow 
–  Data flow 
–  Program Dependency Graph 

•  Design Level 
–  Class diagram 
–  Sequence diagram 
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Intermediate 

representation 

Starting Point for Static Analysis 

Parsing, lexical 
analysis 

Source 

program 
Code 

generation, 
optimization 

Target 
code 

Code 
execution 

Intermediate 

representation 

• Analyze intermediate 
  representation, perform additional 
  analysis on the results 
• Use this information for the 
  applications 

Intermediate Representation 

•  Parse (derivation) Tree & Symbol Table 
•  Concrete Parse Tree 

– Concrete (derivation) tree shows structure and 
is language-specific issues 

– Parse tree represents concrete syntax  
•  Abstract Syntax Tree/Graph (AST)/(ASG) 

– Abstract Syntax Tree shows only structure 
– Represents abstract syntax 
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AST vs Parse Tree  

       Example 
1.  a := b + c  

2.  a = b + c; 

  

�Ÿ  Grammar for 1 
�Ÿ  stmtlist à stmt | stmt stmtlist 
�  stmt à assign | if-then | … 
�  assign à ident “:=“ ident binop ident 
�  binop à “+” | “-” | …   

�Ÿ  Grammar for 2 
�Ÿ  stmtlist à stmt “;” | stmt”;” stmtlist 
�  stmt à assign | if-then | … 
�  assign à ident “=“ ident binop ident 
�  binop à “+” | “-” | …   

Parse Trees 
         Example 

1.  a := b + c  
2.  a = b + c; 

  

stmt 

stmtlist 

ident 

assign 

a 

ident “:=“ binop 

c b 

ident 

“+” 

stmt 

stmtlist 

ident 

assign 

a 

ident “=“ binop 

c b 

ident 

“+” 

“;” 

Parse Tree for 1 Parse Tree for 2 
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AST 

       Example 
1.  a := b + c  
2.  a = b + c; 

  

Abstract syntax tree for 1 and 2 
     
             

 assign 

a add 

b c 

Intermediate to High level 

•  Given 
–  Source code 
–  AST 
–  Symbol table 

•  One can construct 
–  Call graphs  
–  Control flow graph 
–  Data flow 
–  Slices 
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Control Flow Analysis (CF) 

Procedure AVG 
S1   count = 0 
S2   fread(fptr, n) 
S3   while (not EOF) do 
S4      if (n < 0) 
S5         return (error) 
        else 
S6         nums[count] = n 
S7         count ++ 
        endif 
S8      fread(fptr, n) 
       endwhile 
S9   avg = mean(nums,count) 
S10  return(avg) 
 

S1 

S2 

S3 

S4 

S5 S6 

S7 

S8 

S9 

S10 

entry 

exit 

F 

T 

F 

T 

Computing Control Flow 

•  Basic blocks can be identified in the AST 
•  Basic blocks are straight line sequence of 

statements with no branches in or out. 
•  A basic block may or may not be “maximal” 
•  For compiler optimizations, maximal basic blocks 

are desirable 
•  For software engineering tasks, basic blocks that 

represent one source code statement are often used 
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Computing Control Flow  

Procedure AVG 
S1   count = 0 
S2   fread(fptr, n) 
S3   while (not EOF) do 
S4      if (n < 0) 
S5         return (error) 
        else 
S6         nums[count] = n 
S7         count ++ 
        endif 
S8      fread(fptr, n) 
       endwhile 
S9   avg = mean(nums,count) 
S10  return(avg) 
 

S1 

S2 

S3 

S4 

S5 S6 

S7 

S8 

S9 

S10 

entry 

exit 

F 

T 

F 

T 

Procedure Trivial 
S1   read (n) 
S2    switch (n) 
       case 1: 
S3       write (“one”) 
         break 
       case 2: 
S4       write (“two”) 
       case 3: 
S5       write (“three”) 
         break 
       default 
S6       write (“Other”) 
      endswitch 
end Trivial 

S1 

S2 

S3 S4 S5 S6 

entry 

exit 

Computing Control Flow  
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Procedure Trivial 
S1   read (n) 
S2    switch (n) 
       case 1: 
S3       write (“one”) 
         break 
       case 2: 
S4       write (“two”) 
       case 3: 
S5       write (“three”) 
         break 
       default 
S6       write (“Other”) 
      endswitch 
end Trivial 

S1 

S2 

S3 S4 S5 S6 

entry 

exit 

Computing Control Flow  

Control Flow Graph 

•  A control flow graph CFG = (N, E) is a 
directed graph 

•  N = {n1,n2,…nk} is a finite set of nodes 
(basic blocks of a program) 

•  E = {(ni, nj) | ni, nj N & the flow of control 
goes from ni to nj} 
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Dominators 

•  Given a Control Flow Graph (CFG) with nodes 
D and N:  

–  D dominates N if every path from the initial node to N 
goes through D 

 
•  Properties of dominance: 

1.  Every node dominates itself 
2.  Initial node dominates all others 

Dominators - example 
1 

2 

3 

4 

5 6 

7 

8 

9 10 

CFG Node Dominates 
1 1,2,…,10 
2 2 
3 3,4,5,6,7,8,9,10 
4 4,5,6,7,8,9,10 
5 5 
6 6 
7 7,8,9,10 
8 8,9,10 
9 9 
10 10 



10 

Dominator Trees 

•  In a dominator tree 
– The initial node n is the root of the Control 

Flow Graph  
– The parent of a node n is its immediate 

dominator (i.e., the last dominator of n on any 
path); the immediate dominator for n is unique 

Dominators - dominator tree example 

CFG 1 

2 3 

4 

5 6 7 

8 

9 10 

Dominator 
Tree 

1 

2 

3 

4 

5 6 

7 

8 

9 10 
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Post-Dominators   

•  Given a Control Flow Graph with nodes 
PD and N: 

–  PD post dominates N if every path from N to 
the final nodes goes through PD 

  

Post-Dominators - Example 

Node Postdominates 
1 -- 
2 -- 
3 -- 
4 -- 
5 -- 
6 2,4,5 
7 1,2,3,4,5,6 

CFG 
1 

2 3 

4 5 

6 

7 
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Post Dominators - Dominator Tree 

•  In a post dominator tree 

– The initial node n is the exit node of the 
Control Flow Graph  

– The parent of a node n is its immediate post 
dominator (i.e., the first post dominator of n on 
any path); the immediate post dominator for n 
is unique 

Post Dominators - Dominator Tree 
Example 

Post dominator 
Tree 1 

2 3 

4 5 

6 

7 

CFG 

7 

2 

3 

4 5 

6 1 
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Finding Loops 

•  We’ll consider what are known as natural loops 
–  Single entry node (header) that dominates all other nodes in 

the loop 
–  The nodes in the loop form a strongly connected component, 

that is, from every node there is at least one path back to the 
header   

–  There is a way to iterate - there is a back                           
edge (n,d) whose target node d (called the                                 
head) dominates its source node n (called the tail) 

•  If two back edges have the same target, then all nodes 
in the loop sets for these edges are in the same loop 

d 

n 

head 

tail 

1 

2 

3 

4 

5 6 

7 

8 

9 10 

CFG 

Loops - Example 

Which edges are back edges? 

4 → 3 
7 → 4 
10 → 7 
9 → 1 
8 → 3 
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Construction of loops 

1.  Find dominators in Control Flow Graph  
2.  Find back edges 
3.  Traverse back edge in reverse execution 

direction until the target of the back edge is 
reached; all nodes encountered during this 
traversal form the loop.  The result is all nodes 
that can reach the source of the edge without 
going through the target 

Back Edge Loop Induced 

4 à 3 {3,4,5,6,7,8,10} 

7 à 4 {4,5,6,7,8,10} 

10 à 7 {7,8,10} 

8 à 3 {3,4,5,6,7,8,10} 

9 à 1 {1,2,…,10} 

1 

2 

3 

4 

5 6 

7 

8 

9 10 

CFG 

Loops - Example 
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Applications of Control Flow  

•  Complexity   
– Cyclomatic (McCabe’s) - Indication of number 

of test case needed; indication of difficulty of 
maintaining 

•  Testing   
–  branch, path, basis path 

•  Program understanding   
–  program structure and flow is explicit 

Data Flow Analysis 
•  Data-flow analysis provides information for 

compiling and SE tasks by computing the flow of 
different types of data to points in the program 

•  For structured programs, data-flow analysis can be 
performed on an AST 

•  In general, intra-procedural (global) data-flow 
analysis performed on the Control Flow Graph  

•  Exact solutions to most problems are undecidable 
–  May depend on input 
–  May depend on outcome of a conditional statement 
–  May depend on termination of loop 

•  We compute approximations to the exact solution 
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Applications of Data Flow Analysis 

Software Engineering Tasks 
•  Data-flow testing 

–  suppose that a statement assigns a value but the use of that value is 
never executed under test 

–  need definition-use pairs (du-pairs):  associations between 
definitions and uses of the same variable or memory location  

a=c+10 

d=a+y “a” not used on 
this path 

Applications of Data Flow Analysis 

Software Engineering Tasks 
•  Debugging 

–  suppose that a has the incorrect value in the statement 

–  need data dependence information:  statements that can affect the 
incorrect value at this point   

a=c+y 
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•  Compute the flow of data to points 
in the program - e.g., 
–  Where does the assignment to I in 

statement 1 reach? 
–  Where does the expression computed 

in statement 2 reach? 
–  Which uses of variable J are reachable 

from the end of B1? 
–  Is the value of variable I live after 

statement 3? 
•  Interesting points before and after 

basic blocks or statements 

1.  I := 2 
2.  J := I + 1 

3.  I := 1 

4.  J := J + 1 

5.  J := J - 4 

B1 

B2 

B3 

B4 

Data Flow Problems – Reaching 
Definitions 

Data Flow Problems – Reaching 
Definitions 

•  A definition of a variable or memory 
location is a point or statement where 
that variable gets a value - e.g., input 
statement, assignment statement. 

•  A definition of A reaches a point p if 
there exists a control-flow path in the 
CFG from the definition to p with no 
other definitions of A on the path (called 
a definition-clear path) 

•  Such a path may exist in the graph but 
may not be executable (i.e., there may be 
no input to the program that will cause it 
to be executed); such a path is infeasible.  

1.  I := 2 
2.  J := I + 1 

3.  I := 1 

4.  J := J + 1 

5.  J := J - 4 

B1 

B2 

B3 

B4 
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•  A use of a variable or memory location 
is a point or statement where that 
variable is referenced but not changed - 
e.g., used in a computation, used in a 
conditional, output 

•  Use of A is reachable from a point p if 
there exists a control-flow path in the 
CFG from the p to the use with no 
definitions of A on the path 

•  Reachable uses also called upwards 
exposed uses  

1.  I := 2 
2.  J := I + 1 

3.  I := 1 

4.  J := 1 + J 

5.  J := J - 4 

B1 

B2 

B3 

B4 

Data Flow Problems – Reachable Uses 

•  Definitions? 
–  I:   1, 3 
–  J:   2, 4, 5 

•  Uses? 
–  I:   2, 4 
–  J:   4, 5 

•  Reachable Uses? 
–  I from 1: 2 
–  I from 3: 4 
–  J from 2: 4 
–  J from 4: 4, 5 
–  J from 5: 

1.  I := 2 
2.  J := I + 1 

3.  I := 1 

4.  J := I + J 

5.  J := J - 4 

B1 

B2 

B3 

B4 

Data Flow Problems – Reachable Uses 
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DU-Chains, UD-chains, Webs 

•  A definition-use chain or DU-chain for a 
definition D of variable v connects the D to 
all uses of v that it can reach 

•  A use-definition chain or UD-chain for a 
use U of variable v connects U to all 
definitions of v that reach it 

•  A web for a variable is the maximal union 
of intersecting DU-chains 

Data-Dependence 

•  A data-dependence graph has one node for every basic block and 
one edge representing the flow of data between the two nodes 

•  X is data dependent on Y iff there exists a variable v such that: 
–  Y has a definition of v and  
–  X has a use of v and 
–  There exists a control path from Y to X along which v is not redefined 

•  Different types of data dependence edges can be defined 
–  Flow:  def to use (most common) 
–  Anti:  use to def 
–  Out: def to def  
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Data (flow) Dependence Graph 
entry 

Z > 1 

X = 1 
Z > 2 

Y = X + 1 

X = 2 

Z = X – 3 
X = 4 

Z = X + 7 

exit 

B1 

B3 

B2 

B6 

B5 

B4 

entry 

Z > 1 

X = 1 
Z > 2 

Y = X + 1 

X = 2 

Z = X – 3 
X = 4 

Z = X + 7 

exit 

B1 

B3 

B2 

B6 

B5 

B4 

Control Dependence 

•  A statement S1 is control dependent on a statement 
S2 if the outcome of S2 determines whether S1 is 
reached in the CFG 

�Ÿ  We define control dependence for language 
constructs 

�Ÿ  Control dependencies can be derived for arbitrary 
control flow using the concept of post dominator of 
conditional instructions 
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Definitions 

if Y then B1 else B2; 
�Ÿ X is control dependent on Y iff X is in B1 or 

B2 
 

while Y do B; 
�Ÿ X is control dependent on Y iff X is in B 

Program-Dependence Graph 

•  A program dependence graph (PDG) for a 
program P is the combination of the control-
dependence graph for P and the data-
dependence graph for P 

•  Redundant code analysis 
•  I/O relation analysis 
•  Program slicing 
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Compute a PDG 
1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.   write (product) 

Identify control 
dependencies via CFG 
and conditionals 
 
Identify data 
dependencies via 
definition/uses 
 

Computing a PDG  
1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.   write (product) 

6,7,8 are control 
dependent on 5 
 
DU-Chains: 
(1,5) 
(2,5), (2,6), (2,7), 
(2,8), (8,5), (8,6), 
(8,7), (8,8) 
(3,6), (3,9), (6,6), 
(6,6), (6,9) 
(4,7), (4,10), (7,7), 
(7,10) 
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PDG 
Control 
Data 1,2,3,4 

5 

9,10 6,7,8 

Program Slicing (Weiser 82) 

•  A program slice consists of the parts of a program that 
(potentially) affect the values computed at some point of interest, 
referred to as a slicing criterion  

•  Typically, a slicing criterion consists of a pair (line-number; 
variable).  

•  The parts of a program which have a direct or indirect effect on 
the values computed at a slicing criterion C are called the 
program slice with respect to criterion C 

•  A program slice is computed from the program dependency 
graph 

•  The task of computing program slices is called program slicing 
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Program Slicing Research 

Types of slices 
•  Backward static slice 
•  Executable slice 
•  Forward static slice 
•  Dynamic slice 
•  Execution slice 
•  Generic algorithm for static 

slice 
Levels of slices 
•  Intraprocedural 
•  Interprocedural 

1.  Agrawal 
2.  Binkley 
3.  Gallagher 
4.  Gupta 
5.  Horgan 
6.  Horwitz 
7.  Korel 
8.  Laski 
9.  K. Ottenstein 
10.  L. Ottenstein 
11.  Reps  
12.  Soffa 
13.  Tip 
14.  Weiser  

•  A backward slice of a program  with respect 
to a program point p and set of program 
variables V consists of all statements and 
predicates in the program that may affect 
the value of variables in V at p 

•  The program point p and the variables V  
together form the slicing criterion, usually 
written <p, V> 

Static Backward Slicing 
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Static Backward Slicing - Example 

1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.  write (product) 

Criterion <9, product> 

Static Backward Slicing - Example 

1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.  write (product) 

Criterion <9, product> 
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•  A slice is executable if the statements in the 
slice form a syntactically correct program 
that can be executed.   

 
•  If the slice is computed correctly (safely), 

the results of running the program that is the 
executable slice produces the same result 
for variables in V at p for all inputs.   

Executable Slicing 

1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.   write (product) 

Criterion <9, product> 
1.   read (n) 
2.   i := 1 
3.     
4.   product := 1 
5.   while i <= n do 
6.     
7.       product := product * i 
8.       i := i + 1 
9.     
10.  write (product) 

Executable Slicing - Example 
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•  A forward slice of a program with respect to a 
program point p and set of program variables V 
consists of all statements and predicates in the 
program that may be affected by the value of 
variables in V at p 

•  The program point p and the variables V  together 
form the slicing criterion, usually written <p, V> 

Static Forward Slicing 

1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.  write (product) 

Static Forward Slicing - Example 

Criterion <3, sum> 
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1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.  write (product) 

Static Forward Slicing - Example 

Criterion <3, sum> 

1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.  write (product) 

Static Forward Slicing - Example 

Criterion <1, n> 
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1.   read (n) 
2.   i := 1 
3.   sum := 0 
4.   product := 1 
5.   while i <= n do 
6.       sum := sum + i 
7.       product := product * i 
8.       i := i + 1 
9.   write (sum) 
10.  write (product) 

Static Forward Slicing - Example 

Criterion <1, n> 

• A dynamic slice of a program with respect to an 
input value of a variable v at a program point p for 
a particular execution e of the program is the set of 
all statements in the program that affect the value 
of v at p.   

• The program point p, the variables V, and the input 
i for e form the slicing criterion, usually written   
<i, v, p>.  The slicing uses the execution history or 
trajectory for the program with input i. 

Dynamic Slicing 
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1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Dynamic Slicing - Example 

•  Input n is 1; c1, c2 both 
true 

•  Execution  history is 
 11, 21, 31, 41, 51, 61, 91, 
22, 101 

 

•  Criterion<1, 101, z> 

1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Dynamic Slicing - Example 

•  Input n is 1; c1, c2 both 
true 

•  Execution  history is 
 11, 21, 31, 41, 51, 61, 91, 
22, 101 

 

•  Criterion<1, 101, z> 
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1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Dynamic Slicing - Example 

 
 

 
 

1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Static slice <10, z> 

1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Dynamic Slicing - Example 

•  Input n is 2; c1, c2 false 
on first iteration and 
true on second iteration 

•  Execution  history is 
 11, 21, 31, 41, 91, 22, 32, 
42, 51, 61, 92, 23, 101> 

 

•  Criterion<1, 101, z> 
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1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Dynamic Slicing - Example 

•  Input n is 2; c1, c2 false 
on first iteration and 
true on second iteration 

•  Execution  history is 
 11, 21, 31, 41, 91, 22, 32, 
42, 51, 61, 92, 23, 101> 

 

•  Criterion<1, 101, z> 

1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Dynamic Slicing - Example 

1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Static slice <10, z> 
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•  An execution slice of a program  with 
respect to an input value of a variable v is 
the set of statements in the program that are 
executed with input v. 

Execution Slicing 

1.   read (n) 
2.   for I := 1 to n do 
3.      a := 2 
4.       if c1 then 
5.           if c2 then 
6.               a := 4 
7.           else 
8.               a := 6 
9.           z := a 
10.    write (z) 

Execution Slicing - Example 

•  Input n is 2; c1, c2 false 
on first iteration and 
true on second iteration 

•  Execution  history is 
 11, 21, 31, 41, 91, 22, 32, 
42, 51, 61, 92, 23, 101> 

 

•  Execution slice is 
 1, 2, 3, 4, 5, 6, 9, 10 
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