
1

Static Program Analysis

Automated Static Analysis

•  Static analyzers are software tools for source text
processing

•  They parse the program text and try to discover
potentially erroneous conditions and bring these
to the attention of the V & V team

•  Very effective as an aid to inspections.
•  A supplement to but not a replacement for

inspections

2

Types of Static Analysis Checks
Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used
between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

Static Models of the Source Code
•  Low level

–  Source code text
•  Intermediate level

–  Symbol table
–  Parse tree

•  High level
–  Control flow
–  Data flow
–  Program Dependency Graph

•  Design Level
–  Class diagram
–  Sequence diagram

3

Intermediate

representation

Starting Point for Static Analysis

Parsing, lexical
analysis

Source

program
Code

generation,
optimization

Target
code

Code
execution

Intermediate

representation

• Analyze intermediate
 representation, perform additional
 analysis on the results
• Use this information for the
 applications

Intermediate Representation

•  Parse (derivation) Tree & Symbol Table
•  Concrete Parse Tree

– Concrete (derivation) tree shows structure and
is language-specific issues

– Parse tree represents concrete syntax
•  Abstract Syntax Tree/Graph (AST)/(ASG)

– Abstract Syntax Tree shows only structure
– Represents abstract syntax

4

AST vs Parse Tree

 Example
1.  a := b + c

2.  a = b + c;

�Ÿ  Grammar for 1
�Ÿ  stmtlist à stmt | stmt stmtlist
�  stmt à assign | if-then | …
�  assign à ident “:=“ ident binop ident
�  binop à “+” | “-” | …

�Ÿ  Grammar for 2
�Ÿ  stmtlist à stmt “;” | stmt”;” stmtlist
�  stmt à assign | if-then | …
�  assign à ident “=“ ident binop ident
�  binop à “+” | “-” | …

Parse Trees
 Example

1.  a := b + c
2.  a = b + c;

stmt

stmtlist

ident

assign

a

ident “:=“ binop

c b

ident

“+”

stmt

stmtlist

ident

assign

a

ident “=“ binop

c b

ident

“+”

“;”

Parse Tree for 1 Parse Tree for 2

5

AST

 Example
1.  a := b + c
2.  a = b + c;

Abstract syntax tree for 1 and 2

 assign

a add

b c

Intermediate to High level

•  Given
–  Source code
–  AST
–  Symbol table

•  One can construct
–  Call graphs
–  Control flow graph
–  Data flow
–  Slices

6

Control Flow Analysis (CF)

Procedure AVG
S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)
 else
S6 nums[count] = n
S7 count ++
 endif
S8 fread(fptr, n)
 endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Computing Control Flow

•  Basic blocks can be identified in the AST
•  Basic blocks are straight line sequence of

statements with no branches in or out.
•  A basic block may or may not be “maximal”
•  For compiler optimizations, maximal basic blocks

are desirable
•  For software engineering tasks, basic blocks that

represent one source code statement are often used

7

Computing Control Flow

Procedure AVG
S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)
 else
S6 nums[count] = n
S7 count ++
 endif
S8 fread(fptr, n)
 endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure Trivial
S1 read (n)
S2 switch (n)
 case 1:
S3 write (“one”)
 break
 case 2:
S4 write (“two”)
 case 3:
S5 write (“three”)
 break
 default
S6 write (“Other”)
 endswitch
end Trivial

S1

S2

S3 S4 S5 S6

entry

exit

Computing Control Flow

8

Procedure Trivial
S1 read (n)
S2 switch (n)
 case 1:
S3 write (“one”)
 break
 case 2:
S4 write (“two”)
 case 3:
S5 write (“three”)
 break
 default
S6 write (“Other”)
 endswitch
end Trivial

S1

S2

S3 S4 S5 S6

entry

exit

Computing Control Flow

Control Flow Graph

•  A control flow graph CFG = (N, E) is a
directed graph

•  N = {n1,n2,…nk} is a finite set of nodes
(basic blocks of a program)

•  E = {(ni, nj) | ni, nj N & the flow of control
goes from ni to nj}

9

Dominators

•  Given a Control Flow Graph (CFG) with nodes
D and N:

–  D dominates N if every path from the initial node to N
goes through D

•  Properties of dominance:

1.  Every node dominates itself
2.  Initial node dominates all others

Dominators - example
1

2

3

4

5 6

7

8

9 10

CFG Node Dominates
1 1,2,…,10
2 2
3 3,4,5,6,7,8,9,10
4 4,5,6,7,8,9,10
5 5
6 6
7 7,8,9,10
8 8,9,10
9 9
10 10

10

Dominator Trees

•  In a dominator tree
– The initial node n is the root of the Control

Flow Graph
– The parent of a node n is its immediate

dominator (i.e., the last dominator of n on any
path); the immediate dominator for n is unique

Dominators - dominator tree example

CFG 1

2 3

4

5 6 7

8

9 10

Dominator
Tree

1

2

3

4

5 6

7

8

9 10

11

Post-Dominators

•  Given a Control Flow Graph with nodes
PD and N:

–  PD post dominates N if every path from N to
the final nodes goes through PD

Post-Dominators - Example

Node Postdominates
1 --
2 --
3 --
4 --
5 --
6 2,4,5
7 1,2,3,4,5,6

CFG
1

2 3

4 5

6

7

12

Post Dominators - Dominator Tree

•  In a post dominator tree

– The initial node n is the exit node of the
Control Flow Graph

– The parent of a node n is its immediate post
dominator (i.e., the first post dominator of n on
any path); the immediate post dominator for n
is unique

Post Dominators - Dominator Tree
Example

Post dominator
Tree 1

2 3

4 5

6

7

CFG

7

2

3

4 5

6 1

13

Finding Loops

•  We’ll consider what are known as natural loops
–  Single entry node (header) that dominates all other nodes in

the loop
–  The nodes in the loop form a strongly connected component,

that is, from every node there is at least one path back to the
header

–  There is a way to iterate - there is a back
edge (n,d) whose target node d (called the
head) dominates its source node n (called the tail)

•  If two back edges have the same target, then all nodes
in the loop sets for these edges are in the same loop

d

n

head

tail

1

2

3

4

5 6

7

8

9 10

CFG

Loops - Example

Which edges are back edges?

4 → 3
7 → 4
10 → 7
9 → 1
8 → 3

14

Construction of loops

1.  Find dominators in Control Flow Graph
2.  Find back edges
3.  Traverse back edge in reverse execution

direction until the target of the back edge is
reached; all nodes encountered during this
traversal form the loop. The result is all nodes
that can reach the source of the edge without
going through the target

Back Edge Loop Induced

4 à 3 {3,4,5,6,7,8,10}

7 à 4 {4,5,6,7,8,10}

10 à 7 {7,8,10}

8 à 3 {3,4,5,6,7,8,10}

9 à 1 {1,2,…,10}

1

2

3

4

5 6

7

8

9 10

CFG

Loops - Example

15

Applications of Control Flow

•  Complexity
– Cyclomatic (McCabe’s) - Indication of number

of test case needed; indication of difficulty of
maintaining

•  Testing
–  branch, path, basis path

•  Program understanding
–  program structure and flow is explicit

Data Flow Analysis
•  Data-flow analysis provides information for

compiling and SE tasks by computing the flow of
different types of data to points in the program

•  For structured programs, data-flow analysis can be
performed on an AST

•  In general, intra-procedural (global) data-flow
analysis performed on the Control Flow Graph

•  Exact solutions to most problems are undecidable
–  May depend on input
–  May depend on outcome of a conditional statement
–  May depend on termination of loop

•  We compute approximations to the exact solution

16

Applications of Data Flow Analysis

Software Engineering Tasks
•  Data-flow testing

–  suppose that a statement assigns a value but the use of that value is
never executed under test

–  need definition-use pairs (du-pairs): associations between
definitions and uses of the same variable or memory location

a=c+10

d=a+y “a” not used on
this path

Applications of Data Flow Analysis

Software Engineering Tasks
•  Debugging

–  suppose that a has the incorrect value in the statement

–  need data dependence information: statements that can affect the
incorrect value at this point

a=c+y

17

•  Compute the flow of data to points
in the program - e.g.,
–  Where does the assignment to I in

statement 1 reach?
–  Where does the expression computed

in statement 2 reach?
–  Which uses of variable J are reachable

from the end of B1?
–  Is the value of variable I live after

statement 3?
•  Interesting points before and after

basic blocks or statements

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Data Flow Problems – Reaching
Definitions

Data Flow Problems – Reaching
Definitions

•  A definition of a variable or memory
location is a point or statement where
that variable gets a value - e.g., input
statement, assignment statement.

•  A definition of A reaches a point p if
there exists a control-flow path in the
CFG from the definition to p with no
other definitions of A on the path (called
a definition-clear path)

•  Such a path may exist in the graph but
may not be executable (i.e., there may be
no input to the program that will cause it
to be executed); such a path is infeasible.

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

18

•  A use of a variable or memory location
is a point or statement where that
variable is referenced but not changed -
e.g., used in a computation, used in a
conditional, output

•  Use of A is reachable from a point p if
there exists a control-flow path in the
CFG from the p to the use with no
definitions of A on the path

•  Reachable uses also called upwards
exposed uses

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Data Flow Problems – Reachable Uses

•  Definitions?
–  I: 1, 3
–  J: 2, 4, 5

•  Uses?
–  I: 2, 4
–  J: 4, 5

•  Reachable Uses?
–  I from 1: 2
–  I from 3: 4
–  J from 2: 4
–  J from 4: 4, 5
–  J from 5:

1. I := 2
2. J := I + 1

3. I := 1

4. J := I + J

5. J := J - 4

B1

B2

B3

B4

Data Flow Problems – Reachable Uses

19

DU-Chains, UD-chains, Webs

•  A definition-use chain or DU-chain for a
definition D of variable v connects the D to
all uses of v that it can reach

•  A use-definition chain or UD-chain for a
use U of variable v connects U to all
definitions of v that reach it

•  A web for a variable is the maximal union
of intersecting DU-chains

Data-Dependence

•  A data-dependence graph has one node for every basic block and
one edge representing the flow of data between the two nodes

•  X is data dependent on Y iff there exists a variable v such that:
–  Y has a definition of v and
–  X has a use of v and
–  There exists a control path from Y to X along which v is not redefined

•  Different types of data dependence edges can be defined
–  Flow: def to use (most common)
–  Anti: use to def
–  Out: def to def

20

Data (flow) Dependence Graph
entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

Control Dependence

•  A statement S1 is control dependent on a statement
S2 if the outcome of S2 determines whether S1 is
reached in the CFG

�Ÿ  We define control dependence for language
constructs

�Ÿ  Control dependencies can be derived for arbitrary
control flow using the concept of post dominator of
conditional instructions

21

Definitions

if Y then B1 else B2;
�Ÿ X is control dependent on Y iff X is in B1 or

B2

while Y do B;
�Ÿ X is control dependent on Y iff X is in B

Program-Dependence Graph

•  A program dependence graph (PDG) for a
program P is the combination of the control-
dependence graph for P and the data-
dependence graph for P

•  Redundant code analysis
•  I/O relation analysis
•  Program slicing

22

Compute a PDG
1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.   write (product)

Identify control
dependencies via CFG
and conditionals

Identify data
dependencies via
definition/uses

Computing a PDG
1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.   write (product)

6,7,8 are control
dependent on 5

DU-Chains:
(1,5)
(2,5), (2,6), (2,7),
(2,8), (8,5), (8,6),
(8,7), (8,8)
(3,6), (3,9), (6,6),
(6,6), (6,9)
(4,7), (4,10), (7,7),
(7,10)

23

PDG
Control
Data 1,2,3,4

5

9,10 6,7,8

Program Slicing (Weiser 82)

•  A program slice consists of the parts of a program that
(potentially) affect the values computed at some point of interest,
referred to as a slicing criterion

•  Typically, a slicing criterion consists of a pair (line-number;
variable).

•  The parts of a program which have a direct or indirect effect on
the values computed at a slicing criterion C are called the
program slice with respect to criterion C

•  A program slice is computed from the program dependency
graph

•  The task of computing program slices is called program slicing

24

Program Slicing Research

Types of slices
•  Backward static slice
•  Executable slice
•  Forward static slice
•  Dynamic slice
•  Execution slice
•  Generic algorithm for static

slice
Levels of slices
•  Intraprocedural
•  Interprocedural

1.  Agrawal
2.  Binkley
3.  Gallagher
4.  Gupta
5.  Horgan
6.  Horwitz
7.  Korel
8.  Laski
9.  K. Ottenstein
10.  L. Ottenstein
11.  Reps
12.  Soffa
13.  Tip
14.  Weiser

•  A backward slice of a program with respect
to a program point p and set of program
variables V consists of all statements and
predicates in the program that may affect
the value of variables in V at p

•  The program point p and the variables V
together form the slicing criterion, usually
written <p, V>

Static Backward Slicing

25

Static Backward Slicing - Example

1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.  write (product)

Criterion <9, product>

Static Backward Slicing - Example

1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.  write (product)

Criterion <9, product>

26

•  A slice is executable if the statements in the
slice form a syntactically correct program
that can be executed.

•  If the slice is computed correctly (safely),

the results of running the program that is the
executable slice produces the same result
for variables in V at p for all inputs.

Executable Slicing

1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.   write (product)

Criterion <9, product>
1.   read (n)
2.   i := 1
3.  
4.   product := 1
5.   while i <= n do
6.  
7.   product := product * i
8.   i := i + 1
9.  
10.  write (product)

Executable Slicing - Example

27

•  A forward slice of a program with respect to a
program point p and set of program variables V
consists of all statements and predicates in the
program that may be affected by the value of
variables in V at p

•  The program point p and the variables V together
form the slicing criterion, usually written <p, V>

Static Forward Slicing

1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.  write (product)

Static Forward Slicing - Example

Criterion <3, sum>

28

1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.  write (product)

Static Forward Slicing - Example

Criterion <3, sum>

1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.  write (product)

Static Forward Slicing - Example

Criterion <1, n>

29

1.   read (n)
2.   i := 1
3.   sum := 0
4.   product := 1
5.   while i <= n do
6.   sum := sum + i
7.   product := product * i
8.   i := i + 1
9.   write (sum)
10.  write (product)

Static Forward Slicing - Example

Criterion <1, n>

• A dynamic slice of a program with respect to an
input value of a variable v at a program point p for
a particular execution e of the program is the set of
all statements in the program that affect the value
of v at p.

• The program point p, the variables V, and the input
i for e form the slicing criterion, usually written
<i, v, p>. The slicing uses the execution history or
trajectory for the program with input i.

Dynamic Slicing

30

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Dynamic Slicing - Example

•  Input n is 1; c1, c2 both
true

•  Execution history is
 11, 21, 31, 41, 51, 61, 91,
22, 101

•  Criterion<1, 101, z>

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Dynamic Slicing - Example

•  Input n is 1; c1, c2 both
true

•  Execution history is
 11, 21, 31, 41, 51, 61, 91,
22, 101

•  Criterion<1, 101, z>

31

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Dynamic Slicing - Example

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Static slice <10, z>

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Dynamic Slicing - Example

•  Input n is 2; c1, c2 false
on first iteration and
true on second iteration

•  Execution history is
 11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

•  Criterion<1, 101, z>

32

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Dynamic Slicing - Example

•  Input n is 2; c1, c2 false
on first iteration and
true on second iteration

•  Execution history is
 11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

•  Criterion<1, 101, z>

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Dynamic Slicing - Example

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Static slice <10, z>

33

•  An execution slice of a program with
respect to an input value of a variable v is
the set of statements in the program that are
executed with input v.

Execution Slicing

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Execution Slicing - Example

•  Input n is 2; c1, c2 false
on first iteration and
true on second iteration

•  Execution history is
 11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

•  Execution slice is
 1, 2, 3, 4, 5, 6, 9, 10

34

1.   read (n)
2.   for I := 1 to n do
3.   a := 2
4.   if c1 then
5.   if c2 then
6.   a := 4
7.   else
8.   a := 6
9.   z := a
10.   write (z)

Execution Slicing - Example

•  Input n is 2; c1, c2 false
on first iteration and
true on second iteration

•  Execution history is
 11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

•  Execution slice is
 1, 2, 3, 4, 5, 6, 9, 10

