
4/2/13

1

Software Testing

Software Testing

•  Error: mistake made by the programmer/
developer

•  Fault: a incorrect piece of code/document (i.e.,
bug)

•  Failure: result of a fault

•  Goal of software testing: Cause failures to
uncover faults and errors

•  Develop tests
•  Execute tests

4/2/13

2

Quality & Testing

•  Software Quality Assurance (SQA)
– Evaluations to be performed
– Audits and reviews
– Standards
– Procedures for error tacking/reporting
– Documentation to be produced
– Feedback

•  Verification and Validation
–  Independent group (NASA IV&V)

•  Verification: The software should
conform to its specification (Are we
building the product right?)

•  Validation: The software should do what
the user really requires (Are we building
the right product?)

Verification & Validation (V&V)

4/2/13

3

V & V Goals

• Verification and validation should establish
confidence that the software is fit for its
purpose

• This does NOT mean completely free of
defects

• Rather, it must be good enough for its
intended use and the type of use will
determine the degree of confidence that is
needed

“Classical” lifecycle model

•  Requirements Phase
•  Specification Phase (Analysis)
•  Planning Phase
•  Design Phase
•  Implementation Phase
•  Integration and Testing
•  Maintenance
•  Retirement

4/2/13

4

Cost to fix faults

Cost

Definition Development Post Release

1*

1.5* to 6*

60* to 100*

•  Is a whole life-cycle process - V & V must
be applied at each stage in the software
process.

•  Has two principal objectives
–  The discovery of defects in a system
–  The assessment of whether or not the

system is usable in an operational situation.

The V & V process

4/2/13

5

Sequential model
Requirements
Testing/Verify

Integration
Testing/Verify

Operations
Mode

Specification
Testing/Verify

Planning
Testing/Verify

Design
Testing/Verify

Implementation
Testing/Verify

Maintenance

•  Software inspections and walkthroughs
- Concerned with analysis of the static
system representation to discover
problems (static verification)

•  Software testing - Concerned with
exercising and observing product
behaviour (dynamic verification)
–  The system is executed with test data

and its operational behaviour is observed

Static and dynamic verification

4/2/13

6

Static and Dynamic V&V

Formal
specification

High-level
design

Requirements
specification

Detailed
design Program

Prototype Dynamic
validation

Static
verification

•  Careful planning is required to get the most out
of testing and inspection processes

•  Planning should start early in the development
process

•  The plan should identify the balance between
static verification and testing

•  Test planning is about defining standards for
the testing process rather than describing
product tests

V & V planning

4/2/13

7

The V-model of development

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

Software Test Plan

•  The testing process
•  Requirements traceability
•  Tested items
•  Testing schedule
•  Test recording procedures
•  Hardware and software requirements
•  Constraints

4/2/13

8

Walkthroughs

•  Informal examination of a product (document)
•  Made up of:

–  developers
–  client
–  next phase developers
–  Software Quality Assurance group leader

•  Produces:
–  list of items not understood
–  list of items thought to be incorrect

Software Inspections

•  Involve people examining the source
representation with the aim of discovering
anomalies and defects

•  Do not require execution of a system so may be
used before implementation

•  May be applied to any representation of the
system (requirements, design, test data, etc.)

•  Very effective technique for discovering errors

4/2/13

9

Inspection Process
•  Overview - of the document is made
•  Preparation - participants understand the product in

detail
•  Inspection - a complete walk through is made, covering

every branch of the product. Fault finding is done
•  Rework - faults are fixed
•  Follow - up check fixed faults. If more than say 5% of

product is reworked then a complete inspection is done
again.

•  Statistics are kept: fault density

Inspection Success

•  Many different defects may be discovered
in a single inspection. In testing, one
defect may mask another so several
executions are required

•  The reuse domain and programming
knowledge so reviewers are likely to have
seen the types of error that commonly
arise

4/2/13

10

Inspections and Testing

•  Inspections and testing are complementary and
not opposing verification techniques

•  Both should be used during the V & V process
•  Inspections can check conformance with a

specification but not conformance with the
customer’s real requirements

•  Inspections cannot check non-functional
characteristics such as performance, usability,
etc.

Program Inspections

•  Formalized approach to document
reviews

•  Intended explicitly for defect DETECTION
(not correction)

•  Defects may be logical errors, anomalies
in the code that might indicate an
erroneous condition (e.g. an un-initialised
variable) or non-compliance with
standards

4/2/13

11

Inspection Pre-conditions

•  A precise specification must be available
•  Team members must be familiar with the

organisation standards
•  Syntactically correct code must be available
•  An error checklist should be prepared
•  Management must accept that inspection will

increase costs early in the software process
•  Management must not use inspections for

staff appraisal

Inspection Procedure

•  System overview presented to inspection team
•  Code and associated documents are

distributed to inspection team in advance
•  Inspection takes place and discovered errors

are noted
•  Modifications are made to repair discovered

errors
•  Re-inspection may or may not be required

4/2/13

12

Inspection Teams

•  Made up of at least 4 members
•  Author of the code being inspected
•  Inspector who finds errors, omissions and

inconsistencies
•  Reader who reads the code to the team
•  Moderator who chairs the meeting and notes

discovered errors
•  Other roles are Scribe and Chief moderator

Inspection Checklists

•  Checklist of common errors should be used to
drive the inspection

•  Error checklist is programming language
dependent

•  The 'weaker' the type checking, the larger the
checklist

•  Examples: Initialization, Constant naming, loop
termination, array bounds, etc.

4/2/13

13

Inspection Rate

•  500 statements/hour during overview
•  125 source statement/hour during individual

preparation
•  90-125 statements/hour can be inspected
•  Inspection is therefore an expensive process
•  Inspecting 500 lines costs about 40 man/hours

effort (@ $50/hr = $2000!!!)

•  Can reveal the presence of errors NOT their
absence

•  A successful test is a test which discovers one
or more errors

•  The only validation technique for non-functional
requirements

•  Should be used in conjunction with static
verification to provide full V&V coverage

Program Testing

4/2/13

14

Execution Based Testing

“Program testing can be a very effective

way to show the presents of bugs but is
hopelessly inadequate for showing their
absence”

[Dijkstra]

Behavioral Properties
•  Correctness - does it satisfy its output

specification?
•  Utility - are the user’s needs met
•  Reliability - frequency of the product failure.

–  How long to repair it?
–  How lone to repair results of failure?

•  Robustness - How crash proof in an alien
environment?
–  Does it inform the user what is wrong?

•  Performance - response time, memory usage,
run time, etc.

4/2/13

15

•  Defect testing and debugging are distinct
processes

•  Verification and validation is concerned with
establishing the existence of defects in a
program

•  Debugging is concerned with locating and
repairing these errors

•  Debugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error

Testing and Debugging

The Debugging Process

Locate
error

Design
error repair

Repair
error

Re-test
program

Test
results Specification Test

cases

4/2/13

16

Testing Phases

Component
testing

Integration
testing

Software developer Independent testing team

Testing Phases

•  Component testing
–  Testing of individual program components
–  Usually the responsibility of the component developer

(except sometimes for critical systems)
–  Tests are derived from the developer’s experience

•  Integration testing
–  Testing of groups of components integrated to create a

system or sub-system
–  The responsibility of an independent testing team
–  Tests are based on a system specification

4/2/13

17

•  Only exhaustive testing can show a program is
free from defects. However, exhaustive testing
is impossible

•  Tests should exercise a system's capabilities
rather than its components

•  Testing old capabilities is more important than
testing new capabilities

•  Testing typical situations is more important than
boundary value cases

Testing Priorities

•  Test data Inputs which have been
devised to test the system

•  Test cases Inputs to test the system and
the predicted outputs from these inputs if
the system operates according to its
specification

Test Data and Test Cases

4/2/13

18

Development of test cases

•  Test cases and test scenarios comprise much
of a software systems testware.

•  Black box test cases are developed by
domain analysis and examination of the
system requirements and specification.

•  Glass box test cases are developed by
examining the behavior of the source code.

The Defect Testing Process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

4/2/13

19

Methods of Testing

•  Test to specification:
–  Black box,
–  Data driven
–  Functional testing
–  Code is ignored: only use specification document

to develop test cases
•  Test to code:

–  Glass box/White box
–  Logic driven testing
–  Ignore specification and only examine the code.

Guaranteeing a Program Correct?
•  This is called the Halting Problem (in general)

•  Write a program to test if any given program
is correct. The output is correct or incorrect.

•  Test this program on itself.
•  If output is incorrect, then how do you know

the output is correct?

•  Conundrum, Dilemma, or Contradiction?

4/2/13

20

Black-box Testing

•  An approach to testing where the
program is considered as a ‘black-box’

•  The program test cases are based on the
system specification

•  Test planning can begin early in the
software process

Black-box testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

4/2/13

21

Pairing Down Test Cases

•  Use methods that take advantage of
symmetries, data equivalencies, and
independencies to reduce the number of
necessary test cases.
–  Equivalence Testing
–  Boundary Value Analysis

•  Determine the ranges of working system
•  Develop equivalence classes of test cases
•  Examine the boundaries of these classes

carefully

Equivalence Partitioning

•  Input data and output results often fall into
different classes where all members of a
class are related

•  Each of these classes is an equivalence
partition where the program behaves in
an equivalent way for each class member

•  Test cases should be chosen from each
partition

4/2/13

22

Equivalence Partitioning

System

Outputs

Invalid inputs Valid inputs

•  Partition system inputs and outputs into
“equivalence sets”
–  If input is a 5-digit integer between 10,000 and

99,999, equivalence partitions are < 10,000,
10,000 - 99, 999 and > 10, 000

•  Choose test cases at the boundary of these
sets
–  00000, 09999, 10000, 99999, 10001

Boundary Value Testing

4/2/13

23

Equivalence Partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

Search Routine Specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;"
 Found : in out BOOLEAN; L: in out ELEM_INDEX) ;"
"
Pre-condition"

"-- the array has at least one element"
"T’FIRST <= T’LAST "

Post-condition"
"-- the element is found and is referenced by L"
"(Found and T (L) = Key) "

or "
"-- the element is not in the array"
"(not Found and"

 "not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))"
"

4/2/13

24

•  Inputs which conform to the pre-conditions
•  Inputs where a pre-condition does not hold

•  Inputs where the key element is a member of
the array

•  Inputs where the key element is not a member
of the array

Search Routine - Input Partitions

Testing Guidelines - Sequences

•  Test software with sequences which have
only a single value

•  Use sequences of different sizes in
different tests

•  Derive tests so that the first, middle and
last elements of the sequence are
accessed

•  Test with sequences of zero length

4/2/13

25

Search Routine - Input Partitions

Array Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

Sorting Example

•  Example: sort (lst, n)
–  Sort a list of numbers
–  The list is between 2 and 1000 elements

•  Domains:
–  The list has some item type (of little concern)
–  n is an integer value (sub-range)

•  Equivalence classes;
–  n < 2
–  n > 1000
–  2 <= n <= 1000

4/2/13

26

Sorting Example

•  What do you test?
•  Not all cases of integers
•  Not all cases of positive integers
•  Not all cases between 1 and 1001

•  Highest payoff for detecting faults is to test around
the boundaries of equivalence classes.

•  Test n=1, n=2, n=1000, n=1001, and say n= 10
•  Five tests versus 1000.

•  Sometime called structural testing or glass-box
testing

•  Derivation of test cases according to program
structure

•  Knowledge of the program is used to identify
additional test cases

•  Objective is to exercise all program statements
(not all path combinations)

White-box Testing

4/2/13

27

Types of Structural Testing

•  Statement coverage -
–  Test cases which will execute every statement at least once.
–  Tools exist for help
–  No guarantee that all branches are properly tested. Loop

exit?

•  Branch coverage
–  All branches are tested once

•  Path coverage - Restriction of type of paths:
–  Linear code sequences
–  Definition/Use checking (all definition/use paths)
–  Can locate dead code

White-box testing

Component
code

Test
outputs

Test data

DerivesTests

4/2/13

28

White Box Testing - Binary Search
int search (int key, int [] elemArray)
{
 int bottom = 0;
 int top = elemArray.length - 1;
 int mid;
 int result = -1;
 while (bottom <= top)
 {
 mid = (top + bottom) / 2;
 if (elemArray [mid] == key)
 {
 result = mid;
 return result;
 } // if part
 else
 {
 if (elemArray [mid] < key)
 bottom = mid + 1;

 else
 top = mid - 1;
 }
 } //while loop
 return result;

} // search

•  Pre-conditions satisfied, key element in array
•  Pre-conditions satisfied, key element not in

array
•  Pre-conditions unsatisfied, key element in array
•  Pre-conditions unsatisfied, key element not in array
•  Input array has a single value
•  Input array has an even number of values
•  Input array has an odd number of values

Binary Search Equivalence Partitions

4/2/13

29

Binary Search Equivalence Partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries

Binary Search - Test Cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

4/2/13

30

Path Testing

•  The objective of path testing is to ensure that
the set of test cases is such that each path
through the program is executed at least once

•  The starting point for path testing is a program
flow graph that shows nodes representing
program decisions and arcs representing the
flow of control

•  Statements with conditions are therefore nodes
in the flow graph

•  Describes the program control flow. Each
branch is shown as a separate path and loops
are shown by arrows looping back to the loop
condition node

•  Used as a basis for computing the cyclomatic
complexity

•  Cyclomatic complexity = Number of edges -
Number of nodes +2

Program Flow Graphs

4/2/13

31

•  The number of tests to test all control
statements equals the cyclomatic complexity

•  Cyclomatic complexity equals number of
conditions in a program

•  Useful if used with care. Does not imply
adequacy of testing

•  Although all paths are executed, all
combinations of paths are not executed

Cyclomatic Complexity

1

2

3

4

65

7

while bottom <= top

if (elemArray [mid] == key

(if (elemArray [mid]< key8

9

bottom > top

Binary Search Flow
Graph

4/2/13

32

•  1, 2, 3, 8, 9
•  1, 2, 3, 4, 6, 7, 2
•  1, 2, 3, 4, 5, 7, 2
•  1, 2, 3, 4, 6, 7, 2, 8, 9
•  Test cases should be derived so that

all of these paths are executed
•  A dynamic program analyser may be

used to check that paths have been
executed

Independent Paths

Feasibility

•  Pure black box testing (specification) is
realistically impossible because there are (in
general) too many test cases to consider.

•  Pure testing to code requires a test of every
possible path in a flow chart. This is also (in
general) infeasible. Also every path does not
guarantee correctness.

•  Normally, a combination of Black box and
Glass box testing is done.

4/2/13

33

Integration Testing

•  Tests complete systems or subsystems
composed of integrated components

•  Integration testing should be black-box testing
with tests derived from the specification

•  Main difficulty is localising errors
•  Incremental integration testing reduces this

problem

Incremental integration testing

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence
1

Test sequence
2

Test sequence
3

4/2/13

34

Approaches to Integration Testing

•  Top-down testing
–  Start with high-level system and integrate from the

top-down replacing individual components by stubs
where appropriate

•  Bottom-up testing
–  Integrate individual components in levels until the

complete system is created
•  In practice, most integration involves a

combination of these strategies

Top-down Testing

Level 2Level 2Level 2Level 2

Level 1 Level 1Testing
sequence

Level 2
stubs

Level 3
stubs

. . .

4/2/13

35

Bottom-up Testing

Level NLevel NLevel NLevel NLevel N

Level N–1 Level N–1Level N–1

Testing
sequence

Test
drivers

Test
drivers

Software Testing Metrics

•  Defects rates
•  Errors rates
•  Number of errors
•  Number of errors found per person hours

expended
•  Measured by:

–  Individual, module, during development

•  Errors should be categorized by origin, type,
cost

4/2/13

36

More Metrics

•  Direct measures - cost, effort, LOC, etc.
•  Indirect Measures - functionality, quality,

complexity, reliability, maintainability

•  Size Oriented:
–  Lines of code - LOC
–  Effort - person months
–  errors/KLOC
–  defects/KLOC
–  cost/KLOC

Proofs of Correctness
•  Assertions, preconditions, post conditions, and

invariants are used
•  Assertion – something that is true at a particular

point in the program
•  Pre conditions must be true before something

is executed
•  Post conditions are true after something has

executed
•  Invariants are always true with a give scope

(e.g., construct, loop, ADT)

4/2/13

37

Logical Properties

•  Assertions describe the logical properties
which hold at each statement in a program

•  Assertions can be added to each line to
describe the program

•  Utilize a formal approach (e.g., first order
predicate calculus, Z, etc.)

Example
//PRE: n in {1,2,3…}
int k, s;
int y[n];
k=0;
//ASSERT: k==0
s=0;
//ASSERT: s==0 && k==0
//LOOP INV: (k<=n) && (s==y[0]+y[1]+…+y[k-1])
While (k<n)
{
 //ASSERT: (k<n) && (s==y[0]+y[1]+…+y[k-1])
 s=s+y[k];
 //ASSERT: (k<n) && (s==y[0]+y[1]+…+y[k])
 k=k+1;
 //ASSERT: (k<=n) && (s==y[0]+y[1]+…+y[k-1])
}
//POST: (k==n) && (s==y[0]+y[1]+…+y[n-1])

4/2/13

38

Proving the Program

•  Prove correct based on the loop invariant
•  Use induction

•  Basis:
– Before loop is entered
– k=0 and s=0 therefore
– s=y[0-1]=y[-1]=0
– Also k<=n since n in {1,2,3,…}

Using Induction

•  Inductive Hypothesis
–  Assume for some k>=0,
–  s = y[0]+y[1]+…y[n-2]+y[n-1]
–  when ever n<=k

•  Inductive step show s = y[0]+y[1]+…y[n-2]+y[n-1]
is true for k+1
–  s = y[0]+y[1]+…+y[k+1-2]+y[k+1-1]
–  s = y[0]+y[1]+…+y[k-1]+y[k]
–  s = (y[0]+y[1]+…+y[k-1]) + y[k] Q.E.D

4/2/13

39

Proving can be Problematic
•  Mathematical proofs (as complex and error prone as

coding)
•  Need tool support for theorem proving

•  Leavenworth ‘70 did an informal proof of correctness of
a simple text justification program. (Claims it’s correct!)

•  London ‘71 found four faults, then did a formal proof.
(Claims it’s now correct!)

•  Goodenough and Gerhar ‘75 found three more faults.

•  Testing would have found these errors without much
difficulty

Automated Testing Tools

•  Code analysis tools

•  Static analysis
– No execution

•  Dynamic analysis
– Execution based

4/2/13

40

Static Analysis

•  Code analyzers: syntax, fault prone
•  Structure checker

–  Generates structure graph from the components with
logical flow checked for structural flaws (dead code)

•  Data analyzer – data structure review. Conflicts
in data definitions and usages

•  Sequence checker – checks for proper
sequences of events (open file before modify)

Dynamic Analysis

•  Program monitors record snapshot of the
state of the system and watch program
behaviors

•  List number of times a component is called
(profiler)

•  Path, statement, branch coverage
•  Examine memory and variable information

4/2/13

41

Test Execution Tools
•  Capture and replay

–  Tools capture keystrokes, input and responses while
tests are run

–  Verify fault is fixed by running same test cases
•  Subs and drivers
•  Generate stubs and drivers for integration

testing
–  Set appropriate state variables, simulate key board

input, compare actual to expected
–  Track paths of execution, reset variables to prepare

for next test, interact with other tools

Test Execution Tools

•  Automated testing environments
•  Test case generators

– Structural test case generators based on
source code – path or branch coverage

– Data flow

