
J. Maletic 1

Software Design Patterns

Jonathan I. Maletic, Ph.D.
<SDML>

Department of Computer Science
Kent State University

J. Maletic 2

Background1

•  Search for recurring successful designs –
emergent designs from practice (via trial and
error)

•  Supporting higher levels of reuse (i.e., reuse of
designs) is quite challenging

•  Described in Gama, Helm, Johnson, Vlissides
1995 (i.e., “gang of 4 book”)

•  Based on work by Christopher Alexander (an
Architect) on building homes, buildings and
towns.

J. Maletic 3

Background2

•  Design patterns represent solutions to
problems that arise when developing
software within a particular context, e.g.,
problem/solution pairs within a given
context

•  Describes recurring design structures
•  Describes the context of usage

J. Maletic 4

Background3

•  Patterns capture the static and dynamic
structure and collaboration among key
participants in software designs

•  Especially good for describing how and
why to resolve nonfunctional issues

•  Patterns facilitate reuse of successful
software architectures and designs.

J. Maletic 5

Origins of Design Patterns

“Each pattern describes a problem which occurs
over and over again in our environment and then

describes the core of the solution to that
problem, in such a way that you can use this

solution a million times over, without ever doing
it in the same way twice”

•  Christopher Alexander, A Pattern Language, 1977
•  Context: City Planning and Building architectures

J. Maletic 6

Elements of Design Patterns

•  Design patterns have four essential
elements:
– Pattern name
– Problem
– Solution
– Consequences

J. Maletic 7

Pattern Name

•  A handle used to describe:
– a design problem
–  its solutions
–  its consequences

•  Increases design vocabulary
•  Makes it possible to design at a higher

level of abstraction
•  Enhances communication

“The Hardest part of
programming is coming up
with good variable [function,
and type] names.”
J. Maletic

J. Maletic 8

Problem

•  Describes when to apply the pattern
•  Explains the problem and its context
•  May describe specific design problems

and/or object structures
•  May contain a list of preconditions that

must be met before it makes sense to
apply the pattern

J. Maletic 9

Solution

•  Describes the elements that make up the
– design
–  relationships
–  responsibilities
– collaborations

•  Does not describe specific concrete
implementation

•  Abstract description of design problems
and how the pattern solves it

J. Maletic 10

Consequences

•  Results and trade-offs of applying the pattern
•  Critical for:

–  evaluating design alternatives
–  understanding costs
–  understanding benefits of applying the pattern

•  Includes the impacts of a pattern on a system’s:
–  flexibility
–  extensibility
–  portability

J. Maletic 11

Design Patterns are NOT

•  Designs that can be encoded in classes and
reused as is (i.e., linked lists, hash tables)

•  Complex domain-specific designs (for an entire
application or subsystem)

•  They are:
–  “Descriptions of communicating objects and classes

that are customized to solve a general design
problem in a particular context.”

J. Maletic 12

Where They are Used

•  Object-Oriented programming languages
[and paradigm] are more amenable to
implementing design patterns

•  Procedural languages: need to define
–  Inheritance
– Polymorphism
– Encapsulation

J. Maletic 13

Describing Design Patterns

•  Graphical notation is generally not
sufficient

•  In order to reuse design decisions the
alternatives and trade-offs that led to the
decisions are critical knowledge

•  Concrete examples are also important
•  The history of the why, when, and how set

the stage for the context of usage

J. Maletic 14

Design Patterns

•  Describe a recurring design structure
– Defines a common vocabulary
– Abstracts from concrete designs
–  Identifies classes, collaborations, and

responsibilities
– Describes applicability, trade-offs, and

consequences

J. Maletic 15

Example: Compiler

+Compile()

Compiler

lex Parser

Token

Code Generator

Symbol table

J. Maletic 16

Façade Pattern

•  Intent
– Provide a unified interface to a set of

interfaces in a subsystem.
– Façade defines a higher-level interface that

makes the subsystem easier to use

J. Maletic 17

Structure

+interface()

Facade

Subsystem

J. Maletic 18

Design Pattern Descriptions
•  Name and Classification: Essence of pattern
•  Intent: What it does, its rationale, its context
•  AKA: Other well-known names
•  Motivation: Scenario illustrates a design problem
•  Applicability: Situations where pattern can be applied
•  Structure: Class and interaction diagrams
•  Participants: Objects/classes and their responsibilities
•  Collaborations: How participants collaborate
•  Consequences: Trade-offs and results
•  Implementation: Pitfalls, hints, techniques, etc.
•  Sample Code
•  Known Uses: Examples of pattern in real systems
•  Related Patterns: Closely related patterns

J. Maletic 19

Example: Stock Quote Service
Real time

Market Data
Feed

Stock Quotes

Customer

Customer

Customer Customer

Customer

Observers

J. Maletic 20

Observer Pattern
•  Intent:

–  Define a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically

•  Key forces:
–  There may be many observers
–  Each observer may react differently to the same

notification
–  The subject should be as decoupled as possible from

the observers to allow observers to change
independently of the subject

J. Maletic 21

Structure of Observer Pattern

+notify()
+attach(in Observer)
+detach(in Observer)

Subject

+getState()
-subjectSate
ConcreteSubject

+update()

Observer

+update()

ConcreteObserver

1
*

1

*

return subjectState observerState = subject->getState()

for all observers obs
{
 obs->update()
}

J. Maletic 22

Collaborations in Observer Pattern
S1 : ConcreteSubject obs1 : ConcreteObserver obs2 : ConcreteObserver

setState()

notify()

update()

getState()

update()

getState()

J. Maletic 23

Example: List and Itor

•  Abstract list (array or linked structure)
•  Separate interator that allows sequential

access to the list structure without
exposing the underlying representation

•  Used in STL
•  AKA: Cursor

J. Maletic 24

Iterator Pattern

+createIterator()

Aggregate

+first()
+next()
+isDone()
+currentItem()

Iterator

+createIterator()

ConcreteAggregate

itor : ConcreteIterator

«instance»

{
 ...
 return new ConcreteIterator(this);
 ...
}

Client

J. Maletic 25

Types of Patterns
•  Creational patterns:

–  Deal with initializing and configuring classes and
objects

•  Structural patterns:
–  Deal with decoupling interface and implementation of

classes and objects
–  Composition of classes or objects

•  Behavioral patterns:
–  Deal with dynamic interactions among societies of

classes and objects
–  How they distribute responsibility

J. Maletic 26

Creational Patterns
•  Abstract Factory:

–  Factory for building related objects
•  Builder:

–  Factory for building complex objects incrementally
•  Factory Method:

–  Method in a derived class creates associates
•  Prototype:

–  Factory for cloning new instances from a prototype
•  Singleton:

–  Factory for a singular (sole) instance

J. Maletic 27

Structural Patterns
•  Adapter:

–  Translator adapts a server interface for a client
•  Bridge:

–  Abstraction for binding one of many implementations
•  Composite:

–  Structure for building recursive aggregations
•  Decorator:

–  Decorator extends an object transparently
•  Facade:

–  Simplifies the interface for a subsystem
•  Flyweight:

–  Many fine-grained objects shared efficiently.
•  Proxy:

–  One object approximates another

J. Maletic 28

Behavioral Patterns
•  Chain of Responsibility:

–  Request delegated to the responsible service provider
•  Command:

–  Request is first-class object
•  Iterator:

–  Aggregate elements are accessed sequentially
•  Interpreter:

–  Language interpreter for a small grammar
•  Mediator:

–  Coordinates interactions between its associates
•  Memento:

–  Snapshot captures and restores object states privately

J. Maletic 29

Behavioral Patterns (cont.)
•  Observer:

–  Dependents update automatically when subject changes
•  State:

–  Object whose behavior depends on its state
•  Strategy:

–  Abstraction for selecting one of many algorithms
•  Template Method:

–  Algorithm with some steps supplied by a derived class
•  Visitor:

–  Operations applied to elements of a heterogeneous object
structure

J. Maletic 30

Design Pattern Space
Purpose

Creational Structural Behavioral

Scope Class Factory method Adapter (class) Interpreter
Template method

Object Abstract factory
Builder
Prototype
Singleton

Adapter (object)
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Chain of
responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

J. Maletic 31

Categorization Terms

•  Scope is the domain over which a pattern
applies
– Class Scope: relationships between base

classes and their subclasses (static
semantics)

– Object Scope: relationships between peer
objects

•  Some patterns apply to both scopes.

J. Maletic 32

Class:: Creational

•  Abstracts how objects are instantiated
•  Hides specifics of the creation process
•  May want to delay specifying a class name

explicitly when instantiating an object
•  Just want a specific protocol

J. Maletic 33

Example
•  Use Factory Method to instantiate members in base

classes with objects created by subclasses

•  Abstract Application class: create application-specific
documents conforming to a particular Document type

•  Application instantiates these Document objects by
calling the factory method CreateDocument

•  Method is overridden in classes derived from Application
•  Subclass DrawApplication overrides CreateDocument to

return a DrawDocument object

J. Maletic 34

Factory Method Pattern

Product

+FactoryMethod()
+Operation1()

Creator

ConcreteProduct

+FactoryMethod()

ConcreteCreator«instance»

{
product=FactoryMethod()
}

{
Return new ConcreteProduct()
}

J. Maletic 35

Class:: Structural

•  Use inheritance to compose protocols or code
•  Example:

–  Adapter Pattern: makes one interface (Adaptee’s)
conform to another

–  Gives a uniform abstraction of different interfaces
–  Class Adapter inherits privately from an Adaptee

class
–  Adapter then expresses its interface in terms of the

Adaptee’s.

J. Maletic 36

Adapter Pattern

+request()

target

+specificRequest()

adaptee

+request()

adapter {
specificRequest();
}

Client

J. Maletic 37

Class:: Behavioral
•  Captures how classes cooperate with their

subclasses to satisfy semantics.

Example:
•  Template Method: defines algorithms step by

step.
•  Each step can invoke an abstract method (that

must be defined by the subclass) or a base
method.

•  Subclass must implement specific behavior to
provide required services

J. Maletic 38

Template Method Pattern

+TemplateMethod()
+operation1()
+operation2()

AbstractClass

+operation1()
+operation2()

ConcreteClass

{
 operation1();
 ...
 operation2();

}

J. Maletic 39

Object Scope

•  Object Patterns all apply various forms of
non-recursive object composition.

•  Object Composition: most powerful form of
reuse

•  Reuse of a collection of objects is better
achieved through variations of their
composition, rather than through sub
classing.

J. Maletic 40

Object:: Creational
•  Abstracts how sets of objects are created

Example:
•  Abstract Factory: create “product” objects through generic

interface
–  Subclasses may manufacture specialized versions or compositions of

objects as allowed by this generic interface
•  User Interface Toolkit: 2 types of scroll bars (Motif and Open Look)

–  Don’t want to hard-code specific one; an environment variable decides
•  Class Kit:

–  Encapsulates scroll bar creation (and other UI entities);
–  An abstract factory that abstracts the specific type of scroll bar to

instantiate
–  Subclasses of Kit refine operations in the protocol to return specialized

types of scroll bars.
–  Subclasses MotifKit and OpenLookKit each have scroll bar operation.

J. Maletic 41

Abstract Factory Pattern

+CreateProductA()
+CreateProdcutB()

AbstractFactory

+CreateProductA()
+CreateProdcutB()

ConcreteFactory1

+CreateProductA()
+CreateProdcutB()

ConcreteFactory2

Client

AbstractProductA

ProductA2
ProductA1

AbstractProductB

ProductB2

ProductB1

«instance»

«instance»

«instance»

J. Maletic 42

Object:: Structural
•  Describe ways to assemble objects to realize

new functionality
–  Added flexibility inherent in object composition due to

ability to change composition at run-time
–  not possible with static class composition

•  Example:
–  Proxy: acts as convenient surrogate or placeholder

for another object.
•  Remote Proxy: local representative for object in a different

address space
•  Virtual Proxy: represent large object that should be loaded on

demand
•  Protected Proxy: protect access to the original object

J. Maletic 43

Proxy Pattern

+request()

Subject

+request()

Proxy

+request()

RealSubject
{
 realSubject->request();
 ...
 }

Cllient

J. Maletic 44

Object:: Structural - example

•  Implement ODBC
•  Could be done with an adaptor unless you

need to extend both the interface and
implementation

•  Or if you know the implementation will
change often

•  The implementation class defines what
types of things need to be supported

J. Maletic 45

Pattern Bridge

ODBC ODBC Implementation

DB2 ODBC Driver Oracle ODBC Driver Informix ODBC Driver

1 *

J. Maletic 46

Structure of Bridge

+Operation()

Abstraction

+OperationIMP()

Implementor

Client

+OperationIMP()

ConcreteImplemntor1

+OperationIMP()

ConcreteImplementor2Refined Abstraction

-imp

1

imp->OperationIMP();

J. Maletic 47

Object:: Behavioral
Describes how a group of peer objects cooperate to perform a task that can be

carried out by itself.

Example:
•  Strategy Pattern: objectifies an algorithm (algorithm to first class object)
•  Text Composition Object: support different line breaking algorithms

–  Don’t want to hard-code all algorithms into text composition class/subclasses
–  Simple, TeX, Array, Word, etc.

•  Objectify each and provides them as Compositor subclasses
•  Interface for Compositors defined by an abstract Compositor Class

–  Derived classes provide different layout strategies (simple line breaks, left/right
justification, etc.)

•  Instances of Compositor subclasses couple with text composition at run-
time to provide text layout

•  Whenever text composition has to find line breaks, forwards the
responsibility to its current Compositor object.

J. Maletic 48

Strategy Pattern

+ContextInterface()

Context

+AlgInterface()

Strategy+strat

1 *

+AlgInterface()

ConcreteStrategyA

+AlgInterface()

ConcreteStrategyB

+AlgInterface()

ConcreteStrategyC

{
 ...
 strat->algInterface()
 ...
}

J. Maletic 49

When to Use Patterns
•  Solutions to problems that recur with variations

–  No need for reuse if problem only arises in one context
•  Solutions that require several steps:

–  Not all problems need all steps
–  Patterns can be overkill if solution is a simple linear set of

instructions
•  Solutions where the solver is more interested in the

existence of the solution than its complete derivation
–  Patterns leave out too much to be useful to someone who really

wants to understand
–  They can be a temporary bridge

J. Maletic 50

What Makes it a Pattern?

•  A Pattern must:
– Solve a problem and be useful
– Have a context and can describe where the

solution can be used
– Recur in relevant situations
– Provide sufficient understanding to tailor the

solution
– Have a name and be referenced consistently

J. Maletic 51

Benefits of Design Patterns
•  Design patterns enable large-scale reuse of

software architectures and also help document
systems

•  Patterns explicitly capture expert knowledge and
design tradeoffs and make it more widely
available

•  Patterns help improve developer communication
•  Pattern names form a common vocabulary
•  Patterns help ease the transition to OO

technology

J. Maletic 52

Drawbacks to Design Patterns

•  Patterns do not lead to direct code reuse
•  Patterns are deceptively simple
•  Teams may suffer from pattern overload
•  Patterns are validated by experience and

discussion rather than by automated
testing

•  Integrating patterns into a software
development process is a human-intensive
activity.

J. Maletic 53

Suggestions for Effective Use

•  Do not recast everything as a pattern
–  Instead, develop strategic domain patterns and reuse

existing tactical patterns
•  Institutionalize rewards for developing patterns
•  Directly involve pattern authors with application

developers and domain experts
•  Clearly document when patterns apply and do

not apply
•  Manage expectations carefully.

J. Maletic 54

References

•  Gama, Helm, Johnson, Vlissides, Design
Patterns Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995

•  B. Cheng – Michigan State University

J. Maletic 55

Web Resources

•  http://www.dofactory.com/
•  http://hillside.net/patterns/

