I Know What You Did Last Summer

An Investigation of How Developers Spend Their Time

Roberto Minelli, Andrea Mocci and Michele Lanza
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Developing software is a complex mental activity,
requiring extensive technical knowledge and abstraction capa-
bilities. The tangible part of development is the use of tools to
read, inspect, edit, and manipulate source code, usually through
an IDE (integrated development environment). Common claims
about software development include that program comprehension
takes up half of the time of a developer, or that certain UI
(user interface) paradigms of IDEs offer insufficient support to
developers. Such claims are often based on anecdotal evidence,
throwing up the question of whether they can be corroborated
on more solid grounds.

We present an in-depth analysis of how developers spend their
time, based on a fine-grained IDE interaction dataset consisting
of ca. 740 development sessions by 18 developers, amounting to
200 hours of development time and 5 million of IDE events. We
propose an inference model of development activities to precisely
measure the time spent in editing, navigating and searching for
artifacts, interacting with the UI of the IDE, and performing
corollary activities, such as inspection and debugging. We report
several interesting findings which in part confirm and reinforce
some common claims, but also disconfirm other beliefs about
software development.

I. INTRODUCTION

Software development is a complex activity that requires
both technical knowledge and extensive abstraction capabili-
ties [1]. Even if the outcome of software development is code,
the development process is far from being just code writing
[2]. In fact, software systems are so large and complex [3]
that developers need to build links between the source code
and their mental model (e.g., [4], [5], [6]).

Constructing the mental model is the base for program
comprehension, and has a key role in the development process:
Researchers estimated that it absorbs half of the time of a
developer [7], [8], [9]. Such a claim, however, is mainly based
on anecdotal evidence, throwing up the question of whether it
can be corroborated or confuted on more solid grounds.

While being a fundamental part of software development, it
is unclear how program comprehension is supported by IDEs
(Integrated Development Environments): IDEs offer various
tools and facilities to support the development process, like
(1) Code Editors, (2) Code Browsers, and (3) Debuggers
[10], [11]. None of these components is dedicated to program
comprehension. Instead, comprehension emerges from the
complex interleaving of such activities. Moreover, researchers
discovered that some UI paradigms (e.g., windows- or tabs-
based IDEs) may negatively influence development, hinder-
ing comprehension and generally developer productivity [12].
While this claim is intuitively convincing, there is no quanti-
tative evidence on how much time is spent on simply fiddling
with the UI of an IDE.

While interacting with IDEs, developers generate a large
amount of data [13], [14]. These interactions happen at differ-
ent levels of abstraction: they can be conceptual events, like
adding a method to a class, or low level events like pressing
keys or moving the mouse to navigate between entities. While
researchers believe that this data is valuable [14], [15], most
of these interactions are not captured.

Our aim is to record interaction data and measure the time
effectively devoted to different activities. With this data, we
provide insights on the distribution of development activities
and we quantitatively answer questions like:

1) What is the effective time spent in program comprehen-
sion/understanding? What about the other activities like
editing, inspecting and navigating through code entities?

2) How much time do developers spend in fiddling with the
UI of an IDE?

3) What is the impact of the fragmentation of the develop-
ment flow?

We present an in-depth analysis on how developers spend
their time. We collected fine-grained interaction data using
DFLow [16], our non-intrusive profiler for the PHARO IDE!.
Our dataset consists of 740 development sessions of 18 devel-
opers. DFLOW collected about 200 hours of development time,
amounting to more than 5 million of IDE events. We propose
an inference model of development activities to precisely
measure the time spent in editing, navigating and searching for
artifacts, interacting with the Ul of the IDE, and performing
activities such as inspection and debugging. Among our find-
ings, we discovered that program comprehension absorbs more
time than generally assumed, and that fiddling with the UI of
IDEs can substantially hinder the productivity of developers.
We make the following contributions:

« An in-depth analysis of how developers spend their time;

« An inference model of development activities to precisely
measure the time of different activities;

e A comparison between our findings and the common
claims and beliefs available in the literature;

o A brief presentation of DFLOW, the tool with which we
collect interaction data.

Structure of the Paper: Section II presents our dataset
and the target IDE. In Section III we explain how we make
sense of the data and present the results, and in Section IV
we illustrate our findings. Section V discusses the related work
while Section VI concludes our work.

ISee http://pharo.org

86006

|4 Pharo-screen.image

?

O
Workspace =

* = O DFlow x - 0

@h foobar r{‘|

Start OrderedCollection withAll: #(1 2 3 4)

Collection class>>#withAll: <
v " Collection A —-all--
5 Collections—¢4 * HashedCollec instance creatic
& Collections—¢ ~ Sequenceable = private

¢ initialize
mutexForPicki
randomForPic

x - O
OrderedCollection(Object)
OrderedCollection
OrderedCollection
OrderedCollection
ArdaradCalloction
Proceed

SubscriptOutOfBounds: 5 3
errorSubscriptBounds: =
ensureBoundsFrom:to:

at:

removeAt:

Ninlt -

Restart Into Over Through Full Stack Run to hel Where is?

66

* - O OrderedCollection [4] -

EyeCollectionInspector v

self = L
1 ®

2
3
A v

self removeAt: 5

. o a
& Collections—r ArrayedColl | # “Polymorph-Wi| § systemicon erlj‘ocrsubtscrrxp‘tBounds. tlnfd_ex . ot . . .)
& Collections—¢ ~ CollectionlsEmj & *Tools-Debugg » with: Create an error notification that an improper integer was used as
Collections-P NotFound + with:with: v an index.
- LI P | PRSP, ’r' o] i L B P > < »
SubscriptOut0fBounds signalFor: index
Groups Hierarch) B Class s Commen Collection class >>#withAll: v l 9 /
. ~ EyeCollectionInspector v thisContext OrderedCollection(Object)>
withAll: aCollection L] . = stackTop >errorSubscriptBounds:
"Create a new collection containing all the elements from |z self an OrderedCollection(1 2 3 all temp vars
aCollection." 0 ; 4) index
~ (self new: aCollection size) @ €] 3 v < >
addAll: aCollection;
yourself x -0 Finder ~

size ¥ Search O Regexp Selectors ¥ Packages... All Packages

DefaultFontFamilySize (TextConstants class) =
actualScreenSize (DisplayScreen class)
addColumnResizers (MorphTreeMorph) @
addFontSizeHandle: (HaloMorph)

 ArdNewFontSize: (TaviStvle) v
>
Browse Senders Implementors Versions Inheritance Hierarchy
addColumnResizers —
"add all needed column resizers"
columnResizers := self columnResizerFrames -

#/Workspace % OrderedCollection [4] = Collection class>>_.. #sSubscriptOutOfBoun... @ DFlow + Finder

Fig. 1. The PHARO IDE with: (1) workspace, (2) code browser, (3) inspector, (4) debugger, (5) Finder UL, (6) “spotlight” search, and (7) UI of DFLOW

This paper consists of many assumptions that could be
subject of a critical stance towards them. For this reason, many
sections contain an explicit advocatus diaboli paragraph, that
explicitly illustrates possible objections to the assumptions and
generally threats to validity.

II. INTERACTION DATA

This section introduces the PHARO IDE (II-A), our interac-
tion profiler DFLOW (II-B) and details the dataset (II-C).

A. The Pharo IDE

The target IDE for our study is the PHARO IDE. Figure 1
shows a screenshot of the IDE during a development session.
The PHARO IDE is a window-based environment, as opposed
to a tab-based environment like the Eclipse IDE?. In a window-
based paradigm users interact with different, possibly overlap-
ping, windows to perform development activities. A window is
“active” when it has the focus and is the target of interactions.
The commonly used windows are:

« The Code Browser lets the user navigate through source
code entities (upper part) and edit source code (lower
part). The example in Figure 1.2 displays the source code
of the method #withAll: of Collection class.

« The Workspace lets the user write and run snippets of
code. This window is mainly used to test small snippets of
code on-the-fly. The example in Figure 1.1 initializes an
OrderedCollection from the elements of an array.

« The Inspector allows to browse instances of objects. The
example in Figure 1.3 shows the object resulting from
evaluating the code in Figure 1.1. The lower part of the
Inspector can be used to execute code on the current

2See https://www.eclipse.org

object. In this example self is bound to the object that
is currently being inspected.

o The Debugger is the user interface designed for code
debugging. Figure 1.4 shows the debugger that results
from the execution of the code in the inspector of
Figure 1.3, i.e., the attempt to remove the 5" element in
an array of size 4. The upper part lets the user browse the
call stack, the middle part lets the user read and modify
the source code of the current entity selected in the call
stack, and the lower part is similar to an inspector.

e The Finder UI (see Figure 1.5) and a ‘“‘Spotlight-like”
UI (see Figure 1.6) are the Uls to search for code artifacts.

B. DFlow: An Interaction Profiler

To collect interaction data inside the PHARO IDE we
built DFLOW [16], a non-intrusive interaction profiler for
the PHARO IDE. It offers a minimalistic user interface (see
Figure 1.7) that lets developers start and stop the recording of
a session. When a developer stops the recording, DFLOW asks
for additional (optional) information, such as a brief descrip-
tion of the session and the type, before sending the data to our
server. The session type can be gereral purpose, refactoring,
enhancement, or bug-fixing. DFLOW collects interaction data
of different types and records a timestamp down to millisecond
precision, for each event. Our approach records two different
categories of events: Meta events and Low-level events.

Meta events represent actions, triggered from the developer
inside the IDE, conceptually related to development. Examples
include browsing the source code of a method or adding a
new method to a class. These events contain a pointer to the
program entity involved in the action (e.g., class or method).

Meta events can be classified as:

o Navigation events, used to browse (but not modify) code
entities, like opening a browser to list the methods of a
class or a file to depict its contents;

o Inspection events, that happen when developers inspect
the state of run-time objects (e.g., with the debugger);

o Editing events, that modify source code, like adding a
new class or modifying the code of a method.

Low Level Events are basic Ul events that deal with mouse,

keyboard, or UI manipulation. In particular, DFLOW records:

o Window events are all the events that deal with the
different windows of the PHARO IDE, like opening,
closing, moving or resizing a window;

e Mouse events include all movements, scrolls, and clicks
with the mouse inside the Ul of the IDE. Each event
knows the position of the cursor; in particular, movement
events are specialized when the mouse moves outside the
main PHARO window to other areas of the screen (mouse-
out event) or back inside (mouse-in event);

o Keyboard events represent all the keystrokes in the ses-
sion. Each of this event knows the exact keystroke (or
combination of keystrokes with modifiers like shift) that
has been typed.

Table I details all the different events collected by DFLOW.

TABLE I
EVENTS RECORDED BY DFLOW
Meta Events: Navigation, Inspection, Editing

NE; Opening a Finder Ul
NE2 3.4 Selecting a package, method, or class in the code browser
NEs6 Opening a system browser on a method or a class
NEr Selecting a method in the Finder UI
NEg Starting a search in the Finder UI
I1E, Inspecting an object
1E> Browsing a compiled method
IE3 4 Do-it/Print-it on a piece of code (e.g., workspace)
I1Es56,7 Stepping into/Stepping Over/Proceeding in a debugger
1Eg Run to selection in a debugger
I1FEg 10 Entering/exiting from an active debugger
I1FE11,12 Browsing full stack/stack trace in a debugger
IFE13,14,15 Browsing hierarchy, implementors or senders of a class
IF1¢ Browsing the version control system
I1E 7 Browse versions of a method
EFE 2 Creating/removing a class
EFE3 4 Adding/removing instance variables from a class
EFs5¢6 Adding/removing a method from a class
EE; Automatically creating accessors for a class
User Interface Events
WE 2 Opening/closing a window
WEs Activating a window, i.e., window in focus
WE4s56,7 Resizing/moving/minimize/maximize a window
Mouse & Keyboard Events
ME 2 Mouse button up/down
ME3 4 Scroll wheel up/down
MEs Mouse move
MFEg 7 Mouse-out/in
KE, Keystroke pressed

Previous versions of DFLOW collected only meta events and
window events [16], [17]; with such events only it is not pos-
sible to provide precise estimates of high-level development
activities like code editing and program understanding [18].

Our goal is to provide precise measures of such activities,
thus we enriched DFLOW with the recording of low-level Ul
events like mouse and keyboard events.

Advocatus Diaboli. In this study we considered the PHARO
IDE and the Smalltalk programming language. One may
argue that it is unconventional and not industry standard.
However, in a previous preliminary study we analyzed both
Java and Smalltalk interaction histories and our results were
not showing significant differences in terms of the role of
understanding between the two different environments [18].
Nonetheless, we plan to implement a fine-grained recorder like
DFLOW on at least another IDE to give us confidence about
the generalizability of our results.

C. The Dataset

Table III summarizes our dataset. The first two columns
report anonymized identifiers of the developer with their total
number of sessions collected with DFLOW. We call “session”
a sequence of IDE interactions without “idle periods” longer
than, say, 5 minutes. DFLOW detects when the developer is
away from the keyboard and splits the interactions into mul-
tiple sessions (discarding the idle period). For each developer
we collected: 1) the recording time, 2) the number of low-level
events, 3) the number of meta events, and 4) the number of
windows used during development sessions. Each row in the
table reports values for a single developer. The leftmost part
of the table reports the total values, while the rightmost part
the average values (per session). In the last row (i.e., All) total
values accumulate the values for all developers while average
values are computed using a weighted arithmetic mean across
all developers weighted on the number of sessions.

To invite participants we sent a call on the PHARO-DEV
mailing list*. Eighteen developers, both professionals and
academics, answered the call and helped us in the collection
of their interactions. Participants were not assigned specific
tasks. Instead they have been working on their own personal
projects. They all share a common code base (i.e., the source
code of PHARO) but we have no information on the size
of their own private projects. The dataset features 2 master
students, 9 PhD students, and 7 professionals. We distinguish
3 levels of expertise, i.e., how many years they have been
programming in PHARO. D9 is the only developer that can
be considered a novice. The others are quite familiar with
the PHARO IDE, with an expertise between 1 and 5 years (6
developers) or longer than 5 years (11 developers). Table II
summarizes demographics information.

TABLE II

DEMOGRAPHICS OF DEVELOPERS
Developer Role Expertise (years)
D9 Master Student <1
D14 Master Student 1-5
D1, 2, 10, 15, 16 PhD Student 1-5
D3, 12, 13, 18 PhD Student >5
D4,5,6,7,8, 11, 17 Professional >5

3See http://pharo.org/community

TABLE III

OUR DATASET: 738 DEVELOPMENT SESSIONS, 197 HOURS OF DEVELOPMENT AND MORE THAN 5 MILLION EVENTS

Total Total Low Level Total | Total Average Average Low Level Average | Average
Dev.| #S Rec. Time ME KE| WE All| #Meta| #Win| Rec. Time ME KE| WE All| #Meta| #Win
D1 |407| 89h 21m 46s|1,436,332|104,622|16,402|1,557,356| 80,030 3,966 | 00h 13m 10s| 3,529.07| 257.06| 40.30| 3,826.43| 196.63 9.74
D2 |136] 52h 09m 52s|1,945,028 | 143,852 |33,801(2,122,681| 58,468 | 5,677 00h 23m 01s|14,301.68|1,057.74 | 248.54|15,607.95| 429.91| 41.74
D3 | 76| 28h 50m 44s| 596,928 | 66,717| 9,376| 673,021 | 35,168| 2,080| 00h 22m 46s| 7,854.32| 877.86|123.37| 8,855.54| 462.74| 27.37
D4 | 32| 06h 17m 34s| 129,492| 6,441| 1,426| 137,359| 6,653| 539(00h 11m 48s| 4,046.63| 201.28| 44.56| 4,292.47| 207.91 16.84
D5 | 19] Olh31m 45s| 21,575| 1,709| 344| 23,628 1,087 90| 00h 04m 50s| 1,135.53 89.95| 18.11| 1,243.58| 57.21 4.74
D6 | 14| 04h 20m 26s| 62,857| 8,628 449| 71,934| 4,037 132] 00h 18m 36s| 4,489.79| 616.29| 32.07| 5,138.14| 288.36 9.43
D7 | 11| 04h 13m 54s| 82,294| 9,670| 1,573| 93,537| 3,201 453| 00h 23m 05s| 7,481.27| 879.09|143.00| 8,503.36| 291.00| 41.18
D8 9] Olh 14m 47s 19,550 328 103 19,981 441 34| 00h 08m 19s| 2,172.22| 36.44| 11.44| 2,220.11 49.00 3.78
D9 9] 03h 19m 54s| 26,970 3,194 732| 30,896| 2,120 231| 00h 22m 13s| 2,996.67| 354.89| 81.33| 3,432.89| 235.56| 25.67
D10 8] Olh 03m 33s 14,797 1,232 252 16,281 1,471 67| 00h 07m 57s| 1,849.63| 154.00| 31.50| 2,035.13| 183.88 8.38
DI11| 5| Olh 12m 38s| 33,775| 2,521 283 36,579 3,510 80| O0h 14m 32s| 6,755.00| 504.20| 56.60| 7,315.80| 702.00| 16.00
DI12| 5| 01h 07m 48s| 31,186| 2,554| 321 34,061 1,381 89| 00h 13m 34s| 6,237.20| 510.80| 64.20| 6,812.20| 276.20| 17.80
D13 2| 00h 05m 56s 3,332 273 54 3,659 12 10] 00h 02m 58s| 1,666.00| 136.50| 27.00| 1,829.50 6.00 5.00
D14| 1] 0lh 52m 38s 10,420 551 920 11,891 5,033 182] 01h 52m 38s|10,420.00| 551.00{920.00|11,891.00|5,033.00| 182.00
D15 1] OOh Olm 58s 714 21 11 746 32 51 00h O1m 58s 714.00 21.00| 11.00 746.00 32.00 5.00
D16| 1] 00h 15m 57s 4,741 565 60 5,366 305 20| 00h 15m 57s| 4,741.00| 565.00| 60.00| 5,366.00| 305.00| 20.00
D17 1| OOh 04m 55s 1,347 49 33 1,429 3,423 8] 00h 04m 55s| 1,347.00 49.00| 33.00(1,429.00|3,423.00 8.00
D18 1] OOh 07m 46s 5,197 38 82 5,317 292 28| 00h 07m 46s| 5,197.00 38.00| 82.00| 5,317.00| 292.00 28.00
All |738]|197h 13m 54s| 4,426,535 | 352,965 | 66,222 | 4,845,722 | 206,664 | 13,691 [00h 16m 02s| 5,998.01| 478.27| 89.73| 6,566.02| 280.03| 18.55

Our dataset features 738 sessions amounting to roughly 200
hours of actual development time, i.e., in the table, the total
(and average) recording time column do not include the times-
pans in which the developers were idle (i.e., DFLOW recorded
no interactions with the IDE for more than 5 minutes). The
dataset includes more than 5 million of events (i.e., both low
level and meta). Sessions, on average, last for 16 minutes and
count ca. 7,000 events. DFLOW recorded events for more than
13,000 windows, an average of 18.55 per session.

The total number of low-level mouse and keyboard events
(i.e., mouse and keyboard) is significantly (and not surpris-
ingly) larger with respect to meta events, which begs the
question whether these low-level events are related to meta-
events. For example, sequences of mouse events can be related
to specific entity inspections or navigation, but also with
simple Ul fiddling or adjustment.

There are substantial differences between different devel-
opers. The first 8 developers’ average session time varies
from 4 minutes and 50 seconds to almost 23 minutes and 5
seconds. This pinpoints the differences in their programming
flow: Since recording time is free of idle time, this value is
the “pure” time the developers spent in doing actual work.
A developer with a short session time is a developer whose
development flow is highly fragmented. Among the first eight
developers, D2 and D7 are the developers with the less
fragmented flow: Their sessions last, on average, more than 23
minutes, a duration which is in line with, for example, time
management methods such as the “Pomodoro Technique” of
extreme programming developed by Cirillo [19].

On the other hand, developers like D5 and D8 have a
fragmented flow: They work on average for around 4m 50s
and 8m 19s respectively before having an interruption of at
least 5 minutes. This corroborates the findings of LaToza et
al. who established that developers are frequently interrupted,
and that recovering from the interruptions can be difficult [20].

Observing the distribution of low-level and meta events
per developer we can speculate on how developers use the
IDE. For example, on average D2 triggers more low-level
events with respect to other developers (on average 15,607.95,
more than twice the overall average). An interpretation for
this is that she is constantly fiddling with the UI of the
IDE to better accomodate her needs. Researchers already
pointed out possible problems in dealing with the Uls of IDEs.
For example, Rotlisberger et al. called “window plague” the
problem developers might have while dealing with multiple
windows or tabs [12]. Developer DS, instead, seems to be at
ease with the UI of the IDE, since her number of low-level
events is well below average and, in particular, she has the
lowest average number of window events per session.

The number of meta events can be a rough indicator of
productivity: They represent actions like creating/removing a
class/method, or exploring code artifacts or inspecting objects.
In terms of meta events, D2, D3, and D7 seem to be the most
productive developers, while D5 and DS are the less productive
ones. This correlates with the fact that the development flow
of D5 and D8 is more fragmented than the one of D2 and D3.

Advocatus Diaboli. The dataset is large enough to draw
statistical conclusions. However, it has flaws related to the
distribution of recorded sessions among the developers: More
than half of the sessions come from the same developer and
some developers provided us with only few minutes of interac-
tion data. Since the last fact may influence conclusions about
developer diversity, we will not consider such individuals when
we reason about single developers. We included their values
from completeness, but we grayed them out from all the
tables in this paper. Another argument can be formulated about
the missing purpose (e.g., debugging, refactoring, ex novo
implementation) of sessions. Further investigation is needed
to understand how the purpose of a session and the code base
and project size influence studies like the one we propose.

~_Window Method Search Search Out/In ~_ Window
Active activated saved starts ends in the IDE activated
Windows W1 W2 W3 W2 Wa 7[
v v
i I/ | B | LI l | ﬂllllHlth
\
—_—
Step 1 SRT.>AT "SRT DOI
sprees Il | L L L | [<||||>|||;||‘H||4’
\ t
Step2 MS1 KS1 KS2 KSs MS2 KSa MSs MS4 MSs
R N] o PTeT T]] R 1
Activitites ——+— ' - i ' — — L.
AR I L 0 Lol RN I ot
A1 A2 As As As As A7
Events Sprees and Activities Windows
Mouse Keyboard Mouse Keyboard Workspace [Code Browser
B Window M Meta T Activity Finder

Fig. 2. Sprees and Activities from Fine-Grained Interaction Histories

III. MEASURING DEVELOPMENT ACTIVITIES
A. Events, Sprees, and Activities

Interaction histories recorded with DFLOW are composed of
sequences of meta-events and low-level events. Each event has
a timestamp associated to it. Events have virtually no duration,
e.g., a keystroke happens at a certain point in time, and we
record that moment with millisecond precision, but we cannot
precisely measure its duration, i.e., we do not have information
about for how long the user pressed the key. This is however
not a problem, as the point is to group these low-level events
into sequences of higher level events for which it is easy to
measure the precise duration.

Our model uses the concept of reaction time (RT) to
aggregate events. While typing a piece of code, for example, a
developer performs a sequence of keystrokes. These keys are
separated by small pauses, in the range of milliseconds, due to
the physical actions required involved, i.e., pressing keys on a
keyboard. In this time, the developer is focused on the writing
activity per se. When the sequence of keystrokes terminates,
the developers pause, reflecting on the just written piece of
code, and planning the next steps. The reaction time is the
time that elapses between the end of a physical action sequence
(typing, moving the mouse, efc.) and the beginning of concrete
mental processes like reflecting, planning, efc. which represent
the basic moments of program understanding.

We denote the reaction time with R7T and assign the
duration of 1 second to it. This duration, known also as
“Psychological Refractory Period” [21] varies among humans,
also depending on the task at hand, between 0.15 and 1.5
seconds. This might appear as a threat to validity, but as
iterating through all possible values in that range did not affect
our findings, we settled on the 1 second compromise, which
is a conservative choice.

Our inference model uses the reaction time to group low-
level events into higher-level abstractions: mouse (or keyboard)
sprees and development activities.

Mouse/Keyboard Sprees. A spree is a sequence of
mouse/keyboard events where each subsequent pair of events
satisfy the following temporal and conceptual constraints:

« The time difference between their timestamps is smaller

than the reaction time RT'.

o They are performed on the same window of the IDE.

« Between them there is no trigger event, i.e., a meta event
which conceptually breaks a spree. Examples include
adding or editing a method, navigating in the code
browser (see Figure 1.2), or inspecting an object.

o At most one of its events should conceptually initiate a
new spree or terminate the current one, e.g., the keyboard
shortcut <Shift-cr> that triggers a search action in
the PHARO IDE should initiate a spree while the mouse
moving outside the IDE terminates the current spree.

Development Activities. An activity is a sequence of
mouse/keyboard sprees satisfying a number of constraints. We
identify three kinds of activities:

o Search Activities are all the activities where the user
performs a search inside the IDE (e.g., on the Finder UI,
Figure 1.5).

o Inspection Activities: examining an object by means of
an inspector (see Figure 1.3).

e Browser Activities are all remaining activities after re-
moving both search and inspection activities. They hap-
pen on specialized windows of PHARO, like the code
browser, such as editing and navigation.

In Practice: Figure 2 exemplifies our two-step process to
construct development activities from raw interaction histories.
The timeline on top shows a sample recorded interaction
history, i.e., a sequence of low-level and meta events.

Step 1: From Events to Sprees: The first step towards
the construction of activities is aggregating the events into
mouse and keyboard sprees. At the beginning of the sample
interaction history shown in Figure 2 there is a sequence of
mouse events. We construct a new mouse spree (MS7) by

adding these events until one of the interrupting conditions
is met. In this case, the reaction time is not elapsed (the
difference between the last mouse event and the following
event is smaller than RT'), but there is a window event that
activates a new window. M S, is complete. The next event
in the sequence is a keystroke. We start composing a new
keyboard spree (/{S1). After adding some keystrokes to it, the
reaction time elapses (the difference between the timestamp of
the next event and the last event in the current spree is greater
than RT'), thus we finalize K.S;. The same situation happens
for both K.S5 and K S3. In the case of K S3, however, there is
also a meta event of type F'E5 (see Table I), i.e., the action a
developer performs to either add or edit the method of a class.
We call this a trigger event that we associate to the current
spree, i.e., KS3. MSs, the next mouse spree, is interrupted
due to the expiration of the reaction time. K .S, is a keyboard
spree that starts when the user invokes the action that triggers
the search in the PHARO IDE. Its stopping condition is the
end of the search. The next mouse spree, M Ss is interrupted
because the mouse moves outside the PHARO IDE window.
The time between the end of the spree is marked as DOI
(Duration Outside IDE). The next event, a mouse event in this
case, originates the next mouse spree, M Sy, interrupted due
to the change of the window in focus. The last mouse spree,
instead, is a dense sequence of mouse events with interleaving
window events (not window activations, as they would have
triggered the end of the spree). The timeline in the middle
shows the results of this step: From dozens of low-level events
we generated 5 mouse sprees and 4 keyboard sprees.

Step 2: From Sprees to Activities: The second step is to
aggregate the sprees into high-level development activities.
From the refined interaction history with sprees (i.e., the mid-
dle timeline in Figure 2) our approach extracts, in sequence,
search, inspection, and browsing activities. A spree can be part
of a single activity, thus when we assign sprees to activities
we mark them as already used. A search activity can be
either performed on a Finder UI or triggered by a keyboard
shortcut to start/confirm/abort a “spotlight-like” search (i.e.,
<Shift-cr> to start the search, <cr> to confirm it, or
either a mouse click or the <esc> keystroke to abort it).
In this case, there is a search activity composed of the
single key spree K Sy, triggered by the spree containing the
shortcut <Shift-cr>. Inspect activities are performed on an
inspector or triggered by inspection meta events (see Table I).
In the sample interaction history there are neither inspection
meta events nor inspector windows, thus there are no in-
spection activities. All the remaining sprees are aggregated
into “browser activities”. Starting from the beginning of the
interaction history, M .S; is the first activity. The activity is
interrupted because the next spree is on a different window
due to the window activation at the end of M S;. The next
three keyboard sprees happen on the same window, and thus
they get grouped into a single activity. The following activity
is composed by the single mouse spree M .Sy, because the
next spree, K Sy, is marked as part of another activity, Aj.
M S3, the next mouse spree, creates an activity because there

is an interruption, ie., out of the IDE. The second to last
activity is only composed of the spree M .Sy, because then
there is a window focus change. Finally, the last remaining
spree, M S5, concludes the interaction history and makes up
the last activity. The bottom timeline in Figure 2, shows the
final result: From 9 sprees we end up with 1 search activity
and 6 browser activities.

Our dataset is thus reduced from 5 million of recorded
events to 174,366 sprees and to 31,609 development activities.

B. Decomposing Software Development

We decompose software development into the following
distinct and disjunct categories: understanding, navigation,
editing, and Ul interactions. Moreover, we also track the time
spent outside of the IDE.

Understanding (U) is the time spent in program compre-
hension, that aggregates three main components:

1) The Basic Understanding (BU) is the sum of all the basic
moments of program understanding. It is represented by
all time intervals between sprees which are longer than
the reaction time. Basic understanding can be performed
inside development activities (i.e., intra-activities) and
across subsequent activities (i.e., inter-activities).

e BU;nirq is the Basic Intra-Activity Understanding
Time that is the sum of all the time intervals, longer
than RT', between the sprees composing an activity.

o BU;nter is the Basic Inter-Activity Understanding Time
that is the sum of all the time intervals, longer than RT',
between subsequent activities.

2) Inspection (I) is the time a developer spends in inspection
activities (mostly using inspector windows), computed as
the sum of the duration of all the sprees that have as
trigger an inspection meta event (see Table I).

3) Mouse Drifting (MD) is the time the user “drifts” with
the mouse without clicking. It is computed as the sum of
the duration of the mouse sprees that are only composed
or mouse movements, and no clicks. We also recorded
the screen casts of several of the sessions collected by
DFLOW and discovered that a large part of this time is
absorbed by what we call mouse-supported reading, i.e.,
when a developer uses the mouse as a “pointer” to support
the reading of source code (e.g., M S5 in Figure 2).

Navigation (N) is the time spent in browsing through
software [22]. This time includes both navigation using code
browsers or package explorers and searching for particular
program entities or pieces of code.

1) Browsing (B) is the time the developer spend while
navigating between program entities. It is computed as
the sum of the duration of the sprees that have as trigger
a navigation meta event (see Table I).

2) Searching (S) is the time a user spends in searching
particular program entities such as methods or classes.
This can be achieved using Uls such as the Finder
Ul (see Figure 1.5) or dedicated keyboard shortcuts,
e.g., <Shift-cr> in the PHARO IDE triggers a search

dialog, see Figure 1.6. This time is the sum of the duration
of the sprees happening inside user interfaces that support
search activities. We remove from this time both the user
interactions, mouse drifting, and editing time that might
happen inside search Uls.

Editing (E) is the time that the developer spend editing
source code. This is computed by summing up the duration
of all the sprees that have as trigger an editing meta event
(see Table I). For browsing activities, this definition is refined
depending on the window where the activity is performed. In
a code browser, for example, all the keystroke sprees that have
no trigger for navigation contribute to editing time. Examples
are K51, K59, and K S3 in Figure 2.

User Interface Interaction (UI) is the time explicitly
devoted in fiddling with the UL This includes, for example,
moving or resizing windows to better organize the IDE. It
is computed as the sum of the duration of the mouse sprees
that have interleaving window resize and move events in their
timespan. An example is M S5 in Figure 2.

Time Spent Outside the IDE (OI) is the time that the
developer spend outside the PHARO IDE window. It is com-
puted by summing up all the timespans that elapse between
all activities that terminate with the PHARO IDE losing focus
(e.g., mouse goes outside the main IDE window) and the
beginning of the next activity in the interaction history. It is
denoted as DOI (i.e., Duration Outside the IDE) in Figure 2.

Advocatus Diaboli. We inferred activities starting from
low-level events like keyboard and mouse sprees, and meta-
events from the IDE like saving a method or inspecting
a field of an object. Recording low-level events minimizes
the possibility that we discard relevant events and do not
capture exact duration of activities. However, since we may
not monitor every possible meta event of the IDE (e.g., special
ad-hoc plugins and widgets) we may potentially interpret some
activity in the wrong way. To cope with this threat, we made
sure that all developers used the standard widgets of PHARO
for which our model correctly classifies events and sprees in
the correct class of activities. As future work, we plan to
cross-validate our automated activity extraction with concrete
observations (e.g., think-aloud) to understand to what extent
the extracted activities match the actual activities.

The same applies with basic understanding. In principle, the
fact that small periods of idleness (inter- and intra-activities)
are mapped to program understanding is an explicit assump-
tion that we made, but indeed they could be mini interruptions
unrelated to development, like the programmer checking his
phone. However, the reverse critic could be done to some of
the moments spent outside the IDE. They could be timespans
spent in checking documentation or other development arti-
facts supporting program understanding, that are completely
absent from our model. We still need cross-validation to ensure
that our interpretation is correct, but we believe that the
issues above compensate themselves and do not invalidate our
measurements involving program understanding.

IV. How DEVELOPERS SPEND THEIR TIME

Figure 3 summarizes the average distribution of activities
of the developers and their sessions in our dataset.

Navigation (~4%)

Editing (~5%)

Outside IDE (~8%)

Ul Interactions
(~14%)

Understanding
(~70%)

Fig. 3. How do developers spend their time?

Program understanding is as expected the dominant activity,
but as we see our analysis attributes to it even more importance
than what the common knowledge suggests, reaching a value
of roughly 70%. This is a strong point in favor of the research
done in the field of program comprehension and reverse
engineering. A rather worrisome finding is the time spent in Ul
interactions: roughly 17% of the time is spent in fiddling with
the user interface of the IDE. The relatively small amount of
time spent in editing and navigation (roughly 5% for both of
them) is not surprising. In the case of editing it corroborates
previous research, which established that when it comes to
actual writing of source code the so-called “productivity” of
developers is rather low [13]. This is yet another argument
against measuring productivity with metrics like lines of
code. In the case of navigation it emphasizes the fact that
programming is not only writing, but rather a complex mental
activity where a software system is perceived and navigated
like a graph composed of nodes (i.e., program entities) and
edges (i.e., relationships and dependencies between them), and
not like a flat collection of textual artifacts. Last, the time spent
outside of the IDE, during a session, corroborates the findings
of LaToza et al. [20]: Developers are often exposed to micro-
interruptions of voluntary nature (e.g., emails, instant mes-
sages, social networks notifications). Our dataset establishes
that roughly 10% of the development time is spent on such
interruptions. Table IV presents the detailed results aggregated
per developer. The remainder of this section discusses in
details the dynamics of program understanding, the time spent
outside the IDE, and the impact of Ul, editing, and navigation.

A. Program Understanding

Components of Understanding. The attentive reader has
probably noted that Figure 3 does not include some of the
components described in the previous section, such as inspec-
tion and mouse drifting — even if their contribution is relatively
low, it is not negligible. They have not been elided, instead,
we grouped them as components of program understanding.

TABLE IV
TiIME COMPONENTS AGGREGATED PER DEVELOPER

Understanding

Base Other Navigation Edit (%) | UI (%) | OI (%)
Dev. BUintra (%) BUinter (%) | 1(%) MD (%) | Tot. (%) | B (%) S (%) | Tot. (%)
D1 35.07% 36.37% | 0.25% 2.96% 74.64% | 237% 0.38% 2.75% 3.07% 9.01% | 10.53%
D2 37.41% 6.65% | 3.23% 5.51% 52.79% | 4.81% 1.19% 6.00% 9.76% | 28.51% 2.94%
D3 47.68% 22.22% | 0.87% 3.76% 74.54% | 447% 0.26% 4.73% 544% | 12.21% 3.08%
D4 38.06% 27.86% | 0.53% 3.28% 69.74% | 321% 0.14% 3.35% 375% | 14.13% 9.03%
D5 22.90% 45.67% | 0.07% 1.89% 70.53% | 1.20% 0.00% 1.20% 274% | 1090% | 14.63%
D6 52.85% 23.40% | 0.11% 2.25% 78.61% | 341% 0.05% 3.46% 9.18% 8.76% 0.00%
D7 56.77% 10.70% | 0.07% 2.06% 69.59% | 1.82% 0.00% 1.82% 10.67% | 17.57% 0.35%
D8 45.66% 24.84% | 0.00% 3.60% 74.09% | 2.26% 0.00% 2.26% 1.29% | 11.34% | 11.03%
D9 58.68% 17.93% | 0.73% 0.93% 78.26% | 1.00% 0.09% 1.09% 6.08% | 13.45% 1.12%
D10 36.94% 28.34% | 0.57% 1.96% 67.81% | 541% 0.00% 5.41% 410% | 22.41% 0.28%
D11 39.11% 7.77% | 0.00% 4.27% 51.14% | 5.90% 0.00% 5.90% 6.66% | 11.59% | 24.70%
D12 28.58% 8.25% | 0.00% 4.24% 41.07% | 2.51% 0.00% 2.51% 10.49% | 31.73% | 14.20%
D13 52.97% 15.36% 0.30% 4.67% 73.29% 1.47% 0.00% 1.47% 4.07% 21.16% 0.00%
D14 7.04% 86.76% | 0.07% 0.21% 94.08% | 0.56% 0.00% 0.56% 1.24% 4.13% 0.00%
D15 54.14% 22.58% 0.00% 1.54% 78.26% 1.73% 0.00% 1.73% 2.66% 17.34% 0.00%
D16 64.80% 1.09% | 2.93% 3.47% 72.28% | 1.39% 0.16% 1.54% 10.01% | 15.91% 0.26%
D17 73.74% 3.48% 0.00% 0.85% 78.07% 4.46% 0.00% 4.46% 1.97% 15.50% 0.00%
D18 29.15% 6.71% 0.00% 4.21% 40.06% 4.16% 0.00% 4.16% 1.32% 33.45% 21.01%
Average 37.82% 27.70% | 0.87% 3.46% 69.85% | 3.09% 0.47% 3.56% 490% | 13.81% 7.88%

Inspection is an activity, performed on objects at runtime,
to check their status, and ultimately to understand the dynamic
aspects (i.e., the behavior) of the code. It is essential in
any process involving running code, like debugging. In live
environments like PHARO, inspection can be used to inspect
any runtime object created by running any piece of code, i.e.,
it directly supports the understanding of run-time behavior.

Mouse drifting is another component of program under-
standing that corresponds to mouse movements without any
apparent consequent action. One of the typical examples of
mouse drifting is to support the reading of a piece of code:
Developers support the reading activity by slowly moving the
mouse pointer as a guide to read and understand the code.

There is significant variability of program understanding
among developers. In our dataset, it ranges from 41% for
D12 to 94% for D14; however, in both cases, we do not
have many recorded sessions, so they are probably simply
outliers for specific tasks that require respectively a minimal
or a maximal amount of understanding. In case of D12, most
of the remaining time is actually spent on fiddling with the
UI (around 32%) and being outside the IDE (ca. 14%), which
suggests she is not concentrated on the task at hand.

Inspection also varies between developers: D2, in particular,
spends around 3% of his time in inspecting objects at runtime,
while on average the inspection is below 1%. Similar higher
time spent on inspection can be seen on D16. Higher variety
is present on the usage of mouse drifting. D2 and D12 spend
much of their time fiddling with the mouse.

Our data also provides insights on other mechanics of pro-
gram understanding, and in particular on how understanding
is distributed among activities. On average, basic inter-activity
understanding amounts to 10 percent points more than intra-
activities understanding. It is evident that base understanding
is prevalent inside activities, that is, inside conceptually related

sequences of keyboard or mouse sprees. In other words, the
process of program understanding is not really an activity per-
se, but it is interleaved with other activities like editing. Again,
there is significant variability between developers. The process
of base understanding for D1, for example, is almost equally
divided between intra- and inter-activity understanding. For
D5 and D14, there is significantly more inter-activity under-
standing, which probably means that the activities of these
developers are contiguous, and less affected by interruptions.

B. Time Spent Outside the IDE

Switching the context between the IDE and other appli-
cations (i.e., reading e-mails) impacts the focus, flow, and
productivity of a developer [20], [23]. A developer who spends
time outside the IDE, once back in the IDE, is likely to need
time to “recover”: Her sessions are likely to exhibit more
time spent in program understanding. Another factor that may
impact the duration of understanding time is the number of
such breaks: A session may end up in a “fragmented” state
where the flow is frequently interrupted by context switches
that lead to spending time outside the IDE, and it might have
an impact on the time spent in program understanding. The
number of context switches might also have an impact on the
time spent in fiddling with the UI of the IDE. After a context
switch, it is likely that a developer needs to re-arrange her
environment to “recover” the context inside the IDE. This is
what we call UI time.

To investigate these conjectures, we analyze the correlation
between the time spent outside the IDE (i.e., DOI) and the
duration of understanding for each session. Another correlation
involves the number of times the developer goes outside the
IDE (i.e., OI Events) and the duration of understanding. The
last analysis involves the correlation between the number of
OI Events and the time spent in pure Ul interactions. We use
the Pearson Correlation Coefficient (PCC) to determine the

TABLE V
CORRELATION BETWEEN NUMBER OF IDE EVENTS (OI) AND TIME SPENT OUTSIDE THE IDE (DOI) WITH COMPREHENSION TIME (UNDERSTANDING)

Dev. | Sess. | OI Events Avg. REG p-value HEG p-value
OI Events | OI Events vs. Understanding DOI vs. Understanding

Dl 407 2,101 5.16 072 2.20x10~16 0.66 2.20x10~16
D2 136 989 7.27 0.76 2.20x10~16 040 1.83x 106
D3 76 154 2.03 047 2.27x107° 0.00 9.53x 107!
D4 32 91 2.84 091 7.07x10-13 0.80 2.89 x 10~8
D5 19 36 1.89 0.82 2.09x10°° 0.61 6.03x 103
D7 11 73 6.64 074 9.82x 1073 0.64 3.55 x 1072

linear correlations using the R* tool. Our analyses involve the
704 sessions that have time spent outside the IDE.

Time Spent QOutside the IDE vs. Understanding Time.
The PCC is 0.46 and is thus a weak linear correlation; using
the corresponding statistical test [24], we reject the hypothesis
that values are not correlated at 95% confidence level with the
lowest possible p-value returned by R (2.20 x 10~16).

Number of OI Events vs. Duration of Understanding.
The PCC is 0.63, and the statistical test at confidence level
of 95% is in favor of rejecting the null hypothesis of non-
correlation with a p-value similar to the previous test. Even if
correlation is not causation, these findings are consistent with
the hypothesis that the number of time intervals spent outside
the IDE increases the understanding time.

Number of OI Events vs. Duration of UI Time. The PCC
is 0.65, and the statistical test at confidence level of 95% is in
favor of rejecting the null hypothesis of non-correlation, with
the same p-value. These results support the fact that the more
context switches happen in a session, the more a developer
fiddles with the UI of the IDE to recover her focus.

Table V shows the first two correlation analyses discussed
above for each developer with at least 10 sessions with at least
one time interval spent outside the IDE in a session (i.e., D6 is
not in the table because she has zero OI Events). At first sight,
there is evidence of diverse developer behavior in terms of the
number of time intervals spent outside of the IDE per session,
which varies from a minimum of 2.37 to a maximum of 8.50
intervals per session. Results for correlation are also diverse:
All p-values are very low (i.e., below 4 x 1072) and suggest
rejection of the hypothesis of non correlation. The exception is
D3, for whom the duration of the time spent outside the IDE
is not correlated with the duration of program understanding.
However, there is a mild but significant correlation with the
number of intervals spent outside the IDE. This likely means
that it does not matter how much time she spent outside the
IDE in total, but just the number of times her sessions are
fragmented. D2 shows a similar behavior: she seems more
affected by the number of times she exits the IDE rather than
time spent outside. D4 is also interesting: Her sessions are not
very fragmented; however, she is the developer mostly affected
by the time spent outside the IDE, with strong correlation with
both duration and number of intervals spent outside the IDE.

4See http://www.r-project.org

C. The Impact of the Ul, Navigation, and Editing

Our data shows that on average around 14% of the time
of developers is spent on rearranging the UI of the IDE, that
is, resizing or dragging windows. Different experience may
explain variability when aggregating data per developer. D14,
for example, rearranges windows only for 4% of the time,
while D2 and D12 spend around 30% of their time for this
task. This might indicate that they often end up in chaotic
environments [12] that need to be reordered or restructured.

Our data shows that pure navigation between entities oc-
cupies around 3.6% of the time of developers, and that
browsing occupies most of the time spent in navigation. Only 7
developers used searching. Among the people who use search,
the time spent on these activities low. Presence of editing
activities and editing time is also quite variable: it ranges
from 1.24% for D14 to 10.67% for D7. Moreover, D7 and
D16 correlate their high time spent in editing with very short
time spent outside the IDE, which is probably a sign of highly
focused development sessions.

D. Wrapping Up

Our analysis indicates that the role of program understand-
ing has not been overrated, but on the contrary is has been
significantly underestimated. We believe that our analysis cor-
roborates the importance of research in approaches and tools
that deal with program comprehension and reverse engineer-
ing. This analysis also provides evidence that fragmentation
with time spent outside the IDE influences the time spent on
comprehension. To draw a simplistic conclusion: Developers
should not be interrupted during programming activities. Last,
the non-trivial amount of time spent on fiddling with the UI of
the IDE highlights the need for research on novel user interface
and interaction paradigms for the IDE, a still underexplored
field with some notable exceptions, e.g., [25] [26] [27] [28].

Advocatus Diaboli. The positive correlation is consistent
with the fact that the time outside the IDE influences the total
program understanding time, but obviously the dynamics of
development are complex, and other factors also influence the
duration of program understanding. For example, developer
experience on the task at hand may strongly decrease the
impact of session fragmentation on program understanding.
Moreover, the extent and impact of fragmentation depends
on the specific activity performed outside the IDE — it is
likely that a chat on an unrelated matter or browsing a social
network’s feed may impact more than reading a related STACK
OVERFLOW post.

V. RELATED WORK

The related work can be classified in approaches which
(1) study the role of program understanding, and (2) use
interaction data as the empirical basis for their research.

Role of Program Understanding. Zelkowitz et al. esti-
mated that program comprehension takes more than half the
time spent on maintenance [9]. In turn, maintenance accounts
for 55 to 95% of the total costs of a software system [29],
thus the weight of program comprehension was estimated to
be between 30 to 50%, which is also in the range of the claim
of Fjeldstad and Hamlen, who asserted that comprehension
occupies half of the time of developers [8]. Considering the
processes used by developers to understand source code, Ko et
al. claimed that understanding is also achieved by navigating
source code fragments [15], and that such process occupies
around 35% of the total development time.

Interaction Data. Researchers proposed a number of
approaches and tools to track the way developers work inside
the IDE and leveraged this data for different purposes. Fritz
et al. used data from psycho-physiological sensors to assess
the nominal difficulty of code comprehension tasks [30]. They
combined data coming from an eye-tracker, an electrodermal
activity sensor, and an electroencephalograph to predict task
difficulty. Compared to these approaches, recording IDE events
with DFLOW is less invasive from the point of view of
the developer. FLUORITE is a tool proposed by Yoon and
Myers that records low-level events in the Eclipse IDE [31].
FLUORITE can be used to evaluate existing tools through
the analysis of coding behavior. Robbes and Lanza proposed
SPYWARE, a tool that records semantic changes in real time
[32]. Singer et al. proposed NAVTRACKS, a methodology
backed up with a tool that records navigation histories of
developers and leverages them to support browsing through
software [22]. Kersten et al. proposed MYLAR, an approach
that monitors the programmer activities to identify the program
entities which are more important [13]. Murphy et al. used
the data collected by MYLAR to study how Java developers
use the Eclipse IDE [14], finding that developers use most of
the Eclipse perspectives while developing, and that keyboard
shortcuts are a frequently used alternative to faster reach some
IDE features. Some approaches also tried to automatically
reconstruct activities in development sessions. Coman and
Sillitti collected low-level events and presented a technique to
split sessions into task-related sub-sessions [33]. Researchers
also studied the impact of work fragmentation [34], [35], [23].
Sanchez et al., for example, observed how the productivity
of developers decreases with the increase of the number and
the duration of interruptions in the developer workflow [23].
These finding are consistent with the results of our correlation
study described in Section IV-B. Interaction data has also been
used for change prediction. Kobayashi et al. presented PLOG,
a tool to capture interaction histories inside the Eclipse IDE.
The recorded data was used to devise a prediction model for
change propagation based on interaction histories [36]. Robbes
et al. also performed similar work [37].

Summing up. We found a dichotomy between claims
regarding the importance of program comprehension and the
fact that they are often not backed up by quantitative evidence.
With this paper we close this gap by using fine-grained inter-
action data to validate claims pertaining to the role of program
comprehension in the context of software development.

VI. CONCLUSIONS

We presented an in-depth analysis of how developers spend
their time, based on a corpus of fine-grained IDE interaction
data. We proposed a model that aggregates low-level events
into sprees and those into activities. In the end, 31,609 devel-
opment activities originated from the 5 million events recorded
with DFLOW. We measured the time spent by developers in
5 distinct and disjunct categories: understanding, navigation,
editing, Ul interactions, and time spent outside of the IDE.

Our results reinforce common claims about the role of
program understanding: On average, developers spend 70%
of their time performing program comprehension. In addition,
developers spend 14% of their time in fiddling with the UI
of the IDE, which calls for novel and more efficient user
interfaces. The time spent for editing and navigating source
code is respectively 5% and 4%. The large part of development
is occupied by mental processes (i.e., understanding) and, in
the remaining time, a developer has to deal with inefficient
user interfaces to read, write, and browse source code. We
believe that future IDEs should tackle these problems to enable
developers to focus on the tangible part of development: writ-
ing source code. We also observed that the number of context-
switches (i.e., times the IDE loses focus in a development
session) and their duration, is linearly correlated with both the
understanding time and the time spent in fiddling with the UL
This corroborates results obtained previously by researchers
like LaToza et al. [20]. Finally, the time spent outside of the
IDE (ca. 8%), the frequency of such interruptions, and their
subsequent negative impact on understanding, points out that
developers are exposed probably too often to distractions.

Overall, we believe this paper makes a number of con-
tributions to the state of the art: First, with respect to the
field of program comprehension, it confirms what has long
been an accepted, but never validated, ground truth: program
comprehension is the activity with which developers spend
the vast majority of their time. The motionless staring at the
screen is thus legitimized. Second, it points out that IDEs
are far from perfect when it comes to the way their user
interfaces are built. We believe this calls for research in
novel approaches and metaphors, which so far still represent
a niche research area. Third, it confirms that like many other
modern workers, software developers are exposed to frequent
interruptions with negative consequences. To end on a light
note: When developers stare at their screens without any
movement: Don’t worry, they’re ok, leave them alone.

Acknowledgements. We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for the
project “HI-SEA” (SNF Project No. 146734).

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

R. D. Banker, G. B. Davis, and S. A. Slaughter, “Software development
practices, software complexity, and software maintenance performance:
A field study,” Manage. Sci., vol. 44, no. 4, pp. 433-450, Apr. 1998.
G. Weinberg, The Psychology of Computer Programming, silver anniver-
sary ed. Dorset House, 1998.

M. Lehman, “Laws of software evolution revisited,” in Proceedings of
EWSPT 1996 (5th European Workshop on Software Process Technology).
Springer, 1996, pp. 108-124.

J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination
of software engineering work practices,” in Proceedings of CASCON
1997 (Conference of the Centre for Advanced Studies on Collaborative
Research), 1997, pp. 21-36.

M. Robillard, W. Coelho, and G. Murphy, “How effective developers
investigate source code: an exploratory study,” IEEE TSE 2004 (Trans-
actions on Software Engineering), vol. 30, no. 12, pp. 889-903, 2004.
T. Frey, M. Gelhausen, and G. Saake, “Categorization of concerns: A cat-
egorical program comprehension model,” in Proceedings of PLATEAU
2011 (3"¢ Workshop on Evaluation and Usability of Programming
Languages and Tools). ACM, 2011, pp. 73-82.

T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294-306, 1989.

R. K. Fjeldstad and W. T. Hamlen, “Application Program Maintenance
Study: Report to Our Respondents,” in Tutorial on Software Mainte-
nance, G. Parikh and N. Zvegintzov, Eds. IEEE, 1982, pp. 13-30.
M. Zelkowitz, A. Shaw, and J. Gannon, Principles of software engineer-
ing and design. Prentice Hall, 1979.

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers drive
software evolution,” in Proceedings of INPSE 2005 (8" International
Workshop on Principles on Software Evolution). 1EEE, 2005, pp. 113—
122.

O. Greevy, T. Girba, and S. Ducasse, “How developers develop features,”
in Proceedings of CSMR 2007 (11*" European Conference on Software
Maintenance and Reengineering). 1EEE, 2007, pp. 265-274.

D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves:
Curing the window plague in IDEs,” in Proceedings of WCRE 2009
(16" Working Conference on Reverse Engineering), 2009, pp. 237-
246.

M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proceedings of AOSD 2005 (4" International Conference on
Aspect-Oriented Software Development). 1EEE, 2005, pp. 159-168.
G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76-83, 2006.

A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks,” IEEE TSE 2006 (Transactions on Software
Engineering), vol. 32, no. 12, pp. 971-987, 2006.

R. Minelli and M. Lanza, “Visualizing the workflow of developers,”
in Proceedings of VISSOFT 2013 (1st IEEE Working Conference on
Software Visualization), 2013, pp. 1-4.

R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing developer
interactions,” in Proceedings of VISSOFT 2014 (2nd IEEE Working
Conference on Software Visualization), 2014, pp. 147-156.

R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying
program comprehension with interaction data,” in Proceedings of QSIC
2014 (14th International Conference on Quality Software), 2014, pp.
276-285.

F. Cirillo, The Pomodoro Technique. FC Garage, 2013.

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

Repositories).

T. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of ICSE 2006 (28th
ACM International Conference on Software Engineering). ACM/IEEE,
2006, pp. 492-501.

S. Pinker, How the Mind Works. W. W. Norton, 1997.

J. Singer, R. Elves, and M. Storey, “Navtracks: supporting navigation
in software maintenance,” in Proceedings of ICSM 2005 (215t Interna-
tional Conference on Software Maintenance). 1EEE, 2005, pp. 325-334.
H. Sanchez, R. Robbes, and V. M. Gonzalez, “An empirical study
of work fragmentation in software evolution tasks,” in Proceedings
of SANER 2015 (22™¢ IEEE International Conference on Software
Analysis, Evolution, and Reengineering). 1EEE, 2015, pp. 251-260.
M. Triola, Elementary Statistics, 10th ed. Addison-Wesley, 2006.

A. Bragdon, S. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. LaViola, “Code bubbles: rethinking
the user interface paradigm of integrated development environments,” in
Proceedings of ICSE 2010 (32™% International Conference on Software
Engineering). ACM/IEEE, 2010, pp. 455-464.

R. DeLine and K. Rowan, “Code canvas: Zooming towards better
development environments,” in Proceedings of ICSE 2010 (32"% In-
ternational Conference on Software Engineering) — ERA. ACM/IEEE,
2010.

F. Olivero, “Object-focused environments revisited,” Ph.D. dissertation,
University of Lugano, Switzerland, Apr. 2013.

F. Olivero, M. Lanza, M. D’ Ambros, and R. Robbes, “Enabling program
comprehension through a visual object-focused development environ-
ment,” in Proceedings of VL/HCC ’11 (IEEE Symposium on Visual
Languages and Human-Centric Computing), 2011, pp. 127-134.

L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Profes-
sional, vol. 2, no. 3, pp. 17-23, May 2000.

T. Fritz, A. Begel, S. C. Miiller, S. Yigit-Elliott, and M. Ziiger, “Using
psycho-physiological measures to assess task difficulty in software
development,” in Proceedings of ICSE 2014 (36" International Con-
ference on Software Engineering). ACM/IEEE, 2014.

Y. Yoon and B. A. Myers, “Capturing and analyzing low-level events
from the code editor,” in Proceedings of PLATEAU 2011 (3"% Workshop
on Evaluation and Usability of Programming Languages and Tools).
ACM, 2011, pp. 25-30.

R. Robbes and M. Lanza, “Spyware: A change-aware development
toolset,” in Proceedings of ICSE 2008 (30th ACM/IEEE International
Conference in Software Engineering). ACM/IEEE, 2008, pp. 847-850.
I. Coman and A. Sillitti, “Automated identification of tasks in devel-
opment sessions,” in Proceedings of ICPC 2008 (16*" International
Conference on Program Comprehension). 1EEE, 2008, pp. 212-217.
L. Zou and M. Godfrey, “An industrial case study of program artifacts
viewed during maintenance tasks,” in Proceedings of WCRE 2006 (13t
Working Conference on Reverse Engineering), 2006, pp. 71-82.

A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of ICSE 2007 (2974
International Conference on Software Engineering). 1EEE Computer
Society, 2007.

T. Kobayashi, N. Kato, and K. Agusa, “Interaction histories mining for
software change guide,” in Proceedings of RSSE 2012 (3"¢ International
Workshop on Recommendation Systems for Software Engineering), 2012,
pp. 73-77.

R. Robbes, D. Pollet, and M. Lanza, “Replaying ide interactions to
evaluate and improve change prediction approaches,” in Proceedings
of MSR 2010 (7th IEEE Working Conference on Mining Software
IEEE CS Press, 2010, pp. 161 — 170.

