
Analyzing the Evolution of the Source Code Vocabulary

Surafel Lemma Abebe1, Sonia Haiduc2, Andrian Marcus2, Paolo Tonella1, Giuliano Antoniol3

1FBK-irst
38050 Povo, Trento, Italy

2Dept. of Computer Science
Wayne State University

Detroit, MI, USA

3Dépt. de Génie Informatique
École Polyt. de Montréal

Montréal, Quebec, Canada
surafel@fbk.eu; sonja@wayne.edu; amarcus@wayne.edu; tonella@fbk.eu; antoniol@ieee.org

Abstract
Source code is a mixed software artifact, containing

information for both the compiler and the developers.
While programming language grammar dictates how
the source code is written, developers have a lot of
freedom in writing identifiers and comments. These
are intentional in nature and become means of
communication between developers.

The goal of this paper is to analyze how the source
code vocabulary changes during evolution, through an
exploratory study of two software systems.
Specifically, we collected data to answer a set of
questions about the vocabulary evolution, such as:
How does the size of the source code vocabulary
evolve over time? What do most frequent terms refer
to? Are new identifiers introducing new terms? Are
there terms shared between different types of
identifiers and comments? Are new and deleted terms
in a type of identifiers mirrored in other types of
identifiers or in comments?

1. Introduction
Source code is often the main software artifact used

by developers during maintenance. It helps developers
understand how the system works and what it does.
The identifiers and the comments are the elements of
the source code that give clues about the semantics and
intent of source code entities (i.e., what is their
purpose).

The vocabulary of a software system is composed
of all the words (or terms) used in constructing
identifiers and writing comments or other documents.
The importance of identifiers and comments in the
source code have been recognized by previous research
[2, 6-8, 11, 20, 21] Hardly any work addressed the
evolution of the source code vocabulary and the
findings so far are that “the evolution of the [software]
lexicon is more limited and constrained than the
evolution of the [software] structure” [3]. The goal of
this work is to give a more detailed view of source

code vocabulary evolution and expose facts about this
process that were not previously studied. Specifically,
we define the source code vocabulary as a union of
smaller entities, i.e., the identifiers vocabulary and the
comments vocabulary. We study the evolution of each
vocabulary with respect to each other and with respect
to the system size.

The paper reports on an observational case study
[1], which provides answers to four research questions:

RQ1: How does the size of the source code
vocabulary evolve over time? In answering this
question we investigated the relationship between the
size of the vocabulary (i.e., the number of all, new, and
deleted terms) and the size of the source code.

RQ2: What are the relationships between
individual vocabularies that form the source code
vocabulary? We analyzed the commonalities between
each vocabulary and whether the new and deleted
terms are shared among them. The goal was to assess
how individual vocabularies contribute to the overall
evolution of the source code vocabulary.

RQ3: Are new identifiers introducing new terms?
As individual vocabularies are not created the same
way, we studied how the identifier vocabulary reflects
the growth of the source code vocabulary.

RQ4: What do the most frequent terms refer to?
Developers rarely have constraints in choosing what
they should reflect in comments or identifiers (e.g.,
domain concepts, design decisions, solution outlines,
etc.). We analyzed the most frequent terms in each
vocabulary and established how many are from the
problem domain.

The main contribution of the paper is the
knowledge we derived from the case study, which
provides new insights into how the source code
vocabulary evolves. Our long term objective is to
develop tools that support developers managing and
evolving the source code vocabulary in a consistent
way, in order to make the vocabulary knowledge
explicit and available to the other developers.

2009 European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.61

185

European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.61

189

2. Case Study
In order to answer the four research questions, we

designed an exploratory case study, following the
guidelines described in [22]. Case studies are a type of
empirical studies used also in software engineering,
along with experiments, surveys, etc. [16]. They use
primarily qualitative analysis to understand complex
phenomena or test theories and are typically used when
“how”, “why”, “what”, etc. questions are being posed
[22]. Case studies are particularly preferred over
experiments in complex, real-life settings where there
is little control over the variables.

In our case study, we analyzed the history of two
open-source systems and we measured many attributes
of the considered vocabularies. This section reports
the most interesting findings, but it does not contain all
the measurements and statistics we computed. The
complete results are available in [1].

2.1. Objects of the study
The two software systems analyzed in our case

study are ALICE (http://aliceinfo.cern.ch/) and
WinMerge (http://www.winmerge.org/), both medium-
sized software systems written in C++.

ALICE is an open-source software that provides
functionalities for particle simulation and trajectory
reconstruction and analysis, developed by the
European Organization for Nuclear Research (CERN).
The development of ALICE is being carried out in a
geographically distributed environment. To make the
code easily understandable and maintainable, a set of
coding conventions was adopted; this is classified in
four major categories: Naming, Coding rules, Style
rules, and Guidelines. Every organization or institute
delivering source code for the project is required to
verify the code’s compliance with the conventions. To
facilitate this task a rule checker tool was implemented,
which checks the code’s compliance with the ALICE
coding conventions and reports any violations.

The ALICE code is still evolving and it has
currently reached version 4.15. In our case study, we
focused on eight main packages: MUON, PHOS,
STEER, PMD, RICH, TOF, TPC, and TRD. We used
eight main releases of ALICE for the case study,
namely: v3-05-01, v3-06-01, v3-07-01, v3-08-01, v3-
09-01, v3-10-00, v4-01-00, and v4-02-00. The average
time between the considered releases is approximately
six months. The size of ALICE in lines of text for all

the versions considered is shown in Table 1.
WinMerge is a differencing and merging tool for

Windows which compares both folders and files,
presenting the differences in a visual text format. It
was first released in 2000 and currently has an active
team of nine developers. The lead developer of
WinMerge has been with the team since 2003 and has
five times more commits than anyone else in the
project; in consequence, the lead developer’s habits
have a great influence on how the source code is
written and how identifiers are named and comments
introduced in WinMerge. Also, the web page of the
project lists a set of coding guidelines which are
recommended (but not enforced) to all developers
contributing to WinMerge. These guidelines include
also instructions referring to comments; they
recommend commenting every software entity,
answering why and not what questions in comments
and keeping the comments up-to-date.

WinMerge has reached a state of stable and mature
codebase over the eight years since its release. For our
case study, we used the entire source code of
WinMerge and chose five versions: v2.2.0, v2.4.0,
v2.6.0, v2.8.0, and v2.8.6, which are major stable
releases of WinMerge and the latest available version
at the time of the case study. The average time
between the releases considered for the case study is
eight months. The size of WinMerge in lines of text
for all the versions considered is shown in Table 1.

2.2. Vocabulary definition
We consider the source code vocabulary (SV) as

the union of five different vocabularies: the class name
vocabulary (CV), the attribute name vocabulary (AV),
the function name vocabulary (FV), the parameter
name vocabulary (PV), and the comment vocabulary
(CoV). Each of them represents, respectively, the set
of unique terms that appear in class names, in attribute
names, in function names, in parameter names, and in
comments in the source code of a system. We refer to
the elements of each vocabulary as terms (rather than
words) since many of them are not proper words from
a spoken language. We refer collectively to CV, AV,
FV, and PV as identifier vocabularies.

2.3. Vocabulary construction and data
collection

In order to extract the vocabularies and to compute
the statistics used for answering the research questions,

Table 1. The number of lines of text in ALICE and WinMerge for the versions considered

ALICE v3-05-01 v3-06-01 v3-07-01 v3-08-01 v3-09-01 v3-10-00 v4-01-00 v4-02-00
Lines of text 116,609 121,787 125,911 153,145 158,879 198,149 195,664 214,289
WinMerge v2.2.0 v2.4.0 v2.6.0 v2.8.0 v2.8.6

Lines of text 114,769 146,728 142,789 137,744 137,859

186190

we implemented a set of tools, which we describe
below:
� diff1. We used the diff file differencing tool to
determine the set of new and deleted lines of code
between two versions of the same system.

Figure 2. The evolution of the system size
(solid) and the SV size (dashed) in ALICE

and WinMerge

<vocabulary>
<token name=”set” stem=”set” diff=“New”>
<token name=”Values” stem=”value” diff=“Deleted”>
</vocabulary>

Figure 1. The tags added by the
VocabularyExtractor and the
VocabularyDifferencer tools

� src2srcml2. src2srcml is a translator from source
code to srcML [14], which tags each syntactic source
code entity (i.e., class, attribute, function, parameter,
comment, etc.) using XML.
� Stemmer. To obtain the stem of a term we used the
Porter Stemmer [17].
� VocabularyExtractor. We implemented this tool to
add new tags to the srcML files, which contain
information about each of the terms that are found in
identifiers and in comments. The tool extracts
identifiers and comments from the srcML files. For
each identifier and comment it adds a new tag called
<vocabulary>, which wraps information about all the
tokens contained in that identifier or comment and
their stems, using a tag called <token> (see Figure 1).
The tokens are obtained by splitting the identifiers or
comment words based on the use of camel casing and
non-literals, such as underscores. During splitting,
non-literals and numerals are discarded. CV, AV, FV,
PV and CoV are constructed from the set of unique
stems contained in the <vocabulary> tags associated
with the corresponding identifier types and with
comments, respectively. SV represents the union of all
these vocabularies. The original identifiers and
comment words are not included in these vocabularies.
The srcML files modified as mentioned are used by the
next tool in the chain.
� VocabularyDifferencer. We developed this tool to
determine the new and deleted terms between two
versions in each vocabulary (i.e., CV, AV, FV, PV,
CoV, and SV). The tool uses the modified srcML files
provided by VocabularyExtractor for two versions i
and j of the system and their identifier and comments
vocabularies. For each vocabulary V, the tool
computes Vi-Vj and Vj-Vi to determine new and deleted
terms between the two versions. Then, it adds a new
attribute called dif to the <token> tag introduced by
VocabularyExtractor (see Figure 1). The value of the
dif attribute can be “New”, “Deleted” or “Kept”.
� VocabularyProcessor. We built this tool to extract
information from the <vocabulary> tags of all
vocabularies in all versions. The tool populates an
external database, which stores all the data about the
vocabularies and is used to compute statistics across
versions.
� IdentifierConstructor. We developed this tool to
help answer question RQ4. Based on the output

1 http://www.gnu.org/software/diffutils/diffutils.html
2 http://www.sdml.info/projects/srcml/

provided by VocabularyDifferencer, this tool generates
a summary of the number of new terms used in
constructing identifiers for each identifier vocabulary.

2.4. Results
In order to answer the four research questions, we

formulated several specific sub-questions, which each
provide partial answers to the main research questions.

2.4.1. RQ1 - How does the size of the source code
vocabulary evolve over time?

As software evolution is a complex phenomenon
and several aspects of the system undergo evolution at
the same time, we investigated if the size of the
software vocabulary evolves in a similar manner to the
size of the software system. We addressed the
following sub-questions:
1. Are the evolution of the size of SV and the
evolution of the system size similar?
2. Are the evolution of the number of new terms in SV
and the evolution of the number of new lines of text in
the system similar?
3. Are the evolution of the number of deleted terms
from SV and the evolution of the number of deleted
lines of text from the system similar?
4. Which category of changes, i.e., new terms or
deleted terms, drives the evolution of the size of SV?

For answering RQ1.1, we observed for each system
the evolution of its size (computed as the number of
non blank lines of text) and the evolution of the SV
size, over the versions considered in the case study.
Figure 2 depicts the evolution of these two measures in
ALICE and WinMerge. The system size and the SV
size are normalized following the linear scaling
transform, which is a common normalization used
when the minimum and the maximum values in a

187191

series are known. The actual number of new and
deleted terms is shown in Table 2.

The data reveals that the two systems exhibit
different behaviors with respect to the evolution in the
size of SV and the system size (see Figure 2). We
wanted to investigate the reasons for this discrepancy,
so we analyzed each of the systems in detail and tried
to explain the evolution of the measures by linking
them to events which happened in the system.

In ALICE, the size of the SV and the system size
evolve similarly in 7 out of 8 versions. This is
confirmed also by the correlation between the two
series, computed over the 8 versions considered in the
case study (0.99 correlation with p-value < 0.05). The
continuous steady increase in both measures over the
first 6 versions may be explained by the fact that
ALICE is still in the evolution phase. However, the
sharp increase in v3-10-00, followed by the decrease in
v4-01-00 in both the system size and the number of
terms in SV represented an exception that needed to be
investigated. We found that from v3-09-00 to v3-10-
00, a major change occurred in the system, involving a
new management system for files, which was
developed in a different branch for almost one year and
then merged into the main trunk. This explains the
sharp increase between v3-09-00 and v3-10-00, and
then the decrease in the following version, which is
most likely due to the continued integration and
refactoring of the new file management system.

In WinMerge, the two measures have a somewhat
different evolution. The only commonalities are an
increase between the first two versions and a tendency
to stabilize over the last two. The sharp increase at the

beginning is explained by the fact that a considerable
amount of new functionality was introduced in the
system between v2.2.0 and v2.4.0, which resulted in
the introduction of new lines of text, and new
terminology. From v2.4.0 to v2.6.0, new functionality
was also added, which explains the increase in the
number of terms; however, between these two
versions, the package containing the source code files
for the support of different languages in the GUI was
refactored and the language support redesigned. This
resulted in the deletion of a set of resource files
containing a considerable number of lines of text,
explaining the decrease in lines of text between the two
versions. The decrease between v2.6.0 and v2.8.0 in
both the size of the system and the size of SV is
explained by the fact that an entire package, ExpatLib,
containing files with a large number of lines of text,
was deleted between the two versions. From v2.8.0 to
v2.8.6 there are very few modifications, as v2.8.6
contains only minor bug fixes. The correlation
between the size of the system and the SV size in
WinMerge is 0.86, with a p-value of 0.06.

To understand better how the system evolves in its
size in lines of text and in its vocabulary size, we
answered RQ1.2 and RQ1.3 by analyzing the evolution
of the number of new and deleted lines of text in the
system size and the number of new and deleted terms
from SV.

The increases and decreases in the system size are
due to new and deleted lines of text in the system. We
compute the set of new and deleted lines of text using
the file comparison utility diff. Considering two
versions i and j, and LTi and LTj the sets of lines of

Table 2. The initial vocabulary sizes and the number of new and deleted terms in each version of
ALICE and WinMerge

ALICE v3-05-01 v3-06-01 v3-07-01 v3-08-01 v3-09-01 v3-10-00 v4-01-00 v4-02-00
Initial Size New Del New Del New Del New Del New Del New Del New Del

CV 158 13 2 4 0 19 1 6 0 62 3 9 3 34 7
AV 946 29 0 31 1 142 24 34 4 212 20 30 29 225 64
PV 1,035 46 2 50 3 137 3 35 10 209 15 50 45 179 63
FV 839 42 0 13 1 128 2 26 7 235 14 55 27 176 133

CoV 5,615 296 58 205 73 940 127 317 58 1,536 264 649 741 1,297 1,440
SV 6,198 312 57 217 73 1,034 135 330 63 1,668 269 669 735 1,441 1,489

WinMerge v2.2.0 v2.4.0 v2.6.0 v2.8.0 v2.8.6
CV 163 30 3 12 1 15 8 0 2
AV 559 64 9 45 14 38 46 0 0
PV 997 155 11 64 13 39 101 1 3
FV 672 111 8 52 18 38 60 0 0

CoV 5,098 624 76 628 191 251 539 14 14
SV 5,393 696 77 644 199 257 582 14 13

188192

text found in version i, respectively in version j, a line
of text lt is considered new in LTj if lt�LTj–LTi and
deleted in LTj if lt�LTi-LTj. As diff compares files, if
lt is moved from one file to another from version i to
version j, it is considered both deleted and new, as it is
deleted from the file where it appeared in version i and
is new in the file where it appears in version j. If the
line of text lti is modified to ltj between the two
versions, then lti is considered deleted and ltj is
considered new in LTj. For the first version considered,
the number of new and deleted lines of text can not be
computed, as there is no data from a previous version.

Increases and decreases in the SV size are
determined by the new and deleted terms from the
vocabulary. Considering two versions, i and j, and a
vocabulary V as one of the vocabularies CV, AV, FV,
PV, or CoV, a term t is considered new in Vj, if
t�Vj-Vi, and deleted in Vj if t�Vi-Vj. We must point
out here that we do not account for term renaming. If a
term is renamed from ti to tj between Vi and Vj, ti is
considered deleted and tj is considered new. We do not
compute the number of new and deleted terms in the
first version in neither of the two systems, as we do not
have data from a previous version to compare to. This
explains the fact that in Figure 3 and Figure 4 the
number of versions represented is smaller than the total
number of versions by one.

Figure 3 shows the evolution of the number of new
lines of text added to the system and the number of
new terms added to SV in ALICE and WinMerge. The
measures are normalized using the linear scaling
transformation.

In ALICE, we observe a behavior followed by both
the number of new lines added and the number of new
terms added, which is defined by a sharp increase,
followed by a sharp decrease (see Figure 3). In
WinMerge, the two measures evolve differently.
However, the maximum number of new lines and
terms added is achieved for both measures in v2.4.0,
which is most likely due to the introduction of

numerous new features. The minimum number of new
lines and terms added is observed in v2.8.6, as between
the last two analyzed versions only minor bug fixes
were performed.

As for the number of deleted lines of text from the
system and the number of deleted terms from SV (see
Figure 4), we observed that in ALICE, the two
measures evolve similarly. Both measures experience
oscillations between the first few versions and then
know a sharp increase from V3-09-01 until the last
version. In WinMerge, however, the number of
deleted lines of text in the system and the number of
deleted terms from SV do not evolve at the same rate,
but both increase until v2.8.0 and then from v2.8.0 to
v2.8.6 they both decrease sharply. This decrease is
explained by the small number of modifications made
between the last two versions, mostly minor bug fixes.

In order to get a better understanding of how each
type of change (new/deleted terms) contributes to the
evolution of the SV size (RQ1.4), we analyzed in more
detail the number of new and deleted terms in each
version. We observed that most of the times, the
number of new terms is significantly larger than the
number of deleted terms, with few exceptions.

In ALICE, the changes to the way files are
managed, which occurred in v3-10-00, is reflected in
the high number of new terms in this version, which is
the highest in the observed history of ALICE. The
high number of new and deleted terms from SV in the
last versions of ALICE is also a consequence of this
major change.

In WinMerge, the number of new terms added to
SV is significantly larger than the number of deleted
terms until v2.8.0 where the package ExpatLib was
removed from the system. This is due to the addition of
new functionality in the system, which introduces new
concepts and in consequence new terminology. From
v2.8.0 to v2.8.6, minor modifications were made,
which explains the low number of both new and
deleted terms.

The vocabulary, which dictates the number of

Figure 3. The evolution of the number of new
lines of text in the system (solid) and of the

number of new terms to SV (dashed) in ALICE
and WinMerge

Figure 4. The evolution of the number of deleted
lines of text from the system (solid) and of the
number of deleted terms from SV (dashed) in

ALICE and WinMerge

189193

terms and the changes that affect SV, is CoV in both
systems, as it contains the most terms in SV and the
most number of new and deleted terms. An interesting
fact is that both the number of lines of text in the
system and the number of terms in the source code
vocabularies are comparable in size in the two systems.
The number of terms per line of text is also very close
between the two systems: 49 terms per 1,000 lines of
text in ALICE and 44 terms in SV per 1,000 lines of
text in WinMerge.

2.4.2. RQ2 - What relationships exist between the
individual vocabularies in the system?

In order to understand better which vocabularies
drive the evolution of the SV, we analyzed the
relationships between the individual vocabularies of
the source code, i.e., CV, AV, FV, PV, and CoV.
Details about the construction of each of these
vocabularies can be found in Section 2.3. We focused
on the following sub-questions to answer RQ2:
1. Which is the preponderant vocabulary in the
system?
2. Are there any terms shared between vocabularies?
3. Are there new and deleted terms shared between
vocabularies?

For answering RQ2.1, we analyzed the number of
terms in each of the source code vocabularies, based on
the data shown in Table 2. In both systems, CoV is
significantly larger than all the other identifier
vocabularies and its size is on average double the sum
of the sizes of the identifier lexicons, across versions.
In ALICE, CoV is followed in size, in this order, by
FV, AV, and PV. In WinMerge, the rank of AV and
PV changes, so CoV is followed by FV, PV, and AV.
The smallest vocabulary in both systems is CV.

Under these circumstances, we expected that the
evolution of CoV would have the most impact on the
evolution of the overall system vocabulary SV. In
order to assess whether this is true, we compared the
evolution of each of the vocabularies and we computed

the Pearson correlation between the SV and each of the
individual vocabularies. We observed that in ALICE
all the individual vocabularies had a high correlation
with SV, with CoV having the highest correlation,
0.99. This observation, along with the fact that all the
vocabularies follow the same direction of change (see
Figure 5) over all versions, with the exception of CoV
and SV, indicate that our assumption was true and that
CoV is indeed the vocabulary which affects the
evolution of SV the most in ALICE.

In WinMerge, all the vocabularies except for CV
follow the same direction of change (see Figure 5).
When computing the correlation between SV and each
individual vocabulary, we found that all the
vocabularies had a very high correlation with SV (over
0.96), with the exception of CV, which had 0.88.
However, the low number of terms in CV makes that
its evolution does not impact the evolution of SV,
which follows the common direction dictated by the
other vocabularies (see Figure 2). In WinMerge, the
vocabulary that has the highest correlation with SV is
again CoV, with a correlation of 0.99.

For answering RQ2.2, we computed the number of
terms in the pair-wise intersection of all identifier
vocabularies and in the intersection of all vocabularies
and the percentage of shared terms between
vocabularies (see Table 3 on the next page).

The results reveal that, on average, almost all terms
in CV are present in CoV (96% in ALICE and 100% in
WinMerge). Most terms in CV are also found in FV
(99.7% in ALICE and 98% in WinMerge). This means
that almost all words used in class identifiers are also
used in function names and in comments.

In both systems, there is a high percentage of
shared terms between the identifier vocabularies and
CoV. In the case of AV, 75% of the terms are shared
with CoV in ALICE and 90% in WinMerge. FV
shared 83% of the terms with CoV in ALICE and 85%
in WinMerge and PV shared 71% of its terms with

Figure 5. The evolution of the sizes of CV, AV, FV, PV, CoV in ALICE and WinMerge

190194

Table 3. The number of terms in the pair-wise intersection of vocabularies in ALICE and WinMerge

 ALICE WinMerge ALICE WinMerge
Size 126 147 Size 510 371

% from CV 59% 76% % from AV 43% 60%CV�AV
% from AV 11% 24%

AV�PV
% from PV 48% 48%

Size 211 191 Size 878 555
% from CV 99.7% 98% % from AV 75% 90%CV�FV
% from FV 16% 17%

AV�CoV
% from CoV 13% 10%

Size 112 124 Size 492 443
% from CV 53% 64% % from FV 38% 58%CV�PV
% from PV 10% 16%

FV�PV
% from PV 46% 40%

Size 203 194 Size 1,076 955
% from CV 96% 100% % from FV 83% 85%CV�CoV
% from CoV 3% 3%

FV�CoV
% from CoV 15% 17%

Size 749 466 Size 757 627
% from AV 64% 75% % from PV 71% 82%AV�FV
% from FV 58% 42%

PV�CoV
% from CoV 11% 11%

CoV in ALICE and 82% in WinMerge.
There are on average 99 terms (1% of SV) shared

by all vocabularies in ALICE and 111 terms (2% of
SV) shared by all vocabularies in WinMerge, across all
versions.

For RQ2.3, we computed the intersection between
the sets of new terms in each vocabulary. We also
identified the intersection between the sets of deleted
terms in each vocabulary.

The data indicates that no terms were deleted from
all vocabularies at the same time neither in ALICE nor
in WinMerge.

As for new terms, there are very few new terms
shared between all vocabularies. In ALICE only three
out of the eight versions have common new terms in all
vocabularies, one common term in two of the versions
and three new common terms in one version. In
WinMerge, there is only one version which has one
common new term between all vocabularies.

We were particularly interested in the intersections
between the new and deleted terms in each of the
identifier vocabularies and the CoV, to see if new or
deleted terms in identifiers are also reflected in new or
deleted terms in comments, respectively. For the
average intersection between new identifier terms and
new comment terms across all versions, we found a
maximum of 38% of new identifier terms reflected also
in new comments for ALICE and 23% for WinMerge.
The list of identifier vocabularies, ordered by the
average percentage of new terms also found in new
comment terms is CV, PV, FV and AV for ALICE. For
WinMerge, the order is the same except for CV and
FV, which switch places.

In the case of deleted terms, in ALICE, in some of
the versions considered, there is a particularly large
number of deleted identifier terms also found among
the deleted comment terms. For example, in version

v3-06-01 all the deleted attribute terms are also deleted
comment terms. In addition, in version v3-05-01, 50%
of the deleted attribute terms are also comment deleted
terms. At the same time, there are some versions
where the identifier vocabularies have no deleted
terms, and in consequence, the percentage of identifier
deleted terms common with the comment deleted terms
can not be computed.

In WinMerge, across all versions, the percentage of
deleted identifier terms found also in deleted comment
terms does not exceed 30% and this maximum is found
in FV in v2.6.0.

2.4.3. RQ3 - Are new identifiers introducing new
terms?

To answer this research question, we analyzed the
number of new identifiers (i.e., class, attribute,
function, and parameter) constructed using only terms
existing in their corresponding vocabulary (i.e., CV,
AV, FV, or PV), the number of new identifiers which
introduce one new term in their vocabulary, and the
number of new identifiers which introduce more than
one new term in their corresponding vocabulary. The
results are presented in Figure 6.

We found that in ALICE, on average across all
versions, 56% of the new identifiers are constructed
using only terms already existing in their vocabulary.
In WinMerge, this percentage is 70% of all new
identifiers.

As for the new identifiers that introduce new terms
to their corresponding vocabulary, most of them
introduce only one new term. In ALICE, on average,
85% of the identifiers that contribute with new terms
(representing 37% of all the new identifiers) introduced
only one new term. In WinMerge, the percentage is
90%, representing 26% of all new identifiers.

The rest of the new identifiers introduce two or
more new terms, and they represent 7% of all the new

191195

Figure 6. The percentage of new identifiers that introduce no new term, one new term, and two
or more new terms in CV, AV, FV, PV, CoV in ALICE and WinMerge

identifiers in ALICE and 4% in WinMerge. The
maximum number of new terms that a new identifier
introduces is 4 (found in 2 versions out of 7 containing
new identifiers) in ALICE and 3 in WinMerge.

In conclusion, the majority of new identifiers do
not introduce new terms in their corresponding
vocabulary and from the ones that do, almost all
introduce only one new term.

2.4.4. RQ4 - What do the most frequent terms
refer to?

For RQ4, we computed the frequency of the terms
in each vocabulary, for each version considered and we
analyzed the 15 most frequent terms in all the
vocabularies, and manually identified problem domain
terms found in each of these lists. The authors
determined if a term is a domain term or not based on
their prior knowledge, on the analysis of the system’s
functionality and source code and on the systems’
documentation.

In ALICE, the vocabulary with the most domain
terms on average among the 15 most frequent terms in
the vocabulary is CV, with 13 domain terms, followed
by FV, with 10, then by AV with 8 terms, CoV with 6
terms and finally by PV with 5 domain terms on
average. The domain terms we identified among the
most frequent terms in all versions are the stems of:
hit, track, pad, digit, cluster, chamber, pho, muon,
segment, rec, event, tr, rich, tpc, trigger, tof, mp, tp,
phosrp, cpv, emc, ppsd, energy, ev, sector, rh.

In WinMerge, the vocabulary with the highest
number of problem domain terms on average in the list
of 15 most frequent terms is FV with 13 terms, then
AV, also with 13 terms, followed by CV with 10, CoV
with 8 and finally PV with 4. In WinMerge, the list of
problem domain terms we found is the list of stems of
the following terms: line, file, string, text, char, match,
name, data, update, edit, end, version, modify, dir,
merge, filter, status, diff, prop, file, str, left, right.

In both systems, the vocabularies with the least
problem domain terms among the most frequent terms
are CoV and PV. One possible explanation for this

could be that, as seen before in the results of RQ2,
there are many more terms in comments than in
identifiers, and there are also numerous solution
domain terms found in comments. For example, the
stems of the terms number, copyright, parameter are
among the most frequent stems in ALICE and the
terms psz, afx, gnu are among the most frequent ones
in WinMerge. One possible explanation of the low
number of domain terms in parameter names can be
explained by the fact that formal parameters are often
extreme contractions (even single letters), and the
semantic (linguistic) often information is carried by
their type, not their name. On the other hand, the most
frequent terms in class names, attribute names, and
function names refer to domain concepts.

The detailed results obtained, for each version and
for each vocabulary, are available in [1].

2.5. Discussion
Summarizing our findings, we have observed that:

� RQ1: System vocabulary and system size often
exhibit a parallel evolution trend (although in
WinMerge the two trends sometimes diverge).
Addition of new features affect the vocabulary used by
programmers, by increasing it. Similarly, important
changes of existing functionalities (e.g., file
management in ALICE) is usually reflected in major
vocabulary changes.
� RQ2: The vocabulary used to build class identifiers
has the largest number of terms in common with other
vocabularies, which may descend from the OO “good”
design principle, prescribing that classes represent the
core domain concepts. On the other hand, identifier
vocabulary changes are only marginally reflected in the
comment vocabulary, possibly indicating a tendency of
comments to become obsolete and misaligned with the
code.
� RQ3: New identifiers usually introduce no or at most
one new term. This indicates that the vocabulary used
by developers is reused whenever possible and
extended with parsimony. This is a somewhat

192196

surprising result, since such a consistent use of terms is
left to the ability of programmers and receives
(currently) no dedicated tool support. Maybe it is an
indicator of the quality of the development teams
involved in our two case studies.
� RQ4: Frequent terms are associated with core
domain concepts. This result suggests a very simple
heuristics to extract domain knowledge from a system,
based on simple frequency analysis.

Overall, our results indicate that the vocabulary
used by programmers is subject to an evolution
pressure similar to that affecting code evolution. As a
consequence, we expect that keeping vocabulary
evolution under control is a major challenge, as it is
happening with the code. The quality of the
vocabulary affects how identifiers are constructed, how
core concepts are recognized and named, and in
general how difficult it is for a programmer to
understand and evolve the system. Hence, tools are
needed to help programmers maintain and improve the
quality of vocabularies, especially when performing
major changes or introducing new identifiers. From
our study, we can envision a central role of class
vocabulary terms and of frequent terms in recovering
and structuring the knowledge conveyed by identifiers.

2.6. Threats to validity
Even for case studies where the results are not

generalized, there are usually factors that represent
threats to certain aspects of the validity of the results
[22]. In our case study, we considered only class
names, attribute names, function names, parameter
names, and comments. Even though these are the most
important software entities in an object-oriented
software system, we have little knowledge about how
the vocabulary of other entities such as local variables,
constants, types, etc. evolves. In our future work, we
plan to address these vocabularies as well. Also, to
extract and collect the information needed, we mostly
relied on consolidated theory and tools, but we cannot
be sure that a different tool chain would not collect
slightly different data. Since the entire processing was
performed with the same tool chain on the two systems
and for all versions, errors, if any, would be systematic
and most likely would not affect our findings
substantially.

In order to obtain more generalizable results, we
need to investigate a larger set of programs, with a
richer set of versions, developed in different
environments, using different programming languages
and by different development teams. For example, we
only considered two systems in our case study and for
WinMerge we only had five versions in our analysis,
which made it difficult to observe patterns in the

evolution of the source code vocabulary and to draw
conclusions on the reasons for this evolution.

3. Related Work
The source code vocabulary was studied in several

papers [2-9, 11-13, 15, 19, 21], as researchers have
long acknowledged the important role that the
information stored in identifiers and comments plays in
the comprehension and maintenance of software
systems.

Previous work focused mainly on the role of
identifiers and comments in facilitating program
comprehension [2, 6-8, 21]. In [18] an empirical study
is conducted to identify the type of knowledge used by
software developers during maintenance. Other work
has addressed the way domain concepts are reflected
and used in source code [4, 11, 15, 19] Further work
has focused on identifier quality and proposed methods
for improving it. The analysis of function identifier
structure was performed in [6] and identifier
refactoring to improve meaningfulness was studied in
[5]. In the same direction, [13] and [21] investigated
how different naming styles (i.e., single letters,
abbreviations, and full words) affect comprehension
and both studies came to the conclusion that full word
identifiers provide better comprehension. In [7], the
conciseness and consistency of identifiers is analyzed
based on the relationship between concepts and their
names. Comments have also been studied in [9],
where the authors found that the language of comments
in a software is a sub-language of English and in [10],
where the authors studied the co-evolution of
identifiers and comments.

Closest to our research is [3], which studied the
stability in the evolution of the source code lexicon and
the evolution of the structure of a software system.
The stability metrics for a software entity between two
versions were computed as the cosine between two
vectors, representing the entity in the two versions. In
the case of the structural stability metric, the vectors
contained the values of several structural metrics and
in the case of the lexical stability metric, the vectors
contained the frequencies of the words found in the
entity in the two versions. Our work is different from
[3] by the fact that it does not focus on measuring
stability; rather, it analyzes the evolution of the
structure and of the vocabulary of a software system
and focuses on the changes that drive this evolution at
a fine level of granularity. Our work provides also
insights into how the software vocabulary evolves.

4. Conclusions and Future Work
In this paper we analyzed the evolution of the

source code vocabulary of two open-source software

193197

systems. Among the most important findings are the
fact that the vocabulary and the size of a software
system tend to evolve the same way, with some
exceptions, the fact that the comment vocabulary is the
major responsible for the evolution of the source code
vocabulary and that the comment vocabulary also
contains more than ¾ of the terms found in any
identifier vocabulary. Also, we found that most of the
new identifiers do not introduce new terms in their
vocabulary, but rather are constructed using existing
terms. At the same time, the most frequent terms in
class names, attribute names, and function names are
problem domain terms. Overall, the results indicate
that the evolution of the source code vocabulary does
not follow a trivial pattern and more research is needed
to fully understand it.

Our future work will focus on addressing more
aspects of the evolution of the source code vocabulary,
such as the evolution of other types of identifiers, like
local variables, constants, types, etc. Also, we will
include more systems in our case studies, found in
various stages of development and we will consider
numerous versions for each system, including minor
and major releases of the systems. At the same time,
we will also address other research questions regarding
the spread of the terms across the system and across
vocabularies. We plan also to include the vocabulary
of other software artifacts in the analysis.

5. Acknowledgements
Sonia Haiduc and Andrian Marcus were supported

in part by a grant from the US National Science
Foundation (CCF- 0820133).

6. References
[1] Abebe, S. L., Haiduc, S., Marcus, A., Tonella, P., and
Antoniol, G., "Analyzing the Evolution of the Source Code
Vocabulary", Technical Report, WSU, CS, 2008, Online at
http://www.cs.wayne.edu/ ~severe/TechnicalReport-WSU-2008-01

[2] Anquetil, N. and Lethbridge, T., "Assessing the
Relevance of Identifier Names in a Legacy Software
System", in Proceedings Annual IBM Centers for Advanced
Studies Conference (CASCON'98), 1998, pp. 213-222.
[3] Antoniol, G., Gueheneuc, Y.-G., Merlo, E., and Tonella,
P., "Mining the Lexicon Used by Programmers during
Software Evolution", in Proc. Int'l Conf. on Software
Maintenance, 2007, pp. 14-23.
[4] Biggerstaff, T., Mitbander, B., and Webster, D., "The
Concept Assignment Problem in Program Understanding", in
Proc. Int'l Conf. on Soft. Engineering, 1994, pp. 482-498.
[5] Caprile, B. and Tonella, P., "Restructuring Program
Identifier Names", in Proc. Int'l Conf. on Software
Maintenance, 2000, pp. 97-107.

[6] Caprile, B. and Tonella, P., "Nomen Est Omen Analyzing
the Language of Function Identifiers", in Proc. Working
Conf. on Reverse Engineering, 1999, pp. 112-122.
[7] Deissenboeck, F. and Pizka , M., "Concise and Consistent
Naming", Software Quality Journal, 14, 3, 2006, pp. 261-282
[8] Etzkorn, L., Bowen, L., and Davis, C., "An Approach to
Program Understanding by Natural Language
Understanding", Natural Language Engineering, 5, 03, 1999,
pp. 219-236.
[9] Etzkorn, L., Davis, C., and Bowen, L., "The Language of
Comments in Computer Software: A Sublanguage of
English",Journal of Pragmatics, 33, 11, 2001, pp.1731-1756.
[10] Fluri, B., Wursch, M., and Gall, H. C., "Do Code and
Comments Co-Evolve? On the Relation between Source
Code and Comment Changes", in Proc. Working Conf. on
Reverse Engineering, 2007, pp. 70-79.
[11] Haiduc, S. and Marcus, A., "On the Use of Domain
Terms in Source Code", in Proc. Int'l Conf. on Program
Comprehension, 2008, pp. 113-122.
[12] Høst, E. and Østvold, B., "The Programmer’s Lexicon,
Volume I: The Verbs", in Proc. Int'l Working Conf. on
Source Code Analysis and Manipulation, 2007, pp.193-202
[13] Lawrie, D., Morrell, C., Feild, H., and Binkley, D.,
"What's in a Name? A Study of Identifiers", in Proc. Int'l
Conf. on Program Comprehension, 2006, pp. 3-12.
[14] Maletic, J. I., Collard, M. L., and Marcus, A., "Source
Code Files as Structured Documents", in Proc. Int'l
Workshop on Program Comprehension, 2002, pp. 289-292.
[15] Ohba, M. and Gondow, K., "Toward Mining Concept
Keywords from Identifiers in Large Software Projects", in
Proc. Int'l Workshop on Mining Soft. Repositories, 2005, pp.
1-5.
[16] Perry, D. E., Porter, A. A., and Votta, L. G., "Empirical
studies of software engineering: a roadmap", in Proc. of the
Conf. on The Future of Software Eng., 2000, pp. 345-355.
[17] Porter, M., "An Algorithm for Suffix Stripping",
Program, 14, 3, July 1980, pp. 130-137.
[18] Ramal, M. F., de Moura Meneses, R., and Anquetil, N.,
"A Disturbing Result on the Knowledge Used during
Software Maintenance", in Proc. of the Working Conf. on
Reverse Engineering, 2002, pp. 277-286.
[19] Ratiu, D. and Deissenboeck, F., "From Reality to
Programs and (Not Quite) Back Again", in Proc. Int'l Conf.
on Program Comprehension, 2007, pp. 91-102.
[20] Sim, S. and Holt, R., "The ramp-up problem in software
projects a case study of how software immigrants naturalize",
in Proc. Int'l Conf. on Software Eng., 1998, pp. 361-370.
[21] Takang, A., Grubb, P., and Macredie, R., "The Effects
of Comments and Identifier Names on Program
Comprehensibility: An Experimental Investigation", Journal
of Programming Languages, 4, 3, 1996, pp. 143-167.
[22] Yin, R. K., Case Study Research: Design and Methods,
Sage Publications Inc, 2003.

194198

