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Abstract

Identifiers represent an important source of information
for programmers understanding and maintaining a system.
Self-documenting identifiers reduce the time and effort nec-
essary to obtain the level of understanding appropriate for
the task at hand. While the role of the lexicon in program
comprehension has long been recognized, only a few works
have studied the quality and enhancement of the identifiers
and no works have studied the evolution of the lexicon. In
this paper, we characterize the evolution of program iden-
tifiers in terms of stability metrics and occurrences of re-
naming. We assess whether an evolution process similar to
the one occurring for the program structure exists for iden-
tifiers. We report data and results about the evolution of
three large systems, for which several releases are available.
We have found evidence that the evolution of the lexicon
is more limited and constrained than the evolution of the
structure. We argue that the different evolution results from
several factors including the lack of advanced tool support
for lexicon construction, documentation, and evolution.

1 Introduction

Identifiers play a central role in software mainte-
nance because, in a very concise way, they convey clues
on the semantics of the software systems, i.e., the se-
mantics of the entities that they label. Although not al-
ways recognized by programmers [1, 21], the relevance
of identifiers in the program comprehension process has
been investigated for a long time [1, 3, 5, 22]. Identi-
fier structure and quality have also been investigated
[2, 4, 11], because programmers resort to identifiers to
quickly acquire knowledge about program entities and
their mapping into domain entities [16, 18]. “Good”
identifiers save programmers from reading the entire
code segment associated with an entity when attempt-

ing to understand the role of the entity in the whole
system and its relevance to the software maintenance
task at hand.

However, to the best of our knowledge, no previous
study attempted to study the evolution of the lexicon
of identifiers over time, considering, in particular, their
stability over different releases. The lexicon plays a
central role during program comprehension insomuch
that part of the training of new personnel focuses on
its acquisition [20].

Refactoring has been advocated as fundamental to
periodically improve the internal structure of a sys-
tem to facilitate its future evolution (preventive main-
tenance [10]). The investigated hypothesis of this work
is that a similar evolution process may exist for identi-
fiers, i.e., identifiers may be periodically improved, in
particular since the advent of identifier-related refac-
toring such as renaming [8]. We formulate the follow-
ing research questions to test our general hypothesis
about the evolution of identifiers:

• RQ1: How does the stability of the lexicon of
identifiers compare to the stability of the program
structure as the program evolves?

• RQ2: What is the frequency of changes to pro-
gram entities (in particular renaming) due to iden-
tifier refactoring?

RQ1 concerns the software evolution process. The
evolution of the software structure and size has been
already investigated [12], while the evolution of the lex-
icon less so. We compare lexical vs. structural sta-
bilities during evolution to assess whether they obey
similar rules and whether they evolve alike. Finally,
from available data, we infer rules to interpret the co-
evolution of identifiers and structure.
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RQ2 focuses on the quality of the lexicon and its
improvement and implicitly on tool support for the lex-
icon evolution process. It is difficult to measure objec-
tively the quality of identifiers, so we make the hypoth-
esis that one of the possible reasons for a change to the
lexicon is to improve the quality of its identifiers.

These two research questions are relevant because
during maintenance the construction of a mental model
of (part of) the system and the reconstruction of trace-
ability links with other artifacts (requirements, test
cases. . . ) represent major sources of difficulties that
are strongly affected by the quality of identifiers. The
maintainers’ productivity depends on the quality of
identifier. As a consequence, knowledge about the evo-
lution of the lexicon has implications for the software
development and maintenance process, for the training
of novices, and for the design of support tools. More-
over, the lexicon of large systems may be substantial,
for example we identify in Eclipse more than 124000
unique identifiers, as detailed in Section 3.

We address the two research questions by analyz-
ing the history of three large open-source systems that
have evolved for a long time and for which a number
of successive versions is available. For each system,
first we consider and locate program entities and their
identifiers at different levels of granularity, namely at
file, class, and function levels; then we extract their
lexicon by segmenting identifiers and projecting them
onto natural language words. This phase is followed by
a normalization of the words performed through stem-
ming. Finally, we study the evolution of the systems
by means of lexical and structural stability metrics.

The primary contributions of this paper can be sum-
marized as follows:

• A novel and formal characterization of program
lexicon and program structure stability.

• Evolution plots and statistical tests of stability
metric results computed from three real world
large software projects.

• Rules to qualify the evolution of a program accord-
ing to the changes to its lexicon and to relate the
structural and lexical stabilities with the system
maturity and evolution phases.

The remaining of this paper is organized as follows:
Section 2 describes the metrics used to measure the
lexical and structural stabilities, based on a data model
spanning multiple granularity levels. Section 3 presents
and discusses experimental results. Related work and
conclusion follow and end the paper.

2 Data Mining and Analysis

This section introduce the model, metrics, and anal-
yses that are later performed on three systems.

2.1 Data Model

Objects of our analysis are software systems, com-
prising their structures and lexica. Lexica are described
by the words in the identifiers and in the comments,
while program structures are described by program or-
ganizations and control flows. Lexica and structures
vary depending on the granularity at which we con-
sider the program: systems, files, classes, methods,
functions, global variables, or statements.

At any level of granularity, we model an object of
study as a set of container entities and contained en-

tities. When the evolution of a software system is an-
alyzed, program entities are identified in different re-
leases either by name or by structural similarity. If
two entities (e.g., two functions) have the same name
in two successive releases, we assume that they are the
same entity that has evolved from one release to the
next. If an entity is not found in a previous release
by name, it is either a new entity or a renamed entity.
To decide between these two possibilities, following an
approach similar to Antoniol et al.’s [2], we apply two
constraints: (1) There exists an entity in the previous
release that cannot be matched by name with any en-
tity in the current release; (2) There exists an entity
in the previous release that is structurally similar to
an entity in the current release, with similarity above a
given threshold. If an entity satisfies both constraints,
then we assume that the entity was renamed between
previous and current releases.

At different levels of granularity, we consider differ-
ent data for the structure and the lexicon. We adopt
the data model depicted in Figure 1. A system or a di-
rectory contains files. A file contains classes, functions,
or global variables (assuming a mixed procedural and
object-oriented programming style as common in C++
systems). A class contains members (attributes and
methods) and sub-type relationships with other classes
or interfaces.

The structure of a function is represented by a vector
of metric values computed on the function body. The
lexicon is obtained from the function name and from
the identifiers used in the function body and comments.

Attributes and super-types can only be present or
absent, their associated structure being arrays contain-
ing a single boolean value. The lexicon of an attribute
is given by the words in its name. The computation of
words out of identifiers requires a normalization step,
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Class
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lexicon = union(methods.lexicon,

attributes.struct, subtype−of.struct)

methods

attributes.lexicon, name.words)

File

name
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classes

functions

attributes

lexicon = union(functions.lexicon, classes.lexicon, global_vars.lexicon)

subtype−of

Attribute
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lexicon = name.words

Supertype

name

Function

id, name

struct = (id, <body.metrics>)

struct = (id, <1>)

lexicon = union(identifiers.words,
name.words)

global
vars

Figure 1. Data model consisting of container
entities and contained entities.

achieved with the Porter stemming algorithm [19].
The class structure is recursively defined using

method structure, which is identical to that of func-
tions, attribute, and sub-type relationship structures.
The lexicon of a class is obtained from the method and
attribute lexicon. Similarly, entities at higher levels of
granularity, such as files and directories or subsystems,
have a structure and a lexicon that are given by the
union of the structure vectors and of the lexica of the
contained entities.

The computation of structural data for the function
body resorts to software metrics, such as cyclomatic
complexity and size (number of uncommented lines of
code). In particular, we used the list of structural met-
rics described in the work by Mayrand et al. on clone
detection [15].

2.2 Stability Metrics

We propose two novel stability metrics, which cap-
ture the degree of stability of the structure and of
the lexicon for a given programming entity, to address
RQ1. For RQ2, we recognize occurrences of renaming
by looking for containers that cannot be matched by
lexicon in a previous release but that can be matched
by structural similarity with an unmatched container

in the current release. These stability metrics are gen-
eralizations of previous structural metrics [7].

Given two releases i and j, a granularity level G,
and a program entity, let us indicate by ei,G and ej,G

the two respective releases of the entity which can be
either matched by lexicon or by structure. If the entity
is not a container, it can be either a function, or an
attribute, or a super-type and its structure is a vector of
metric values. It is also possible to represent its lexicon
using a term-frequency vector where each component
is associated with a word and is equal to the number of
occurrences of the word in the lexicon. Let us indicate
by vect(ei,G) any of the two vectors for the structural
or lexical stability metrics. We compare the stability
of ei,G with ej,G by computing the cosine between the
respective vectors:

stab(ei,G, ej,G) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
if (vect(ei,G) =

→

0) ∨

(vect(ej,G) =
→

0) else

〈vect(ei,G), vect(ej,G)〉

| vect(ei,G) | · | vect(ej,G) |

Thus, the lexical stability will be 0 when ei,G and
ej,G have orthogonal structure or lexicon, while it will
be 1 when the entities in the two releases have pro-
portional vectors. If either vect(ei,G) or vect(ej,G) is
→

0 (e.g., the vector of a function missing in version i

or j), stability is 0 by definition. We resort to co-
linearity of structural information to identify renam-
ing, by using a threshold T = 1 and by verifying that
stabstruct(ei,G, ej,G) ≥ T : entities are considered to
structurally match each other if the cosine of the re-
spective metrics vectors is equal to 1. This threshold
value does not guarantee that the two entities have the
same lexicon or structure but that the representations
are co-linear, i.e., they have proportional metric values.

When the entity is a container, its structural and
lexical stabilities are computed as the average of the
corresponding stabilities of the contained entities. The
lexical or structural stability over a sequence of releases
of a container is defined as the sequence of the stability
values of the contained entities at consecutive releases
i−1, i, i.e., average stability of successive pairs ei−1,G,
ei,G.

2.3 Renaming

The relative number of renaming occurring at ver-
sion i is defined by considering all entities ei,G at a
given granularity level G (e.g., functions) and deter-
mining those which existed in the previous release but
were named differently. As already stated, we char-
acterize a renaming using structural stability (and a
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threshold T = 1) computed for entities that cannot be
matched by name. The fraction of renamed entities is
then defined as:

ren(i, G) =
|DN(ei,G, i − 1)|

|ei,G|

with:

• ei,G: entities at granularity G existing in release i.

• DN(ei,G, j): subset of ei,G containing all entities
having a different name in (previous) version j(=
i−1). Formally, an entity e belongs to DN(ei,G, j)
iff it satisfies the two following conditions: e ∈
DN(ei,G, j) ⇔

– � ∃a ∈ ej,G | e.name = a.name; and

– ∃a ∈ ej,G, ∀e′ ∈ ei,G | e′.name �= a.name ∧
stabstructure(e, a) ≥ T

for a given threshold T .

2.4 Stability Analysis

Qualitatively, we visually address RQ1 by inspect-
ing the plots that represent structural and lexical sta-
bilities over the releases of a system under study. We
also quantitatively address RQ1 by means of statis-
tical tests. The null hypothesis is that there is no
statistically-significant difference between the proba-
bility distribution of the lexical stability compared to
that of the structural stability. Our alternative hypoth-
esis is that structural and lexical stability follow differ-
ent rules and are characterized by significantly different
median values when considering the evolution of a pro-
gram over time. We use the non-parametric Wilcoxon
paired test [9].

RQ2 requires counting the absolute number of re-
naming occurrences DN(ei,G, j), which can be found
for the entities considered at the granularity level G,
and comparing this number with the number of entities
kept unchanged from the previous release. In our ex-
periments, although we use a threshold value T = 1, we
nonetheless obtain false positives for small-size entities.
For example, small methods that cannot be matched
by lexicon are very likely to have similar metric val-
ues (similar cyclomatic complexity, similar size, and
so on). We remove these false positives by adding an
extra constraint on the minimum size for the entities.
For methods, we set the minimum at 10 lines of code.
Renaming involving entities, the sizes of which are be-
low 10, are skipped (false negatives are possible). By
applying this extra constraint in our experiments, the
reported occurrences of renaming have been manually
verified to be improved.

System Language Size Versions Identifiers

Eclipse Java 2.9 MLOC 19 124187
Mozilla C++ 4.4 MLOC 24 55244
CERN/Alice C++ 0.825 MLOC 13 9002

Table 1. Features of the analyzed systems.
Size was computed on the latest release.

3 Experimental Results

We now apply the previously-defined analyses on
three large software systems.

3.1 Subject Systems

As subject systems, we choose Eclipse, Mozilla, and
Alice. Eclipse is a widely used integrated develop-
ment environment, supporting programming in Java
and other languages through a rich set of functions and
graphical facilities. It is a large size program written
in Java. We analyzed 19 versions. Mozilla is one of
the most popular Web browsers. Written in C++, it
represents also a large code base, of which 24 releases
have been considered in this work. Releases were se-
lected according to the Mozilla road-map1 to ensure
the presence of the main trunk and consistency be-
tween release time and release tag, i.e., a higher tag
correspond to a more recent release. The third ap-
plication was provided by the Alice experiment cur-
rently under construction at CERN (the European Or-
ganization for Nuclear Research). It is also a large
C++ system, available in 13 versions. It is devoted to
the reconstruction, simulation, and analysis of particle
trajectories gathered from high-energy physics experi-
ments run on the large hadron collider in Geneva. Ta-
ble 1 shows data related to the subject systems. We
choose three large and different subject systems to de-
crease possible external factors influencing our study, in
particular the context of development (industry-backed
open-source, open-source, academics), the age of the
system (5 years, more than 15 years, and a couple
of years), and the domain (development environment,
Web browser, data analysis).

3.2 Stability Plots

The granularity chosen for the stability analysis is
the class level (G = Class). Figure 2 shows the average
lexical stability (solid line) and the average structural
stability (dashed line), computed for the available ver-
sions of Eclipse. The first point in the diagram rep-

1http://www.mozilla.org/roadmap.html
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Figure 2. Lexical (solid line) and structural (dashed line) stability for Eclipse. Below the plot, prob-
ability that lexical and structural stability data are generated by the same probability distribution,
according to the Wilcoxon non-parametric test.

resents the average stability of version 2.0 compared
to 1.0. The next point represents the stability of the
version indicated on the horizontal axis, compared to
the previous version. For example, the second point is
the stability of version 2.0.1 compared to 2.0; the last
point is the stability of version 3.3M4 vs. 3.3M3.

The evolution of Eclipse highlights the existence of
releases where major changes occurred, resulting in
lower stabilities, and of releases where minor changes
happened and stability values are close to 1. For ex-
ample, version 2.0 compared to 1.0 shows high struc-
tural and lexical instabilities, resulting from major
code changes involving both the structure and the lexi-
con of the code (structural stability is 0.71, lexical sta-
bility is 0.87). Other versions associated with major in-
stabilities are: 2.1, 3.0, 3.1, 3.2. These observations are
in accordance with the common software development
process adopted with open-source systems, where ma-
jor versions implement large number of changes, while
minor versions contain mostly bug fixes.

Looking at the full plot depicted in Figure 2, we no-
tice a decrease in the number and amplitudes of the
instabilities. Even if only major changes are consid-
ered, it is apparent that the program is moving toward

maturity (compare structural stability at versions 3.0,
3.1, 3.2). However, such a trend is not necessarily
monotonic, as apparent from the stability of version
3.0 compared to 2.1.

At the bottom of Figure 2, we show the results of
the Wilcoxon test. The reported values are the proba-
bilities that the values observed for the structural and
lexical stabilities come from the same statistical dis-
tribution (p-value). It is commonly accepted that a
p-value below 0.05 allows rejecting the null hypoth-
esis with strong evidence. For every considered re-
lease of Eclipse, we reject the null hypothesis with
strong evidence and we conclude that structural and
lexical stabilities do not have the same distribution.
Although the temporal evolution looks parallel (high
structural (in)stability is associated with high lexical
(in)stability), the two types of stability follow different
rules and come from different maintenance processes.
Even in cases where the average stability values are
very close to each other (e.g., version 3.0.2), the under-
lying distributions are statistically different, and this
observation is true for all versions, including those in-
volving only minor changes. Finally, we observe that
the lexical stability is always higher than the structural
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stability, indicating that programmers tend to modify
the structure more than the lexicon. Even when the
system undergoes major changes, programmers prefer
to keep the lexicon stable, while they tolerate a higher
number of structural changes.

In the stability plots reported for Mozilla (in Figure
3) and Alice (in Figure 4), we observe similar patterns
as for Eclipse. The first considered version of Mozilla,
1.1, is already quite stable in comparison to the previ-
ous version, 1.0, with a structural stability of 0.98 and a
lexical stability of 0.99. These values are substantially
higher than those reported for Eclipse for the major
releases (e.g., 1.0–2.0). One can interpret this by con-
sidering that Mozilla derives from a previous system,
Netscape. Thus, its code base has already achieved a
relatively high maturity during the evolution of its pre-
vious incarnation. Hence, the 24 analyzed versions are
already more mature and stable. Nevertheless, some
versions are more instable than others, i.e., major re-
leases 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7, and an overall
trend towards higher stability is quite apparent. Lexi-
cal stability is always higher than structural stability,
similarly to Eclipse, and the difference between the dis-
tributions is statistically significant.

The evolution of Alice is characterized by stability
levels similar to Eclipse, with a trend towards higher
stability, indicating that this system is also approach-
ing maturity. A few instabilities departing from the
trend can be noticed for example at versions 3.03, 3.05,
4.01. This observation suggests that the development
of Alice may not follow a recognized software develop-
ment process, where minor releases should implement
only minor changes. The occurrence of major changes
with versions 3.03, 3.05, 4.01 has been confirmed by
the programmers working on Alice. Similarly to the
other two systems, the plot shows a correlation be-
tween structural and lexical stabilities, with the latter
always above the former. As this system evolve, major
changes in the lexicon corresponded to major changes
in the structure, but the lexicon was kept more stable
than the structure, both for major and minor releases.

3.3 Renaming

Renaming analysis was performed at the method
and function level (i.e., G = method), to increase the
probability of observing interesting renaming patterns.
Tables 2 and 3 show the numbers of renaming occur-
rences (last column) for each pair of consecutive ver-
sions. For comparison purposes, we report also the
number of unchanged methods and of newly added
methods. In all three systems, renamed entities repre-
sent a very small fraction of the total number of entities

Version Unchanged Added Renamed

1.0–2.0 26744 39233 10
2.0.1 65875 290 1
2.0.2 66118 276 2
2.1 60450 28138 19

2.1.1 88534 138 1
2.1.2 88662 51 0
3.0 58125 52577 40

3.0.1 110692 226 0
3.0.2 110880 52 0
3.1 90874 40217 4

3.1.1 130951 326 1
3.1.2 131268 41 0
3.2 121128 32087 29

3.2.1 153110 542 1
3.3M1 151799 3211 10
3.3M2 153885 3533 5
3.3M3 155623 3990 8
3.3M4 156977 5206 11

Average 106760 11674 7

Table 2. Unchanged, added and renamed en-
tities (methods) for Eclipse.

in each release. Even when compared to added enti-
ties, renamed entities represent only a small fraction.
Mozilla and Alice are somehow extreme cases, with no
renaming detected in any of the versions considered for
these programs (false negatives are possible). This ob-
servation does not contradict our previous results on
the lexical stabilities, the added entities being respon-
sible for the instabilities.

Considering the results shown in Tables 2 and 3, we
notice the impact of the programming language on the
programmers’ tendency to rename entities. In Eclipse
(a Java system), we observe a higher number of renam-
ing occurrences than in the other two programs, writ-
ten in C++, maybe because of the refactoring avail-
able in current Java development environments. Also,
instability of the lexicon in Eclipse may result from
the instability of its domain, with new concepts being
added in major releases to provide new features, while
the domains of the Web browser Mozilla and of the
simulator Alice are better defined and bound. Overall,
renaming represents a small fraction of the changes,
thus confirming the high stability of the lexicon during
the evolution of these software systems.

3.4 Discussion

With the above analyses, we are in a position to an-
swer the research questions RQ1 and RQ2 and suggest
rules on the evolution of structure and lexicon.

To answer RQ1, we compared the structural and
lexical stabilities of three large programs during their
evolution. The observation of the stability plots show
a general trend toward higher stability levels. Both
structural and lexical stabilities tend to increase over
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Version Unchanged Added Renamed

1.0–1.1 48586 1845 0
1.2 49293 2268 0

1.2.1 51532 9 0
1.3 49821 2421 0
1.4 49899 2494 0
1.5 51240 1597 0
1.5a 52043 555 0
1.5b 52051 777 0
1.6 51692 1492 0
1.6a 52368 559 0
1.6b 52365 517 0
1.7 51068 2615 0
1.7a 52604 935 0
1.7b 52672 804 0
1.7.2 53364 282 0
1.7.3 53003 28 0
1.7.5 52963 194 0
1.7.6 53137 42 0
1.7.7 53157 17 0
1.7.8 53174 0 0
1.7.10 53146 62 0
1.7.11 53179 49 0
1.7.12 53228 2 0

Average 51981 850 0

Version Unchanged Added Renamed

3.01–3.02 1062 675 0
3.03 951 3050 0
3.04 3641 1085 0
3.05 4437 1139 0
3.06 5307 1072 0
3.07 6239 1319 0
3.08 7410 517 0
3.09 7748 2853 0
4.01 8539 3326 0
4.02 10791 2988 0
4.03 11856 2236 0
4.04 12851 2487 0

Average 6736 1895 0

Table 3. Unchanged, added and renamed en-
tities (methods) for Mozilla (top) and for Alice
(bottom).

time, with more mature projects (i.e., Mozilla) having
higher stability values. This comparison shows that
the lexical stability is always higher than the structural
stability: the lexicon is more stable during the evolu-
tion of a system. We explain these findings in that the
lexicon forms an essential corner stone of the program-
mers’ understanding and mental models. Based on the
performed comparisons, structural and lexical stabili-
ties evolve following a similar pattern, but yet they de-
rive from different underlying statistical distributions.
Thus, the lexicon evolves independently of the struc-
ture. Again, we explain these findings by the impor-
tance of the lexicon and the care with which program-
mers modify the lexicon independently of the structure
of the system, to avoid having to change dramatically
their own mental models. We derive a first rule: The

lexicon is more stable than the structure of a software

system.

To answer RQ2, we computed the number of re-
naming occurrences across different versions for each

system. This computation shows that very few renam-
ing occurrences took place during the evolution of the
systems, thus confirming the importance of the lexi-
con. We conclude that changes to the lexicon are more
rare, may be more critical to the correspondence be-
tween the system and its domain, and should be more
carefully evaluated and analyzed. Also, the small num-
ber of renaming occurrences means that programmers
are reluctant to modify their mental models by modify-
ing the lexicon once they have developed such a model.
On one hand, this observation suggests that the lexicon
tends to consolidate and stabilize over time, requiring
little adjustments. On the other hand, this observa-
tion indicates an inflexibility of the systems and of the
programmers who cannot absorb lexical changes. Poor
identifiers might become part of the application lexi-
con. This small number of renaming occurrences could
also be the result of a careful domain analysis. We
derive a second rule: Changes to the lexicon are rare

during the evolution of a software system.

In addition to these two rules, we observe that all
three systems evolve toward stability, although occa-
sionally the trend is reverted at major releases. We ex-
plain this observation by the different nature of changes
in major releases and in minor releases. Major releases
often result from major efforts to improve or change
the functionalities and quality of the system and thus
its structure and lexicon. The amplitude of the insta-
bilities tends to decrease over time. These observa-
tions lead us to conclude with a more general rule of
software evolution: A system becoming more stable has

both structural and lexical stabilities converging toward

1.

The statistical analyses of the obtained results in-
dicate that lexical and structural stability values have
different distributions. This observation underpins a
different change process for these two aspects of the
code. Moreover, we can relate the absence of renam-
ing in C++ systems, compared to the occurrence of
renaming in the analyzed Java system, to the differ-
ent development environments available for these two
languages. Java development environments offer ad-
vanced refactoring support, including entity renaming.
Thus, this absence may indicate a strong need for tools
that support the evolution of the lexicon in C++ (in
particular, given the high number of unique identifiers
in Mozilla, 55244). Moreover, current development
environments should be enriched with tools devoted
to the understanding, cross-referencing, documenting,
and refactoring of the lexicon. Given the small frac-
tion of renaming, we argue that such a support is still
too limited and could be probably enhanced in several
ways: glossary construction tools should be added to
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ease understanding; cross-referencing tools could act
directly on the words composing the identifiers and in-
clude stemming to prevent lexical variations; abbrevi-
ation expansion tools could ease reading and under-
standing. Finally, documentation about the lexicon
should be provided with reference to a domain ontol-
ogy to enhance renaming with recommendations based
on the existing terms and their relations.

3.5 Threats to validity

The main threats to the validity of this study are
related to its external validity, i.e., to the generaliza-
tion of the results to other systems. We considered
three large systems and thus replications with more
systems is necessary to draw definitive conclusions that
hold generally for systems of different size, program-
ming language, or application domain. Moreover, the
choice of the systems, in particular Eclipse, may have
impacted the study. Eclipse is now widely used both in
the open-source community and in industry and, thus,
its developers must be careful when renaming public
identifiers.

To minimize the conclusion threats to validity, as-
sociated with the possibility of relating different data
distributions to different stability measures, we used a
non-parametric statistical test that makes no assump-
tion on the distribution of the observed values.

With regards to the construct threats to validity,
concerning the measures taken and the metrics adopted
in the experiments, we use a generic metrics for stabil-
ity, i.e., the cosine similarity. Different metrics (com-
ponents of the vectors) may highlight different aspects
of stability, possibly leading to different conclusions.

Finally, we could not identify any specific inter-

nal validity threat, i.e., threat associated with system-
specific factors affecting the lexical or structural stabil-
ity of the selected systems.

4 Related Work

Previous works on program identifiers focused on
their role in support to program understanding [1, 3,
5, 22]. Other work [2, 4, 11, 17] attempted to investi-
gate the information carried by the words composing
an identifier, their syntactic structure and quality.

The existence of so-called “hard words” that encode
core concepts into identifiers was the main outcome of
the study by Anquetil et al. [1]. An in-depth analy-
sis of the internal identifier structure was conducted
by Caprile et al. [3], while guidelines for the produc-
tion of high quality identifiers have been provided by
Deißenböck et al. [5]. Methods related to identifier

refactoring were proposed by Caprile et al. [4] and De-
meyer et al. [6].

Some studies [2, 13, 14] report how identifiers can
be used to recover traceability links. Merlo et al. [17]
analyzed informal information including identifiers and
comments in programs.

The role of identifiers in mapping the domain model
into the program model (i.e., programming entities)
was studied by Takang et al. [22]. A crucial role is rec-
ognized to be played by the program lexicon and the
coding standards in the so-called naturalization pro-
cess of software immigrants [20]. Lawrie et al. focused
on the quality of the identifiers [11]. The results of the
empirical study they conducted with over 100 program-
mers indicate that full words as well as recognizable
abbreviations lead to better comprehension.

Assuming a major role of identifiers in program com-
prehension, the novelty of the present work compared
to the existing literature is the analysis of the evolu-
tion of the lexicon over time, and its comparison with
structural evolution.

5 Conclusion

We analyzed the versions of three large systems,
namely Mozilla and Alice written in C++ and Eclipse
written in Java, to assess the stabilities of their struc-
tures and lexica. Observations indicate that these sys-
tems evolved towards higher stability, but occasionally
the trend is reverted, when instabilities are introduced
to accommodate changes. We derive three rules from
these observations: the lexicon is more stable than the
structure of a software system; changes to the lexi-
con are rare during the evolution of a software system;
and conclude that: a system becoming more stable has
structural and lexical stabilities converging toward 1,
i.e., developers focus on adding new functionalities and
correcting bugs rather than refactoring structure and
lexicon.

We argue that the limited ability to evolve the lexi-
con of a software system is due to the cost of building
a mental model of the system through its lexicon for
programmers and the lack of support offered by de-
velopment environments. These observations are con-
firmed by the higher number of occurrences of renam-
ing for the Java system compared to the C++ sys-
tems. Actually, most Java development environments
offer the renaming refactoring. We conclude that novel
support tools for the lexicon are needed, such as glos-
sary construction tools, cross-referencing tools, abbre-
viation expansion tools, and application domain on-
tologies.

22



The lexicon of a program represents a substantial in-
vestment for a software company, hence its value should
be preserved and increased over time, to take full ad-
vantage of its beneficial effects on program comprehen-
sion. We will devote our future work to the replication
of the experiments on other systems, considering other
programming languages and styles, as well as different
entity granularity. We will also complement the stabil-
ity metrics with quality metrics of the identifiers.
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