
A Differencing Algorithm for Object-Oriented Programs

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold

Georgia Institute of Technology
Atlanta, Georgia

E-mail: {term|orso|harrold}@cc.gatech.edu

Abstract
During software evolution, information about changes

between different versions of a program is useful for a num-
ber of software engineering tasks. For many of these tasks, a
purely syntactic differencing may not provide enough infor-
mation for the task to be performed effectively. This problem
is especially relevant in the case of object-oriented software,
for which a syntactic change can have subtle and unforeseen
effects. In this paper, we present a technique for compar-
ing object-oriented programs that identifies both differences
and correspondences between two versions of a program.
The technique is based on a representation that handles
object-oriented features and, thus, can capture the behav-
ior of object-oriented programs. We also present JDIFF, a
tool that implements the technique for Java programs, and
empirical results that show the efficiency and effectiveness
of the technique on a real program.

1. Introduction
Software maintenance tasks often involve analyses of

two versions of a program: an original version and a mod-
ified version. Many program-analysis tools that automate
these tasks require knowledge of the locations of changes
between the two program versions. In addition, some tools
also need the mapping of entities, such as statements and
methods, from the original version to their counterparts in
the modified version. Differencing algorithms can provide
information about the locations of changes and can classify
program entities as added, deleted, modified, or unchanged.

The results of these differencing algorithms are therefore
useful for many software-maintenance tasks. For example,
for program-profile estimation (also referred to as stale pro-
file propagation [15]), the differencing results, along with
the coverage or profile information for the original version
of the program, are used to estimate the coverage or profile
information for the modified version. This approach elim-
inates the cost of rerunning the test suite on the modified
version of the program to measure coverage or to obtain pro-
files. The approach also facilitates the estimation of cover-
age or profile information in cases in which this information

cannot be reproduced (e.g., coverage/profiles from deployed
software). For another example, the change information that
is produced by differencing is also useful for impact analysis
and regression testing. Impact analysis identifies the parts
of a program that are affected by changes and, thus, requires
knowledge of the location of such changes. Many regression
test selection techniques (e.g., [11, 13]) use change informa-
tion to select test cases to be rerun on modified versions of
the software. For yet another example, in collaborative envi-
ronments, differencing information is used for merging two
modified versions of a software system into a new version
that includes the changes from both earlier versions [8].

There are a number of existing techniques and tools for
computing textual differences between files (e.g., the UNIX
diff utility [9]). However, these techniques are limited
in their ability to detect differences in programs because
they provide purely syntactic differences and do not con-
sider changes in program behavior indirectly caused by syn-
tactic modifications.

Consider, for example, the two partial Java programs in
Figure 1: the original program P and the modified version
P ′. If we were to inspect the output of diff, run on P and
P ′, we would see that method B.m1 has been added in P ′

and that the exception-type hierarchy has changed. How-
ever, without additional analyses, it would not be straight-
forward to detect that, in P and P ′, the call to a.m1 in D.m3
can be bound to different methods, and the exception thrown
in D.m3 can be caught by a different catch block.

Other existing differencing techniques are specifically
targeted at comparing two versions of a program (e.g., [4,
6, 15]), but they are not suitable for object-oriented code.
BMAT [15] cannot recognize, for instance, differences
caused by changes in the exception hierarchy, and would
overlook that the exception thrown in D.m3 can be caught
by different catch blocks in P and P ′. Semantic diff [6]
is defined to work only at the procedure level and cannot be
straightforwardly extended to work on entire object-oriented
programs. Horwitz’s technique [4] is also not suitable for
object-oriented programs, in that it is defined only for a sim-
plified C-like language.

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Program P

p u b l i c c l a s s A {
vo id m1 () { . . . }

}

p u b l i c c l a s s B e x t e n d s A {

vo id m2 () { . . . }
}

p u b l i c c l a s s E1 e x t e n d s E x c e p t i o n {}
p u b l i c c l a s s E2 e x t e n d s E1 {}
p u b l i c c l a s s E3 e x t e n d s E2 {}

p u b l i c c l a s s D {
vo id m3(A a) {

a . m1 () ;
t r y {

th row new E3 () ;
}
c a t c h (E2 e) { . . . }
c a t c h (E1 e) { . . . }

}
}

Program P ’

p u b l i c c l a s s A {
vo id m1 () { . . . }

}

p u b l i c c l a s s B e x t e n d s A {
vo id m1 () { . . . }
vo id m2 () { . . . }

}

p u b l i c c l a s s E1 e x t e n d s E x c e p t i o n {}
p u b l i c c l a s s E2 e x t e n d s E1 {}
p u b l i c c l a s s E3 e x t e n d s E1 {}

p u b l i c c l a s s D {
vo id m3(A a) {

a . m1 ()
t r y {

th row new E3 () ;
}
c a t c h (E2 e) { . . . }
c a t c h (E1 e) { . . . }

}
}

Figure 1. Partial code for an original program (P) and the corresponding modified version (P ′).

To overcome problems with existing approaches and pro-
vide the differencing information required for tasks such as
program-profile estimation, impact analysis, and regression
testing, we defined a new graph representation and a dif-
ferencing algorithm that uses the representation to identify
and classify changes at the statement level between two ver-
sions of a program. Our representation augments a tradi-
tional control-flow graph (CFG)1 to model behaviors in the
program due to object-oriented features. Using this graph,
we identify changes in those behaviors and relate them to
the point of the code where the different behavior occurs.

Our algorithm extends an existing differencing algo-
rithm [7] and consists of five steps. First, it matches classes,
interfaces, and methods in the two versions. Second, it
builds enhanced CFGs for all matched methods in the orig-
inal and modified versions of the program. Third, it re-
duces all graphs to a series of nodes and single-entry, single-
exit subgraphs called hammocks. Fourth, it compares, for
each method in the original version and the corresponding
method in the modified version, the reduced graphs, to iden-
tify corresponding hammocks. Finally, it recursively ex-
pands and compares the corresponding hammocks.

The main contributions of the paper are:

• A new graph representation that models the behavior
of object-oriented programs.

• A differencing algorithm that works on the graph rep-
resentations and uses different heuristics to increase the
precision of the results.

• A set of empirical studies that show the efficiency and
precision of an implementation of our algorithm.

1A control-flow graph is a directed graph in which nodes represent
statements and edges (possibly labeled) represent flow of control between
statements.

2. Differencing Algorithm
In this section, we first overview the algorithm. Then, we

detail the levels at which the algorithm compares the origi-
nal and modified versions of the program. Finally, we dis-
cuss the algorithm’s complexity.

2.1. Overview

Our algorithm, CalcDiff, given in Figure 2, takes as
input an original version of a program (P) and a modified
version of that program (P ′). The algorithm also inputs
two parameters, which are used in the node-level matching.
Parameter LH is the maximum lookahead that CalcDiff
uses when attempting to match nodes in methods. Parameter
S is used when determining the similarity of two hammocks.
At completion, the algorithm outputs a set of pairs (N) in
which the first element is a pair of nodes and the second el-
ement is the status—either “modified” or “unchanged.” The
algorithm also returns sets of pairs of matching classes (C),
interfaces (I), and methods (M) in P and P ′.
CalcDiff performs its comparison first at class and in-

terface levels, then at the method level, and finally at the
node level. The algorithm first compares each class in P

with the like-named class in P ′, and each interface in P with
the like-named interface in P ′, and produces sets of class
pairs (C) and interface pairs (I), respectively. For each pair
of classes and interfaces, CalcDiff then matches methods
in the class or interface in P with methods having the same
signature in the class or interface in P ′; the result is a set of
method pairs (M). Finally, for each pair of concrete (i.e.,
not abstract) methods in M , the algorithm constructs en-
hanced CFGs (hereafter, ECFGs) for the two methods and
match nodes in the two ECFGs.

The next sections give details of CalcDiff, using the
code in Figure 1 as an example.

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Algorithm CalcDiff
Input: original program P

modified program P ′

maximum lookahead LH
hammock similarity threshold S

Output: set of (class,class) C
set of (interface,interface) I
set of (method,method) M
set of ((node,node),status) N

Declare: Node n, n′

Begin: CalcDiff
1: compare classes in P and P ′; add matched class pairs to C
2: compare interfaces in P and P ′; add matched interface pairs to I
3: for each pair (c,c’) in C or I do
4: compare methods; add matched method pairs to M
5: for each pair (m,m’) in M do
6: create ECFGs G and G′ for methods m and m′

7: identify, collapse hammocks in G until one node n left
8: identify, collapse hammocks in G′ until one node n′ left
9: N = N∪ HmMatch(n,n′,LH,S)

10: end for
11: end for
12: return C, I , M , N
end CalcDiff

Figure 2. Algorithm CalcDiff

2.2. Class and Interface Levels

CalcDiff begins its comparison at the class and in-
terface levels (lines 1–2). The algorithm matches classes
(resp., interfaces) that have the same fully-qualified name;
the fully-qualified name consists of the package name fol-
lowed by the class or interface name. Matching classes
(resp., interfaces) in P and P ′ are added to C (resp., I).
Classes in P that do not appear in set C are deleted classes,
whereas classes in P ′ that do not appear in set C are added
classes. Analogous considerations hold for interfaces. In the
example programs in Figure 1, each class in P has a match
in P ′, and, thus, there is a pair in C for each class in P .

2.3. Method Level

After matching classes and interfaces, CalcDiff com-
pares, for each pair of matched classes or interfaces, their
methods (lines 3-4). The algorithm first matches each
method in a class or interface with the method with the
same signature in another class or interface. Then, if there
are unmatched methods, the algorithm looks for a match
based on the name only. This matching accounts for cases
in which parameters are added to (or removed from) an ex-
isting method, which we found to occur in practice, and in-
creases the number of matches at the node level. Pairs of
matching methods are added to M . Like for classes, meth-
ods in P that do not appear in set M are deleted methods,
whereas methods in P ′ that do not appear in set M are added
methods. In the example (Figure 1), there would be a pair
in M for each method in P , but not for method B.m1 in P ′

(which would therefore be considered as added).

2.4. Node Level

CalcDiff uses the sets of matched method pairs (M)
to perform matching at the node level. First, the algorithm

considers each pair of matched methods 〈m,m′〉 in M , and
builds ECFGs G and G′ for m and m′ (lines 5-6). Then,
the algorithm identifies all hammocks in G and G′, and
collapses G and G′ to one node (lines 7-8); we call these
nodes n and n′, respectively. Next, CalcDiff calls pro-
cedure HmMatch, passing n, n′, LH , and S as parame-
ters. HmMatch identifies differences and correspondences
between nodes in G and G′ (line 9), and creates and re-
turns N , the set of matched nodes and corresponding labels
(“modified” or “unchanged”). Finally, CalcDiff returns
N , C, I , and M (line 12).

In the next section, we discuss the ECFG, the represen-
tation we use to perform node matching. Then, we discuss
hammocks and how we process them. Finally, we present
and explain our hammock-matching algorithm, HmMatch.

2.4.1 Enhanced Control-Flow Graphs
When comparing two methods m and m′, the goal of our
algorithm is to find, for each statement in m, a matching
(or corresponding) statement in m′, based on the method
structure. Thus, the algorithm requires a modeling of the
two methods that (1) explicitly represents their structure,
and (2) contains sufficient information to identify differ-
ences and similarities between them. Although CFGs can
be used to represent the control structure of methods, tra-
ditional CFGs do not suitably model many object-oriented
constructs. To suitably represent object-oriented constructs,
and model their behavior, we define the ECFG. ECFGs ex-
tend traditional CFGs and are tailored to represent object-
oriented programs. In the following, we illustrate how the
ECFG represents some important Java features.

Dynamic Binding
Because of dynamic binding, an apparently harmless modi-
fication of a program may affect call statements in a differ-
ent part of the program with respect to the change point. For
example, class-hierarchy changes may affect calls to meth-
ods in any classes in the hierarchy, and adding a method to a
class may affect calls to the methods with the same signature
in its superclasses and subclasses.

We illustrate how we model a call site, in which a method
m is called on an object o, to capture these modifications.
First, we create a call and a return node. Then, for each
dynamic type T that can be associated with o, we create
a callee node. A callee node represents the method that is
bound to the call when the type of o is T , and is labeled with
the signature of that method. We also create (1) a call edge
from the call node to each callee node, labeled with the type
that causes such a binding, and (2) a return edge from each
callee node to the return node. Note that if the call is static
(i.e., not virtual), there is only one callee node.

To illustrate, consider method D.m3 in P (Figure 1). The
ECFG for D.m3 (Figure 3(a)), contains two callee nodes (3

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Figure 3. ECFGs for D.m3 in P and P ′ (Figure 1).

and 4) because a’s dynamic type can be either A or B. Both
added nodes correspond to the same method, and thus have
the same label, because B does not override method m1.

Consider now one of the two differences between P and
P ′ in Figure 1: the redefinition of method m1 in B. Such a
change causes a possibly different behavior in P and P ′ for
the call to a.m1 in method D.m3: if the dynamic type of a

is B, the call results in an invocation of method A.m1 in P

and results in an invocation of method B.m1 in P ′.
Figure 3(b) shows how the different binding, and the pos-

sibly different behavior, is reflected in the ECFG for method
D.m3: the call edge labeled B from the call node for a.m1
(i.e., the call edge representing the binding when a’s type
is B) is now connected to a new callee node that repre-
sents method B.m1. This difference between the ECFGs
for D.m3 in P and P ′ lets our analysis determine that this
call to a.m1 may behave differently in P and P ′. Note that
a simple textual comparison would identify the addition of
the method, but it would require a manual inspection of the
code (or some further analysis) to identify the points in the
code where such change can affect the program’s behavior.

Variable and object types

When modifying a program, changing the type of a variable
may lead to changes in program behavior (e.g., changing
a long to an int). To identify these kinds of changes, in
our representation, we augment the name of scalar variables
with type information. For example, we identify a variable
a of type double as a double. This method for representing
scalar variables reflects any change in the variable type in
the locations where that variable is referenced.

Another change that may lead to subtle changes in pro-
gram behavior is the modification of class hierarchies (e.g.,
moving a class from one hierarchy to another, by changing
the class that it extends). Effects of these changes that re-
sult in different bindings in P and P ′ are captured by our

method-call representation. Other effects, however, must
be specifically addressed. To this end, instead of explic-
itly representing class hierarchies, we encode the hierar-
chy information at points where a class is used as an ar-
gument to operator instanceof , as an argument to opera-
tor cast, as a type of a newly created exception, and as the
declared type of a catch block. To encode the type infor-
mation, we use globally-qualified class names. A globally-
qualified class name for a class contains the entire inheri-
tance chain from the root of the inheritance tree (i.e., from
class java.lang.Object) to its actual type.2 The inter-
faces that are implemented by the class are also included in
globally-qualified names. If a class implements more than
one interface, the names of the interfaces are inserted in al-
phabetical order. This method reflects changes in class hi-
erarchies in the locations where the change may affect the
program behavior. For example, nodes 7 and 19 in Figure 3
show the globally-qualified name for class E3 in P and P ′,
respectively.

Exception Handling

As for dynamic binding, program modifications in the pres-
ence of exception-handling constructs can cause subtle side
effects in parts of the code that have no obvious relation to
the modifications. For example, a modification of an excep-
tion type or a catch block can cause a previously caught ex-
ception to go uncaught in the modified program, thus chang-
ing the flow of control in unforeseen ways.

To identify these changes in the program, we explicitly
model, in the ECFG, exception-handling constructs in Java
code. We represent such constructs using an approach simi-
lar to that used in Reference [3]. For each try statement, we
create a try node and an edge between the try node and the
node that represents the first statement in the try block.

We then create a catch node and a CFG to represent each
catch block of the try statement. Each catch node is labeled
with the type of the exception that is caught by the corre-
sponding catch block. An edge connects the catch node to
the entry of the CFG for the catch block.

An edge, labeled “exception”, connects the try node to
the catch node for the first catch block of the try statement.
That edge represents all control paths from the entry node
of the try block along which an exception can be propagated
to the try statement. An edge labeled “exception” connects
also the catch node for a catch block bi to the catch node for
catch block bi+1 that follows bi (if any). This edge repre-
sents all control paths from the entry node of the try block
along which an exception is (1) raised, (2) propagated to the
try statement, and (3) not handled by any of the catch blocks
that precede bi+1 in the try statement.

2For efficiency, we exclude class Object from the name, except that for
class Object itself.

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Our representation models finally blocks by creating a
CFG for each finally block, delimited by finally entry and fi-
nally exit nodes. An edge connects the last node in the corre-
sponding try block to the finally entry node. The representa-
tion also contains one edge from the last node of each catch
block related to the finally to the finally entry node. If there
are exceptions that cannot be caught by any catch block of
the try statement and there is at least one catch block, an
edge connects the catch node for the last catch block to the
finally entry node.

Because the information we use to build the exception-
related part of the ECFG is computed through interprocedu-
ral exception analysis [14], we can represent both intra- and
inter-procedural exception flow. If an exception is thrown
in a try block for a method m, the node that represents the
throw statement is connected to (1) the catch block in m

that would catch the exception, if such a catch block exists,
(2) the finally entry node, if no catch block can catch the
exception and there is a finally block for the considered try
block, or (3) to the exit node of m’s ECFG, otherwise. Con-
versely, if an exception is thrown in method m from outside
a try block, the node that represents the throw statement is
always connected to the exit node of m’s ECFG.

For example, consider again method D.m3 in P (Fig-
ure 1) and its ECFG (Figure 3(a)). The ECFG contains a
try node for the try block (node 6) and catch nodes for the
two catch blocks associated with the try block (nodes 8 and
10). The catch nodes are connected to the entry nodes of the
CFGs that represent the corresponding catch blocks (nodes
9 and 11). Also, the node that represents the throw state-
ment in the code is connected to the catch node whose type
matches the type of the exception (edge 〈7, 8〉).

Consider now the other difference between P and P ′:
the modification in the type hierarchy that involves class E3.
E3 is a subclass of E2 in P and a subclass of E1 in P ′. Such
a change causes a possibly different behavior in P and P ′

because the exception thrown in method D.m3 is caught by
different catch blocks in P and P ′. Because, in P ′, class E3
is no longer a subclass of E2, edge 〈7, 8〉, which connects
the throw node to the catch node for exception E2 in P , is
replaced by edge 〈19, 22〉, which connects the throw node
to the catch node for exception E1 in P ′.

Figure 3(b) shows how the possibly different behavior is
reflected in our representation: the node that represents the
throw statement is connected to two different catch nodes
in the ECFGs for D.m3 in P and P ′. In addition, the
nodes that represent the throw statement in P and P ′ (nodes
7 and 19) differ because of the use of globally-qualified
names for the exception types. These differences between
the two ECFGs let our analysis determine that, if the throw
statement is traversed, P and P ′ may behave differently.
Note that this would occur also for an exception that propa-
gates outside the method, due to the difference between the

globally-qualified names in nodes 7 and 19. Again, a simple
textual comparison would let us identify only the change in
the type of E3, whereas identifying the side effects of such
a change would require further analysis.

Synchronization

Java provides explicit support for threading and concur-
rency through the synchronized construct. Using such
construct, Java programmers can enforce mutual exclusion
semaphores (mutexes) or define critical sections, that is,
atomic blocks of code. Synchronized areas of code can be
declared at the block, method, and class level.

In the ECFG, we account for synchronized areas of code
by creating two special nodes: synchronize start and syn-
chronize end. A synchronize start node is added before the
node that represents the first statement of a synchronized
area of code. Analogously, a synchronize end node is added
after the node that represents the last statement of a synchro-
nized area of code.

In a program that uses synchronized constructs, changes
in behavior can occur because (1) an area of code that was
not synchronized becomes synchronized, (2) an area of code
that was synchronized is no longer synchronized, or (3) a
synchronized area is expanded or contracted. In the ECFG,
these cases are suitably captured by addition, removal, or re-
placement of synchronize start and synchronize end nodes.

Reflection

In Java, reflection provides runtime access to information
about classes’ fields and methods, and allows for using such
fields and methods to operate on objects. In the presence
of reflection, our representation can fail to capture some of
the behaviors of the program. Although some uses of reflec-
tions can be handled through analysis, others require addi-
tional, user-provided information. In our work, we assume
that such information is available and can be leveraged for
the analysis. In particular, for dynamic class loading, we as-
sume that the classes that can be loaded (and instantiated) by
name at a specific program point are specified by the user.

2.4.2 Hammocks

Our algorithm uses hammocks and hammock graphs for its
comparison of two methods. Hammocks are single-entry,
single-exit subgraphs [2] and provide a way to impose a hi-
erarchical structure on the ECFGs that facilitates the match-
ing. Formally, if G is a graph, a hammock H is an induced
subgraph of G with a distinguished node V in H called the
entry node and a distinguished node W not in H called the
exit node such that

1. All edges from (G - H) to H go to V.
2. All edges from H to (G - H) go to W.

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Figure 4. ECFG for D.m3 (a), intermediate ham-
mock graph for D.m3 (b), and resulting hammock
node for D.m3 (c)

Similar to the approach used in Reference [7], once a
hammock is identified, our algorithm reduces it to a ham-
mock node in three steps. First, the set of nodes in the ham-
mock is replaced by a new node. Second, all incoming edges
to the hammock are redirected to the new node. Third, all
edges leaving the hammock are replaced by an edge from
the new node to the hammock exit. The resulting graph at
each intermediate step is called a hammock graph.

Figure 4 illustrates the steps and hammock graphs in re-
ducing ECFGs for P to a single node. The regions inside
the dotted lines—nodes 2–4, nodes 6 and 7, and nodes 8–
11—in Figure 4(a) represent the three hammocks that are
identified and then replaced by hammock nodes 2’, 6’ and
8’, respectively, as shown in Figure 4(b). Then, all nodes
in Figure 4(b) are identified as a hammock and reduced to a
single node, as shown in Figure 4(c). To identify all ham-
mocks, we use an algorithm described in Reference [2].

A hammock H with start node s is minimal if there is
no hammock H ′ that (1) has the same start node s, and (2)
contains a smaller number of nodes. Hereafter, when we use
the term hammock, we always refer to a minimal hammock,
unless otherwise stated.

2.4.3 Hammock Matching Algorithm
Our hammock matching algorithm, HmMatch, is given in
Figure 5. The algorithm is based on Laski and Szermer’s al-
gorithm for finding an isomorphism between two graphs [7].
HmMatch takes as input n and n′, two hammock nodes,
LH , an integer indicating the maximum lookahead, and S,
a threshold for deciding whether two hammocks are similar

procedure HmMatch
Input: hammock node in original version n,

hammock node in modified version n′

maximum lookahead LH
hammock similarity threshold S

Output: set of pair 〈{node,node},label〉 N
Use: succs(A) returns set of successors of each node a in A

comp(m, n, S, N) returns true if m and n are matched
edgeMatching(n, n′) returns matched outgoing edge pairs

Declare: stack of 〈node, node〉ST
current depth d
expanded graphs Ge and G′

e

current nodes c and c′

lookahead node sets L and L′

pair 〈node, node〉match

Begin: HmMatch
1: expand n and n′ one level to graphs Ge and G′

e

2: add exit-node label pair 〈{x, x′}, “unchanged”〉 to N
3: push start node pair 〈s,s’〉 onto ST
4: while ST is not empty do
5: pop 〈c,c’〉 from ST
6: if c or c′ is already matched then
7: continue
8: end if
9: if comp(c, c′, S, N) then

10: match = {c, c′}
11: else
12: match = null; L = {c}; L′ = {c′}
13: for (d = 0; d < LH; d + +) do
14: L = succs(L); L′ = succs(L′)

15: if
∨

p′∈L′
comp(c, p′, S, N) ∨

∨
p∈L

comp(c′, p, S, N) then
16: set match to the first pair that matches
17: break
18: end if
19: end for
20: end if
21: if match != null then
22: push 〈match,“unchanged”〉 onto N
23: set c and c′ to the two nodes in match
24: else
25: push 〈{c,c’},“modified”〉 onto N
26: end if
27: push a pair of sink nodes for each edge pair returned from

edgeMatching(c, c′) onto ST
28: end while
end HmMatch

Figure 5. A hammock matching algorithm

enough to be considered a match. The algorithm outputs N ,
a set of pairs whose first element is, in turn, a pair of match-
ing nodes, and whose second element is a label that indicates
whether the two nodes are “unchanged” or “modified.”

To increase the number of matches, we modified Laski
and Szermer’s algorithm to allow for the matching of ham-
mocks at different nesting levels. This modification ac-
counts for some common changes that we encountered in
our preliminary studies, such as the addition of a loop or of
a conditional statement at the beginning of a code segment.
In the following, we first describe algorithm HmMatch and
then present an example of use of the algorithm on the code
in Figure 1.
HmMatch expands the two input hammock nodes, n and

n′, into two hammock graphs, Ge and G′
e (line 1). In the ex-

pansion process, a dummy exit node is added and all edges
from nodes in the hammock to the actual exit node are redi-
rected to the dummy node. At line 2, HmMatch adds the
two dummy exit nodes as a pair of matching nodes to set
N . Then, the algorithm starts matching nodes in the two

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

graphs by performing a depth-first pairwise traversal of Ge

and G′
e, starting from their start nodes. Thus, at line 3, the

pair of start nodes is added to stack ST , which functions as a
worklist. Each iteration of the main while loop (lines 4–28)
extracts one node pair from the stack and checks whether the
two nodes match. The body of the loop first checks whether
any node in the current pair is already matched (line 6). A
matched node that has already been visited must not be con-
sidered again; in this case, the algorithm continues by con-
sidering the next pair in the worklist (line 7).

To compare two nodes, HmMatch invokes
comp(c, c′, S,N) (line 9), where c and c′ are the two
nodes to compare, S is the similarity threshold for matching
hammocks, and N is the set of matching nodes. Unless
c and c′ are hammocks, comp returns true if the two
nodes’ labels are the same. If c and c′ are hammocks,
comp (1) recursively calls HmMatch to obtain the set of
matched and modified pairs, and (2) computes the ratio of
unchange-matched pairs in the set to the number of nodes in
the smaller hammock. If the ratio is greater than threshold
S, comp returns true (i.e., the two hammocks are matched)
and pushes all pairs in the set returned by HmMatch onto
N . Otherwise, comp returns false.

If two nodes c and c′ are matched (i.e., comp returns
true), they are stored in variable match as a pair (line 10)
and further added to the set of matched nodes with label
“unchanged” (line 22). Otherwise, HmMatch tries to find
a match for c (resp., c′) by examining c′’s (resp., c’s) de-
scendants up to a given maximum lookahead (lines 12–19).
First, match is initialized to null, and the lookahead sets L

and L′ are initialized to contain only the current nodes (line
12). The algorithm then executes the for loop until a match
is found or depth d reaches the maximum lookahead LH

(lines 13–19). At each iteration, the algorithm updates L

and L′ to the sets of successors of their members, obtained
by calling procedure succs (line 14). succs(L) returns, for
each node l in L and each outgoing edge from l, the sink
of such edge. If node l is a hammock node, succs returns
a set that consists of the start node and the exit node of the
hammock. In this way, a match can occur between nodes in
hammocks at different nesting levels. After computing the
lookahead sets L and L′, the algorithm compares each node
in set L′ with c and each node in set L with c′ (line 15). If
there is a match, the search stops, and the first matching pair
found is stored in variable match (lines 16–17). The match-
ing pair is then added to the set of matched nodes with label
“unchanged” (line 22). After two nodes have been matched
as unchanged, c and c′ are set to be the two nodes in the
matching pair (line 23).

If no matching is found, even after the lookahead, c and c′

are added to the set of matched nodes with label “modified.”
After processing nodes c and c′, the outgoing edges from

the two nodes are matched by calling edgeMatching(c, c′).

edgeMatching matches outgoing edges from c and c′ based
on their labels. For each pair of matching edges, the corre-
sponding sink nodes are pushed onto worklist ST (line 27).
At this point, the algorithm continues iterating over the main
while loop until ST is empty.

When the algorithm terminates, all nodes in the old ver-
sion that are not in any pair (i.e., that have not been matched
to any other node) are considered deleted nodes. Similarly,
all nodes in the new version that are not in any pair are con-
sidered added nodes.

To better illustrate HmMatch, we consider a partial run
of CalcDiff on the example code in Figure 1. In partic-
ular, we consider the execution from the point at which the
pair of methods D.m3 in P and P ′ is compared (line 5). At
line 6 of CalcDiff, the ECFGs for the methods are cre-
ated, and at lines 7 and 8 of the algorithm, hammocks in the
ECFGs are identified and reduced to single hammock nodes.
Then, at line 9, CalcDiff calls HmMatch, passing it the
two hammock nodes. For the example, we assume that the
lookahead threshold (LH) is 1, and that the hammock simi-
larity threshold (S) is 0.5.
HmMatch first expands the hammock nodes, adds the

dummy exit nodes, and suitably connects them (line 1).
Fig. 6 shows the resulting hammock graphs for the original
and modified version of the program. Then, HmMatch adds
dummy exit nodes 7 and 13 as a pair of matching nodes to
set N (line 2) and adds the pair of start nodes 〈1,8〉 to stack
ST (line 3).

In the first iteration over the main while loop, the algo-
rithm extracts node pair 〈1,8〉 from ST (line 5). Because
neither node is already matched, the algorithm compares
the two nodes by calling comp(1, 8, 0.5, N) (line 9), which
compares the nodes’ labels and returns true. Therefore, the
algorithm sets match to this pair (line 10), adds the pair of
nodes to N with label “unchanged,” and sets c and c′ to be
nodes 1 and 8 (lines 22-23), which in this case leaves c and
c′ unchanged. At this point, the outgoing edges from 1 and
8 are matched by calling edgeMatching(1, 8). Each node
in the entry pair has only one outgoing edge, and the two
edges match, so the pair of sink nodes 〈2, 9〉 is pushed onto
the worklist.

In the second iteration over the main while loop, because
nodes 2 and 9 are not already matched and are both ham-
mock nodes, comp (line 9) calls HmMatch(2,9,1,0.5).
HmMatch expands nodes 2 and 9 to get the two graphs
shown in Fig. 7, matches the dummy exit nodes 17 and
21, and pushes the pair of start nodes 〈14,18〉 onto ST1.3

This pair is then extracted from the stack and compared
(lines 5–9). Because both nodes have the same label, they
are matched, and the pair is pushed onto N1 with label
“unchanged” (lines 22–23). edgeMatching is then called

3We use the subscript notation to distinguish variables in recursively
called procedures.

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Figure 6. Hammock graphs for the original and
modified version of D.m3.

on the two nodes in the pair, 14 and 18; edgeMatching

matches like-labeled edges and the two pairs of sink nodes
〈15,19〉 and 〈16,20〉 are pushed onto ST1.

In the next iteration over the main loop, the nodes in pair
〈15,19〉 are compared, matched, and pushed onto N1 with
label “unchanged,” and the pair of direct successors of nodes
15 and 19, 〈17,21〉, is then pushed onto ST1. At the follow-
ing loop iteration, the nodes in pair 〈16,20〉 are compared.
Because they do not match, a lookahead is performed, try-
ing to match nodes 16 and 21 and nodes 20 and 17. Because
neither comparison is successful, the pair 〈16,20〉 is added
to N1 with label “modified,” and the pair of successors
〈17,21〉, is then pushed onto ST1 (so the pair appears twice
on the stack). In the next two iterations, the pair 〈17,21〉
is processed: because both nodes are already matched (be-
ing the dummy exits), the algorithm skips them. At this
point, ST1 is empty and HmMatch returns to the calling
procedure, comp. Because 3 out of 4 nodes are unchange-
matched, and the similarity threshold is 0.5, comp classifies
the two hammocks as matched. Therefore, the pairs in N1

are added to N , comp returns true (line 9), pair 〈2,9〉 is
pushed onto N with label “unchanged” (line 22), and pair
〈3,10〉 is pushed onto ST (line 27).

Pair 〈3,10〉 is then matched and pair 〈4,11〉 is pushed onto
ST and then compared in the next iteration. For the sake of
space, we do not show the comparison of these two ham-
mocks and the rest of the execution of the algorithm. The
part of the example shown so far already illustrates the main
parts of the algorithm, including the matching of hammock
nodes and the lookahead.

2.5 Worst-Case Time Complexity

The dominating cost of CalcDiff is the matching at
the node level. Let m and n be the number of nodes in all

Figure 7. Hammock graphs for hammock nodes 2
and 9 in Fiugure 6.

matched methods in the original and modified versions of
a program. Let k be the maximum number of nodes in a
method, and let the maximum lookahead be greater than k.
In the worst case, if no matching of hammocks at different
nesting levels occurs, the algorithm compares each node in
a method with all nodes in the matching method (at most,
k), leading to a worst-case complexity of O(k·min(m,n)).
If matching of hammocks at different nesting levels occurs,
the algorithm may compare a pair of nodes more than once.
To decide whether two hammocks are matched, HmMatch

compares each node in one hammock with nodes in the
other hammock and counts the number of matched nodes.
If lookahead is performed, the same pairs of nodes are com-
pared again in the context of the new pair of hammocks.
The number of times the same pairs of nodes are com-
pared depends on the maximum nesting depth of hammocks
and on the maximum lookahead. If d is the maximum
nesting level of hammocks and l is the maximum looka-
head, the worst-case complexity of our algorithm is then
O(k·min(d, l)·min(m,n)).

3. Studies
To evaluate our algorithm, we implemented a tool, JD-

IFF, and performed three studies on a real, medium-sized
program. In this section, we describe our experimental
setup, present the studies, and discuss their results.

3.1. Experimental Setup
JDIFF is a Java tool that implements our differencing

algorithm. The tool consists of two main components: a
differencing tool and a graph-building tool. The differenc-
ing tool inputs the original and modified versions of a pro-
gram, compares them, and outputs sets of pairs of match-
ing classes, methods, and nodes. To build ECFGs, the tool
leverages the capabilities of JABA (Java Architecture for
Bytecode Analysis),4 a Java-analysis front-end developed
within our research group. We are currently using JDIFF
in our JABA-based impact analysis and regression testing
tools [10].

As a subject for our studies, we use JABA, the analy-
sis tool described above. JABA contains 550 classes, 2800

4http://www.cc.gatech.edu/aristotle/Tools/jaba.
html

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

methods, and approximately 60KLOC. To evaluate the ef-
fectiveness of our algorithm, we ran JDIFF on pairs of suc-
cessive versions of JABA extracted from its CVS repository.

For the timing experiments, we used two dedicated
Pentium4 2.80GHz PCs, with 1 GB of memory, running
GNU/Linux 2.4.22.

There are several threats to the validity of our studies.
An external threat exists because we conducted the stud-
ies using only one subject program. Thus, we cannot claim
generality for our results. However, the subject program is
a real program, that is used constantly by students and re-
searchers in and outside our group, and the changes con-
sidered are real changes that include bug fixes and feature
enhancements. Another external threat to validity exists for
the first study: we used only one test suite throughout the
study. Different test suites may generate different results.

Threats to internal validity mostly concern possible er-
rors in our algorithm implementations and measurement
tools that could affect outcomes. To control for these threats,
we validated the implementations on known examples and
performed several sanity checks.

3.2. Study 1

The goal of Study 1 is to assess the effectiveness of our
algorithm for a particular task—coverage estimation.

For the discussion, let P represent the original version of
the program, P ′ represent the modified version of P , and
T represent a test suite used for testing P . The coverage
information for P , CP , records, for each test case t ∈ T ,
entities exercised by t. Coverage estimation estimates CP ′

from CP and the correspondences between entities in P and
P ′. In this study, we consider a node in the ECFG as an
entity in the program. Therefore, the coverage information
is expressed as a set of nodes that each test case t exercises.

We used four versions of JABA and its development test
suite T , which contains 707 test cases and covers approx-
imately 60% of the program. The size of the change sets
between versions in the pairs ranges from a few modified
methods to approximately 20 methods.

Let Pi represent version i of the JABA program, where
1 ≤ i ≤ 4. We first ran the test suite T on each version
Pi to collect CPi

. Second, for each 〈P1, Pi〉 pair, where
2 ≤ i ≤ 4, we computed the node correspondences between
P1 and Pi using JDIFF. Third, we computed the estimated
coverage as follows:

• For each node n in the modified version (i.e., the sec-
ond element of each 〈P1, Pi〉 pair), if there exists a cor-
respondence between node n and some node n′ in the
original version (i.e., P1), then we estimate that n is
exercised by the test cases in T that exercised n′.

• If there is no such correspondence, we visit the prede-
cessors of n in the ECFG until either the predecessor is

a branch or the predecessor is a node q that has a corre-
spondent node q′ in P1. In the former case, n is desig-
nated as “not exercised.” In the latter case, we estimate
that n is exercised by all the test cases in T that exer-
cised q′ (because n is in the same control-dependence
region of q).

Finally, we compared the estimated and the actual cov-
erage, and recorded the number of nodes whose coverage is
correctly estimated.

Number Avg. Avg. Correct/ Correct/
Pair of Nodes Covered Test Case Test Suite
v1,v2 22026 12591.75 98.57 97.17
v1,v3 22063 12620.75 98.46 97.17
v1,v4 22315 12661.23 98.03 96.20

Table 1. Coverage-estimation results for part 1 of
Study 1.

Table 1 shows, for each pair of versions, the number of
nodes in the parts of the modified version that we consider
(Number of Nodes), the average number of nodes covered
by a test case (Avg. Covered), the number of nodes whose
coverage of each test case t ∈ T is correctly estimated, av-
eraged over all test cases (Avg. Correct / Test Case), and
the number of nodes whose coverage of the entire test suite
is correctly estimated (Correct / Test Suite). For example,
v3 contains 22,063 nodes, and a single test case exercised
about 12,620 nodes on average. For this set of nodes, on av-
erage, 98.46% of the nodes’ coverage for a single test case
and 97.17% of the nodes’ coverage for the entire test suite
are correctly estimated. The results show that estimated cov-
erage is high for the pairs we studied but that, as expected,
it slightly degrades as the change set becomes larger (i.e.,
when considering pairs 〈v1, v3〉 and 〈v1, v4〉).

To further evaluate the effectiveness of our algorithm
when used for coverage estimation, we applied it to pro-
gram versions with a large number of changes. To this end,
we extracted four additional versions of JABA from its CVS
by selecting a period of time in which JABA was undergo-
ing a major restructuring. We call these versions va, ..., vd.
We constructed pairs of versions using the first version va

as the first element of each pair. The sizes of the change
sets in these pairs are 15 methods for 〈va, vb〉, 100 methods
for 〈va, vc〉, and 150 methods for 〈va, vd〉. The test suite
for these versions consists of 155 test cases, which covers
approximately 45% of the program.

Table 2 gives the data for this set of pairs of versions
in the same format as Table 1. The results show that, also
for this set of versions, the quality of estimated coverage
degrades when the change sets becomes larger. However,
for the largest change set, our algorithm still computes esti-
mated coverage that correctly matches the actual coverage
for 84.70% of the nodes (on average) for the single test

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Pair Number Avg. Avg. Correct/ Correct/
of Nodes Covered Test Case Test Suite

va,vb 19639 12199.60 96.25 95.30
va,vc 20076 12343.54 86.08 80.97
va,vd 20258 12316.49 84.70 77.81

Table 2. Coverage-estimation results for part 2 of
Study 1.

cases, and for 77.81% of the nodes for the entire test suite.
Our results are consistent with the findings in Reference [1].

3.3. Study 2

The goal of Study 2 is to measure the efficiency of JDIFF
for various values of lookahead, LH , and hammock simi-
larity threshold, S.

In this study, we used the first three pairs of versions of
JABA that we used in Study 1. We ran JDIFF on each pair of
versions 〈P1, Pi〉, where 2 ≤ i ≤ 4, with different values for
LH and S, and collected the running times. This running
time includes the time for creating the ECFGs, as well as
comparing and matching classes, interfaces, methods, and
nodes in the two programs.

Figure 8 shows the running time (in seconds) of JDIFF
on a number of pairs of versions, lookaheads, and similar-
ity thresholds. The x-axis represents the value of LH , and
the y-axis represents the running time for each pair of ver-
sions and for two different values of S. For example, JDIFF
took about 375 seconds when run on versions 〈v1, v2〉 for
(S > 0) and LH of 10. We present the results for only
two values of S (S = 0 and S > 0) because we found
that, for this subject, the running time is almost the same for
S = 0.2, 0.4, 0.6, and 0.8. Our results show that, when LH

is constant, the value of S affects the running time of the
comparison. Intuitively, with S = 0, the algorithm matches
a hammock in the original program’s ECFG with the first
hammock found in the modified version’s ECFG. Thus, each
hammock is compared at most once, and the running time
is almost the same regardless of the value of LH . In ad-
dition, because each hammock is compared at most once,
the running time for these cases is less than for cases where
S > 0, where a hammock may be compared more than once.
For S > 0, the number of times a hammock is compared
depends on the lookahead and on the actual changes. As
shown in the results, only in this case does the time slightly
increase when the lookahead increases. Note that, in all
cases, JDIFF took less than seven minutes to compute the
differences between a pair of versions.

3.4. Study 3

The goal of Study 3 is to evaluate the effectiveness of our
algorithm compared to Laski and Szermer’s algorithm [7].

To do this, we compared the number of nodes that each
algorithm matches. For the study, we implemented Laski

200

250

300

350

400

450

0 10 20 30 40 50 60
lookahead

Ru
nn

ing
tim

e(
sec

)

v1-v2 (S=0)
v1-v3 (S=0)
v1-v4 (S=0)
v1-v2 (S>0)
v1-v3 (S>0)
v1-v4 (S>0)

Figure 8. Average time (sec) for various pairs of
versions, lookaheads, and similarity thresholds.

and Szermer’s algorithm (LS) by modifying our tool. Ref-
erence [7] does not discuss how LS handles some specific
cases. For example, when two hammocks have the same
label, they are expanded and compared, but the algorithm
behavior is undefined in the case in which the expanded
graphs cannot be made isomorphic by applying node renam-
ing, node removing, and node collapsing. We handle those
cases in the same way for both algorithms. There are three
differences between the two algorithms: (1) LS does not use
the lookahead but searches the graphs until the hammock
exit node is found; (2) LS does not allow the matching of
hammocks at different nesting levels; and (3) LS does not
use the hammock similarity threshold but decides whether
two hammocks are matched by comparing the hammocks’
entry nodes only.

We ran both algorithms on the first three pairs of ver-
sions of JABA used in Study 1, and counted the number of
nodes in each group of added, deleted, modified, and un-
changed nodes. We consider only nodes in modified meth-
ods because added, deleted, and unchanged methods do not
show differences in matching capability between the two al-
gorithms. In our preliminary studies, we found that LS iden-
tified, in the modified methods, about 5,000 nodes as added
and about 5,000 nodes as deleted.

Figure 9 presents the results of this study. The horizontal
axis represents the size of LH , and the vertical axis shows,
for each pair of versions and values of S, the percent in-
crease in the number of matched nodes over the number
of nodes identified as added by LS. For example, our al-
gorithm (for S > 0, and LH = 20) matches about 55%
more nodes than LS when both algorithms run on the same
pair 〈v1, v2〉. In this case, our algorithm matches 2750 ad-
ditional nodes over the number of nodes matched by LS.
The results show that the increase achieved by our algorithm
ranges from about 17% to over 65%. Note that added nodes

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

0

10

20

30

40

50

60

0 10 20 30 40 50 60
lookahead

%
inc

rea
se

in
the

nu
mb

er
of

ma
tch

ed
no

de
s

v1-v2 (S=0)
v1-v3 (S=0)
v1-v4 (S=0)
v1-v2 (S>0)
v1-v3 (S>0)
v1-v4 (S>0)

Figure 9. Percentage increase in matched nodes.

identified by LS or CalcDiff can be classified as (1) code
that is actually added, or (2) code that cannot be matched
because of the limitations of the algorithms. Therefore, to
measure the relative effectiveness of the two algorithms, the
percentage should be computed using the number of nodes
only in the second category. In this sense, the percent im-
provement that we measured in our study is an underesti-
mate of the actual improvement.

The results also show that the number of matched nodes
increases when LH increases, which is intuitively reason-
able. Finally, the results show that the number of matched
nodes is slightly higher in the case of S > 0 than in the case
of S = 0, for LH > 10.

4. Related Work

There are a number of existing techniques for comput-
ing differences between two versions of a program that are
related to ours. The UNIX diff utility [9], as discussed
in the Introduction, compares two text files line-by-line and
outputs differences in the files. However, because diff
compares files line-by-line, it does not recognize differences
that can occur because of changes in object-oriented fea-
tures such as changes related to polymorphism and excep-
tion handling. In contrast, our differencing technique does
handle these object-oriented features, and thus, can provide
information that can be used for various software engineer-
ing tasks.

BMAT [15] (binary matching tool) is similar to our algo-
rithm. However, it performs matching on both code and data
blocks between two versions of a program in binary format.
BMAT uses a number of heuristics to find matches for as
many blocks as possible. Being designed for the purpose of
program profile estimation, BMAT does not provide infor-
mation about differences between matched entities (unlike

our algorithm). Moreover, BMAT does not compute infor-
mation about changes related to object-oriented constructs.
Semantic diff [6], compares two versions of a pro-

gram procedure-by-procedure. Semantic diff com-
putes a set of input-output dependencies for each proce-
dure and identifies the differences between two sets from the
same procedure in the original and the modified versions.
However, semantic diff is performed only at the pro-
cedure level and may miss some changes that do not affect
the dependencies of variables (e.g., changing branch condi-
tions) but may drastically change the behavior of the pro-
gram. Furthermore, because there is no input-output depen-
dency changes, it will fail to detect some kinds of changes
(e.g., constant value changed) that may affect the program
behavior. Conversely, our technique is able to identify these
differences.

Horwitz’s approach [4] computes both syntactic and se-
mantic differences between two programs using a partition-
ing algorithm. Horwitz’s technique is based on the program
representation graph (PRG). Because PRGs are defined only
for programs written in a language with scalar variables, as-
signment statements, conditional statements, while loops,
and output statements only, the technique is limited and can-
not be used in general. In particular, it cannot be applied to
object-oriented programs.

Laski and Szermer present an algorithm that analyzes
corresponding control-flow graphs of the original and mod-
ified versions of a program [7]. Their algorithm localizes
program changes into clusters, which are single entry, sin-
gle exit parts of code. Clusters are reduced to single nodes
in the two graphs, and then these nodes are recursively ex-
panded and matched. As we discussed in Section 2.4.3, our
algorithm is based on this algorithm. However, we make
several modifications to the algorithm to improve match-
ing capability (e.g., matching hammocks at different nest-
ing levels, hammock similarity metric, and threshold). In
Study 3, we show how our algorithm outperforms, for the
case considered, Laski and Szermer’s approach in terms of
effectiveness in matching two programs.

A recent survey on software merging [8] categorized
existing merging techniques. Because differencing ap-
proaches are used in the context of software merging, the
survey also reported several structure-based differencing ap-
proaches and tools used for merging, such as LTDIFF (used
in ELAM [5]). These approaches are based on variants of
tree-differencing algorithms that operate on programs’ parse
trees and have some advantages over purely text-based ap-
proaches, such as diff. However, these approaches are still
limited when used for object-oriented code. For example,
these structure-based algorithms work at a finer granularity
and can recognize the type of each word in the program text,
but they cannot identify the differences in behavior caused
by dynamic bindings. According to the categorization pre-

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

sented in the survey, JDIFF is a semantic, state-based ap-
proach because it captures the changes in program behavior
and uses only the information in the original and modified
versions of the program.

Although not directly related to this work, Reference [12]
presents an interesting study of the type of changes that oc-
cur in object-oriented systems during maintenance. Their
results confirm that changes in such systems often involve
changes in the behavior of object-oriented constructs that
must be suitably handled.

5. Conclusion

In this paper, we presented an algorithm for comparing
two Java programs. The algorithm is based on a method-
level representation that models the object-oriented features
of the language. Given two programs, our algorithm identi-
fies matching classes and methods, builds our representation
for each pair of matching methods, and compares the rep-
resentation for the two methods to identify similarities and
differences. The results of our differencing can be used for
various development and maintainance tasks, such as impact
analysis and regression testing.

We also presented a tool that implements our technique
(JDIFF), and a set of studies that show the effectiveness and
efficiency of the approach. Study 1 shows how our differ-
encing technique can be successfully applied to coverage es-
timation. Study 2 illustrates the efficiency of the technique
for different execution parameters. Study 3 compares our
technique to the most closely related technique and shows
that our technique achieves improvements from 17% to over
65% in terms of matching unchanged parts of the code.

In future work, we will investigate additional heuristics
to further improve the matching results. Our initial experi-
ences in this direction show that there are a number of trade-
offs, in terms of execution cost versus precision, that can be
leveraged. We will also study typical changes in evolving
systems to assess whether the differencing algorithm could
utilize known change patterns. Finally, we will investigate
the use of our differencing algorithm to perform test suite
augmentation—selecting new test cases for a modified sys-
tem based on the types of changes performed on the system.

Acknowledgments

This work was supported in part by National Science
Foundation awards CCR-0306372, CCR-0205422, CCR-
9988294, CCR-0209322, and SBE-0123532 to Georgia
Tech, and by the State of Georgia to Georgia Tech under
the Yamacraw Mission. Kathy Repine implemented a pre-
liminary version of jdiff. The anonymous reviewers pro-
vided useful comments that helped improve the quality of
the paper.

References
[1] S. Elbaum, D. Gable, and G. Rothermel. The impact of soft-

ware evolution on code coverage information. In Proceedings
of the International Conference on Software Maintenance,
pages 169–179, Florence, Italy, November 2001.

[2] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Transac-
tions on Programming Languages and Systems, 9(3):319–349,
July 1987.

[3] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for java software. In Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 312–326, November 2001.

[4] S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. In Proceedings of the
ACM SIGPLAN’90 Conference on Programming Language
Design and Implementation, pages 234–246, White Plains,
NY, June 1990.

[5] J. J. Hunt and W. F. Tichy. Extensible language-aware merg-
ing. In Proceedings of the International Conference on
Software Maintenance, pages 511–520, Montreal, Quebec,
Canada, October 2002.

[6] D. Jackson and D. A. Ladd. Semantic diff: A tool for summa-
rizing the effects of modifications. In Proceedings of the Inter-
nation Conference on Software Maintenance, pages 243–252,
Victoria, B.C., September 1994.

[7] J. Laski and W. Szermer. Identification of program nodifi-
cations and its applications in software maintenance. In Pro-
ceedings of IEEE Conference on Software Maintenance, pages
282–290, Orlando, FL, November 1992.

[8] T. Mens. A state-of-the-art survey on software merging. IEEE
Transasctions on Software Engineering, 28(5):449–462, May
2002.

[9] E. W. Myers. An O(ND) difference algorithm an its variations.
Algorithmica, 1(2):251–266, 1986.

[10] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. In Pro-
ceedings of the European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Helsinki, Finland, September 2003.

[11] A. Orso, N. Shi, and M. J. Harrold. Scaling regression test-
ing to large software systems. In Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering, Newport Beach, CA, October 2004 (to appear).

[12] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, and
J. Dolby. Chianti: A prototype change impact analysis tool
for java. Technical Report DCS-TR-533, Department of Com-
puter Science, Rutgers University, September 2003.

[13] G. Rothermel and M. J. Harrold. A safe, efficient regress-
ing test selection technique. ACM Transactions on Software
Engineering and Methodology, 6(2):173–210, April 1997.

[14] S. Sinha and M. J. Harrold. Analysis and testing of programs
with exception handling constructs. IEEE Transaction on Soft-
ware Engineering, 26(9):849–871, September 2000.

[15] Z. Wang, K. Pierce, and S. McFarling. BMAT – a binary
matching tool for stale profile propagation. The Journal of
Instruction-Level Parallelism, 2, May 2000.

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

