
A Lightweight Transformational Approach to

Support Large Scale Adaptive Changes

Michael L. Collard
Department of Computer Science

The University of Akron

Akron, OH 44325

collard@uakron.edu

Jonathan I. Maletic
Department of Computer Science

Kent State University

Kent, OH 44242

jmaletic@cs.kent.edu

Brian P. Robinson
ABB Corporate Research

Raleigh, NC 27606

Brian.p.robinson@us.abb.com

Abstract— An approach to automate adaptive maintenance

changes on large-scale software systems is presented. This

approach uses lightweight parsing and lightweight on-the-fly

static analysis to support transformations that make

corrections to source code in response to adaptive maintenance

changes, such as platform changes. SrcML, an XML source

code representation, is used and transformations can be

performed using either XSLT or LINQ. A number of specific

adaptive changes are presented, based on recent adaptive

maintenance needs from products at ABB Inc. The

transformations are described in detail and then demonstrated

on a number of examples from the production systems. The

results are compared with manual adaptive changes that were

done by professional developers. The approach performed

better than the manual changes, as it successfully transformed

instances missed by the developers while not missing any

instances itself. The work demonstrates that this lightweight

approach is both efficient and accurate with an overall cost

savings in development time and effort.

Keywords- Source Code Transformation, static analysis

I. INTRODUCTION

Many industrial software products have very long life-
cycles. These systems represent substantial investments and
are valuable assets that support the business of the
organization. Not only do these systems change as new
features are added, but they must also undergo modification
to address changes to dependent platforms and libraries.
Here, we are particularly interested in these adaptive
maintenance tasks. These tasks involve changing the
software to respond to changes in its environment or
platform (e.g., operating systems, compilers, hardware
components, APIs, etc).

Adaptive maintenance changes are unique, as they are
typically outside of an organization’s control. Hardware
component obsolescence, changes to underlying operating
systems, and new compiler or platform versions are all
examples of unexpected changes that have occurred recently
at ABB Inc. As these changes are oftentimes unexpected,
organizations are forced to react to these adaptive changes as
they are discovered. This has a negative impact on the
schedule and cost for projects. Moreover, the changes are
primarily repetitive in nature and can be highly fault prone
when done manually by a developer.

When an organization is faced with these changes, they
must either adapt the system or, if possible, postpone the
changes until a later time. While postponement is quite
common, especially in operating systems and platforms,
there are many practical reasons to make the investment.
These include access to new features and technology that
may be included in the new version as well as customer or
market requirements. It may also prevent customers from
having to perform invasive workarounds.

Ideally, changes to a critical part of a software’s
environment will be clearly documented in the change log or
release notes. Unfortunately, there is rarely enough detail to
clearly direct a developer to the needed changes. Due to this,
many developers identify adaptive maintenance problems by
experimentation. The impact environmental changes have
on a system can be observed statically at build time, or
dynamically at run time. Once the changes necessary to
address the problems are identified, developers can be
assigned to manually identify the errors and make
corrections in the source code. Regression testing can then
be done to identify any errors that occur due to the changes.

This paper presents a lightweight transformational
approach to automate adaptive maintenance changes using
the srcML toolkit [4, 11]. srcML was selected, as it
preserves the programmer's view of the source document.
As the resulting code from these transformations will be
manually maintained by developers going forward, any
changes to the overall structure or style may lead to a
rejection of the new changes, as described in a number of
studies on past real world projects [5, 13]. Examples have
been given [5] on large projects where any potential changes
to the system had to be presented to the programmers in the
exact view of the source code that they were familiar with.
If not, the proposed changes were rejected.

The approach is also selected because it is robust in
working with incomplete code, different compiler versions,
and partially migrated source code. Well known XML
technologies such as XPath, XSLT, and LINQ can be used,
thus reducing the overhead of training and other adoption
costs. The technique is evaluated by automating six types of
adaptive maintenance changes on two different ABB Inc.
products that were previously changed manually by
developers. The study shows that this approach is very

efficient and is more accurate at identifying the changes than
the manual change process.

While other approaches have been successfully used to
perform these types of adaptive maintenance changes, most
notably the work by Baxter [1], here we demonstrate that a
combination of lightweight parsing and lightweight static
analysis is sufficient to accomplish this task in the context of
large scale systems. Additionally, we demonstrate that
standard, well known XML technologies can be used to
address this problem in a cost effective manner.

This paper is organized as follows. Section II presents the
technique and the srcML tool. Section III presents the
transformations necessary for the migration along with the
XSLT implementations. A brief discussion of srcML
extension functions that provide the lightweight static
analysis needed is given in Section IV. Section V describes
the results of a case study of our transformations applied to
two large industrial software systems that underwent
adaptive maintenance changes. We follow that with related
work and conclusions.

#include "rotate.h"

// rotate three values
void rotate(int& n1, int& n2, int& n3)
{
 // copy original values
 int tn1 = n1, tn2 = n2, tn3 = n3;

 // move
 n1 = tn3;
 n2 = tn1;
 n3 = tn2;
}

Figure 1. Source code example.

II. SRCML OVERVIEW AND IMPROVEMENTS

Our approach for supporting adaptive maintenance tasks
is based on the srcML format and toolkit. srcML (SouRce-
Code Markup Language) [4, 11] is an XML format used to
augment source code with syntactic information from the
AST to add explicit structure to program source code. All
original text of the source code, including comments,
preprocessing information, and formatting, is preserved and
identified for use by program-comprehension tools and
development environments. The focus is to construct a
document representation in XML instead of a traditional
source-code document or data representation. This
representation supports a programmer-centric, rather than
compiler-centric, view of the source code.

The srcML format is supported with a toolkit, src2srcml
and srcml2src, that supports conversion between source code
and the format. Multiple languages, including C, C++, and
Java, are supported. This format has been previously used
for lightweight fact extraction [2], source code
transformation [3], and pattern matching of complex code
[8]. The format and translation tools for srcML have many
advantages for adaptive maintenance tasks.

Complete view of the code: srcML takes an unprocessed
view of the source code. This means that all preprocessor
statements, template definitions, etc. are preserved and can

be transformed. For example Figure 1 shows a small C++
function and Figure 2 shows the srcML for this code. Note
that all original program elements and text are preserved.

Robustness: srcML is able to represent code that cannot
be compiled. The src2srcml tool is able to convert
incomplete code even when there are translation problems.
These problems only have an effect on the quality of the
markup and do not lead to a loss of any of the original text.

Efficiency: The tool is very efficient with a translation
speed of 25 KLOC per second and can handle almost 3,000
files per minute, e.g., the entire Linux kernel can be
converted to the srcML format in less than seven minutes.
Going from srcML back to source code is handled by the
tool srcml2src, which is even faster with speeds over 250
KLOC per second.

Independence: The srcML translator is not based on the
parser of a particular compiler. It contains its own parser
that only needs to understand enough about the code to insert
the proper markup. Because it stops at this markup, it can
allow syntax that a particular compiler cannot.

XML: The srcML format is an XML representation, and
is designed to take advantage of current and future XML
tools for transformation, validation, etc. To date the format
has been successfully used with XSLT, DOM, and SAX.

The representation and toolkit are used to support
lightweight fact extraction, querying, transformation, and
validation of source code. With this format, our approach
must address two requirements to fully address the problem
of adaptive changes. First, we must specify the location of
the transformation. For a given maintenance task, the area of
the code that needs to be transformed must be identified, e.g.,
specific method or statement. With the srcML format, these
locations in the code can be specified with either an XPath
expression or a LINQ query, both of which use the srcML
markup. For example, to match all if-statements that have
the new operator in a condition (for C++) the XPath is:

.//src:if[src:condition/op:operator=’new’]

An example LINQ query is:

var ifStmts = from stmt in doc.Descendants
 (SrcML.SRCNS + "if")
 where stmt.Element(SrcML.SRCNS + "condition").
 Descendants (SrcML.OPNS + "operator")
 .Any(x => x.Value == "new") select stmt;

Second, given the particular statement or location to be
transformed, we must state the transformation. The
transformation describes how the code is modified, including
any additions and/or deletions to the code. The generation of
the new code often requires information from the original
code, some of which may not be explicit, and static analysis
of the code may be required to obtain this pertinent
information. Based on the srcML format, transformations
for adaptive maintenance can be written using any XML
transformation tool, e.g., SAX, DOM, etc.

For the rest of this paper, we write our transformations in
XSLT. This representation for the transformation was
chosen mainly because it allows us to express the location of

the needed transformation in XPath. It is also a widely used
XML technology that is well understood.

Once an XSLT template is created that matches the
location of the transformation, the body of that XSLT
template can be used to construct the necessary
modifications. This modified code can include literal text for
added code, copies of parts of the original code, static
analysis conducted directly in the transformation, or any
combinations of these. More details on the transformations
are provided in Section V.

Another advantage of using XSLT is that XPath
extension functions can be created. For this application,
these extension functions are used to encapsulate
complicated and difficult-to-understand XPath patterns for
locating the source of a transformation. More importantly,
they can be used to encapsulate the on-the-fly static analysis
that may be needed to create the desired transformation.
This approach has been successfully used with very
complicated code patterns applied to methods [8].

Once the XSLT transformations for adaptive
maintenance have been constructed, a number of important
practical issues arise concerning how to apply the
transformations to a complete large-scale system. It is
possible to use the src2srcml tool to convert a single source
code file to srcML, apply the transformation to the srcML
file using any XSLT tool, e.g., xsltproc, then use the

srcml2src tool to convert the transformed srcML back to
source code. However, for large projects it is more practical
to apply the transformation to the entire project at once. This
requires a change to the srcML toolkit which adds support
for a srcML archive. This format allows for an entire
project, consisting of multiple source-code files, to be
converted and stored in a single srcML document.
Transformations are applied to the entire project at once.
The modified source code files and their directory structure
can then be extracted from the modified srcML archive.

While representing an entire project in one srcML
archive is convenient, the archive can become exceedingly
large and create scalability issues for XSLT transformations.
Similar to XML DOM approaches, XSLT requires the
creation of the complete XML tree in memory before it can
execute the transformation. This is unlike SAX approaches
that only store what is needed at the moment of
transformation.

To deal with the scalability issue, the srcml2src tool is
also extended to support applying an XSLT transformation
to a complete project in srcML in a more efficient manner.
The tool takes a srcML archive and applies the XSLT
transformation to each individual source code file, and then
combines the output into a transformed srcML document.
Since the XSLT transformation is only applied to the source
code of a single file in the srcML archive at a time, the
scalability issues are avoided. This allows the

<xsl:template match="src:decl_stmt[src:decl/src:init/src:expr/op:operator='new']">
 <!-- Copy the declaration, without any part of the initialization -->
 <xsl:copy-of select="src:exclude(., src:decl/src:name/following-sibling::node())"/>

 <!-- Wrap a try catch around the initialization of the variable, now in separate statements -->
 <xsl:variable name="trycatch">
try {
 <xsl:copy-of select="src:decl/src:name | src:decl/src:name/following-sibling::node()"/>;<xsl:text>
</xsl:text>} catch (...) {
 <xsl:value-of select="src:decl/src:name[1]"/> = NULL;
}</xsl:variable>
 <!-- Copy the generated try catch with the indentation of the original statement -->
 <xsl:copy-of select="src:indent(src:indentation(.), $trycatch)"/>
</xsl:template>

Figure 3. XSLT template used for transformation of declaration statements due to change in behavior of operator new

<cpp:include>#<cpp:directive>include</cpp:directive> <cpp:file>"rotate.h"</cpp:file>
</cpp:include>

<comment type="line">// rotate three values</comment>
<function><type>void</type> <name>rotate</name>
<formal-params>(<param><type>int&</type> <name>n1</name></param>,
<param><type>int&</type> <name>n2</name></param>,
<param><type>int&</type> <name>n3</name></param>)</formal-params>
<block>{
 <comment type="line">// copy original values</comment>
 <decl-stmt><decl><type>int</type> <name>tn1</name> = <name>n1</name>,
<name>tn2</name> = <name>n2</name>, <name>tn3</name> = <name>n3</name></decl>;
</decl-stmt>
 <comment type="line">// move</comment>
 <expr-stmt><expr><name>n1</name> = <name>tn3</name></expr>;</expr-stmt>
 <expr-stmt><expr><name>n2</name> = <name>tn1</name></expr>;</expr-stmt>
 <expr-stmt><expr><name>n3</name> = <name>tn2</name></expr>;</expr-stmt>
}</block></function>

Figure 2. Source code from Figure 1 marked up in srcML with all original text preserved.

transformation of very large systems stored in a single
srcML document in a reasonable amount of time. For
example, an XSLT transformation can be applied to the
entire Linux kernel in under five minutes.

III. EXAMPLE TRANSFORMATIONS

This study focuses on creating transformations in srcML
for two large adaptive maintenance changes which occurred
recently at ABB. These two changes involve two separate
products, one of which is an embedded device and the other
is a Windows desktop application. These changes arise due
to changes in the VxWorks and Microsoft Visual Studio
development platforms. Experienced developers at ABB
originally performed the necessary changes manually on the
source code. These changes dealt with changes to system
APIs, runtime changes in the underlying platform, and
changes to the compilers used to build the products. Each of
the specific adaptive changes are described, along with how
the particular transformation source is located and how the
transformation constructs the transformed code.

A. Change to Operator new

The first adaptive change is in response to changes in the
compiler due to a change in the C++ standard. This change
affects the semantics of the operator new. It was common
practice to directly call the operator new in the initialization
of a variable declaration, as we see below:

CNICmdFactory *cmdFactory = new CNICmdFactory;

Earlier versions of the language standard had new return
NULL in the case of a memory error. Error checking was
done by simply checking the result for NULL and calling an
error handler if necessary. The behavior of the new operator
was changed to throwing an exception when memory
allocation issues occurr. A local fix for the problem is to
wrap the call in a try/catch block, preserving the original
behavior and preventing any unhandled exception errors
from crashing the system. An example is shown below:

CNICmdFactory *cmdFactory;
try {
 cmdFactory = new CNICdmFactory;
} catch (...) {
 cmdFactory = NULL;
}

For this transformation, specific statements that include a
call to the operator new must be identified, and the
expression that calls new must be isolated in a try/catch
block. Finally, the result must be tied into the original
statement. A portion of an XSLT program that can detect this
and make this transformation for a declaration is shown in
Figure 3. First, the XSLT template is made to match any
declaration statements (src:decl_stmt) that include a call to

the operator new in the initialization. The srcML translator
optionally supports the markup of operators with the option
“--operator”. These operators have their own namespace,
and the existence of the new operator can be checked using
the predicate op:operator='new'. In order to determine all
of the uses of new in the source code, an XPath query is
created using that predicate. The results of this query
identified twelve different contexts for the use of new in the
source code to be transformed. These included uses of new
statements inside expression statements, while loops, if
statements, and return statements. Each of these distinct
contexts may require a different transformation. For
example, a function that uses the new operator in a return
statement will need to be transformed differently than a new
operator used in an assignment statement.

Once all of the uses of the new operators in the source are
found, replacement code can be generated. For cases where
new is used in a variable declaration, the original declaration
is copied, but without the initialization. In order to simplify
the transformation, an extension function, src:exclude, is
used to copy the declaration statement and exclude the
initialization. The next part of the transformation creates the
appropriate try/catch block. This uses a combination of
explicit text, i.e., try, and code copied from the original, i.e.,
variable name and assignment to initialization. The
try/catch block is created in a variable and then copied to
the output of the transformation reflecting the indentation
used by the original declaration statement. Determining the
indentation for the original statement is encapsulated in the
srcML extension function src:indentation(), and applied
to the generated try/catch with the srcML extension
function src:indent().

Expression statements are handled in a similar manner
with the entire expression moved into the try/catch block.
However, for other statements the transformation is more
involved. For example, it is common practice in this
codebase to assign the value of a variable using a new
expression in the condition of an if statement and trap the
error using the if statement:

if ((nioMemCpy = new DataByte) == 0) {}

In this case, the required transformation must move the
assignment of the variable outside the if statement and then
compare the variable directly to NULL inside the if
statement. In the case of a new in the condition of a while
statement, the assignment with the expression must also be
inserted at the end of the block of the while statement, or a
block statement created if the while statement did not
originally have one.

<!-- Match arguments to a template which are themselves templated,
 but no template parameter is given -->
<xsl:template match="src:argument_list/src:argument/src:name[
 ancestor::src:template and ancestor::src:class/src:name=.]">
<!-- Insert a template parameter -->
<xsl:value-of select="."/><<xsl:value-of
select="src:list(ancestor::src:template/src:parameter_list/src:param/src:name,
 ', ')"/>></xsl:template>

Figure 4. Main portion of the transformation to fix a use of a C++ templated class that requires specialization

Due to the large number of different usages of new in the
source code, the complete transformation used twelve small
XSLT templates. By using srcML as a fact extractor
initially, all uses of the new operator can be identified quickly
and transforms can be created. In addition, if a use requires a
complicated transformation, but occurs in a small number of
places, the developer can decide to perform those changes
manually and just create transformations for the more
frequently occurring cases.

B. Template Class Requires Specialization

Another recent adaptive maintenance change involves a
change in the compiler where a default must now be

explicitly stated for C++ templates where arguments in a
template definition must be specialized. For example, in the
following code the template class CItemTraitsHelper is
used as a template argument.

template <class T>
class ATL_NO_VTABLE CItemTraitsHelper :
 public
CPropertyObjectHelper<CItemTraitsHelper, T>

Note that when used as a template argument, the class is
not specialized. In this example we need to replace the use of
the class CItemTraitsHelper with CItemTraitsHelper<T>,
where T is the template parameter. After the transformation
the resulting code is:

template <class T>
class ATL_NO_VTABLE CItemTraitsHelper :
 public
CPropertyObjectHelper<CItemTraitsHelper<T>, T>

The transformation consists of a single XSLT template
and is shown in Figure 4. The XPath expression for the
location starts with matching all arguments:

src:argument_list/src:argument/src:name

To refine this to template arguments the predicate checks
that the context is in a template definition, i.e., includes the
check that this is a template argument:
ancestor::src::template. At this point we have the
names of all template arguments. Now we need to determine
if the name of the argument is the same as the templated
class: .=ancestor::src:class/src:name.

Next, the template argument that requires specialization
is corrected. First, we copy the name of the argument:
<xsl:value-of select="."/>. Then a template argument

list is inserted. The template argument angle brackets are
literally escaped and inserted into the text. It is not a
requirement that a srcML document be fully marked, so we
only have to put in the text and not try to match the
complete, correct srcML elements.

The other piece of information that needs to be derived
from the original code is the name of the template parameter
from the class template. From our location in the code, a list
of the template parameters can be found with the XPath:

ancestor::src:template/src:parameter_list/
 src:param/src:name

There may be more than one template parameter, and in a

template parameter list a comma must separate these. To
make the transformation more clear, we have used a srcML
extension function src:list that takes every element of the
first list, i.e., a template parameter, and separates it with a
comma and a space.

With this transformation we have identified where
templated classes are used unspecialized in their own
declaration, prevented false positives, i.e., other code which
uses parameters and templates, and handled multiple
template parameters.

C. Iterator Variable Scope

In this adaptive change, the scope of a variable
declaration in a for statement was previously that of the
enclosing block, e.g., for (int i = 0;;) { … }. Many
programmers assumed, to be the same as

int i = 0;
for (;;) { … }

This creates a problem when the variable i is used in the
code following the for statement. This transformation
involves locating for statements where this occurs, and
moving the variable declaration outside of the loop.

The main portion of the transformation is shown in
Figure 5. First, we must match the occurrences of iterator-
variable declarations that must be moved:

src:for[src:init/src:decl/
 src:name=following-sibling::src:*//src:name]

This example matches all for statements where the name
of a declaration in the initialization, src:init/src

:decl/src: name, is used anywhere in the statements that
follow the for-statement:

<!-- Match declarations in initialization of for statements
 where the code following the for statement uses the name -->
<xsl:template match="src:for[
 src:init/src:decl/src:name=following-sibling::src:*//src:name]">

 <!-- explicitly output the initialization as a declaration before statement on its own line -->
 <xsl:copy-of select="src:init"/><xsl:text>
</xsl:text>
 <!-- output rest of for, but without initialization -->
 <xsl:copy-of select="src:exclude(., src:init/src:decl)"/>
</xsl:template>

Figure 5. Transformation to move declarations of iterator variables when they are used outside of a for-statement

following-sibling::src:*//src:name

In this case the following-siblings axis includes all
statements that follow the completion of the for statement,
i.e., they do not include the statements in the for-statement
block. These are the statements that are in the old scope of
an iterator variable declaration. We examine these statements
and determine if the iterator variable is being used. If so,
then this scope problem on the iterator variable is fixed.

Matching and then moving particular statements is not
straightforward in XSLT. In XSLT we match parts of the
input and indicate the processing of these parts. Rearranging
statements may involve multiple templates. Generally, this
would be done with an empty template to match the old
position, and another template that inserted the moved
statement along with the existing code. The first
transformation for this problem used this approach.

To avoid using multiple templates, we created an XSLT
extension function that allows us to perform this in one
template. To perform the move first we copy the current
iterator variable declaration so that it now occurs outside of
the for-statement: <xsl:copy-of select="src:init"/>.
We put this copied declaration on its own line using the
<xsl:text>...</xsl:text>. Now we need to copy almost
all of the for-statement, excluding the iterator variable
initialization. To make this easier, we created a srcML
extension function src:exclude(to-copy, to-exclude).
This function recursively copies the first parameter, but
during the recursive copy any elements in the second
parameter are excluded. The effect is to copy the tree to-
copy but exclude the subtree to-exclude. The second
parameter is treated as a node-set, so it can include more than
one element, i.e., more than one subtree can be excluded.

In this particular case, we want to copy the for statement
but exclude the declaration that is in the initialization:

<xsl:copy-of
select="src:exclude(.,src:init/src:decl)"/>

Note that we copy the entire initialization, src:init, but
exclude only the declaration, src:init/src:decl. The
reason for this is that we have to change the declaration into
a declaration statement, i.e., the semicolon has to be
duplicated.

D. Deprecated String Functions

In order to prevent buffer overruns, string functions that
do not take the size of the destination buffer into account

need to be replaced with those that do. In general, this is a
transformation dealing with security issues. In our case, the
new version of the compiler issues a deprecation-type
warning whenever the function strcpy is used. The solution
is to replace this call with the safer function strcpy_s that
includes a destination buffer size. The function strcpy_s is
Microsoft specific and is similar to the standard function
strncpy. The main portion of the transformation to make
this change is given in Figure 6. The template matches any
calls to the function strcpy:src:all[src:name='strcpy'].
Most of this part of the transformation is constructing the
text of a new call. The name of the new call is inserted as
text: <xsl:text>strcpy_s(</xsl:text>). The arguments
are mapped from the old call to the new call. For the first
parameter this is:

<xsl:copy-of
select="src:arg_list/src:argument[1]"/>

What cannot be directly copied from the original code is
the derivation of a new second parameter to the strcpy_s
function, which is the size of the first argument. This size
depends on how the buffer for this argument was created,
i.e., in its declaration, use of malloc, use of new, etc. Also,
the variable used for the first parameter may have been set
through various aliases. Accurately determining this would
require heavyweight analysis of the program and in some
cases may not be possible. For this lightweight approach we
analyze the current file and, when we are unable to
automatically determine the size, a comment is added
identifying where manual changes are needed.

To hide the complexity of the analysis to determine the
proper size of the buffer, we have used a srcML extension
function src:defnsize that, given the name of a variable,
tries to determine the size. In this transformation it is used as
follows:

src:defnsize(src:argument_list/src:argument[1])

If the size of the buffer cannot be determined by the
function src:defnsize, the default text /* FIXSIZE */ is
inserted. Another srcML extension function, src:default is
used to avoid if-else code. So the second parameter is a
result of

src:default(src:defnsize(src:argument_list/
 src:argument[1]), '/* FIXSIZE */')

With this transformation we have successfully identified
calls to a specific function, e.g., strcpy, and constructed a
new call based on the arguments to the original call. We

<!-- Match calls to deprecated str*cpy functions -->
<xsl:template match="src:call[src:name='strcpy']">
 <xsl:text>strcpy_s(</xsl:text>
 <xsl:copy-of select="src:argument_list/src:argument[1]"/>
 <xsl:text>, </xsl:text>
 <xsl:copy-of select="src:default(src:defnsize(src:argument_list/src:argument[1]),
 '/* FIXSIZE */')"/>
 <xsl:text>, </xsl:text>
 <xsl:copy-of select="src:argument_list/src:argument[2]"/>
 <xsl:text>)</xsl:text>
</xsl:template

Figure 6. Transformation to replace deprecated strcpy functions with the safer alternatives strcpy_s. The new call requires an extra parameter

which is the size of the destination buffer. Whenever possible lightweight static analysis is applied on the context of the call by the srcML

extension function src:defnsize. If not found, a comment is inserted to indicate to the developer that the size needs to be manually inserted.

have also determined the size of a buffer based on the
original code and demonstrated the use of srcML extension
functions to hide complexity, and provide reusable
functionality. Note that the developer will have to manually
determine the proper buffer sizes in some cases. However,
these are clearly marked with an identification mark that can
be easily found. In our case studies, we were able to identify
the size correctly 38% of the time. Most of the cases where
we are unable to automatically identify the size involve
global pointers to complex data types. The manual changes
performed by the developers required adding new functions
to report the size of these complex data types.

E. STL Vector Data is Private

Changes to a run-time framework can cause run-time
errors to occur, where they did not occur previously. One
case of this occurred with the STL vector concerning access
to the start of vector data when done with the expression
&v[0] (where v is an STL vector). This expression was used
as an argument to COM methods and caused a number of
run-time errors in the new platform version. In order to get
around this problem, the macro AfwSafeVectorBegin(v)
was defined to safely dereference v and to handle the case
where the vector is empty. The fix is to detect uses of &v[0]
and to replace these with a call to the new macro.

The basic transformation consists of a single XSLT
template as shown in Figure 7. The srcML for the location,
with the operator & escaped, is:

<op:operator>&</op:operator><name>
 <name>v</name><index>[<expr>0</expr>]
 </index></name>

The XPath expression for the location starts with
matching all expressions used as arguments:
src:argument/src:expr. At this point we need to narrow
this down using pattern matching to match the exact uses of
&v[0]. First, we check that the expression contains the
address operator. The existence of the address operator can
be checked using the predicate op:operator='&'. Then
we need to determine if the address is being taken of a
variable indexed to 0 with the predicate:
src:name/src:index[src:expr='0']. Finally, the predicate
checks that the expression consists only of the address
operator and the index of the variable to 0.

Once these locations are discovered, the expressions need
to be rewritten to use the macro. This is done by replacing

the expression with the name of the macro,
AfwSafeVectorBegin and inserting the current variable name
with the expression: .//src:name/src:name. The nested
use of the src:name element in the path is to accommodate a
variable name that is indexed. A related problem is the
application of the address operator to the end of the vector,
as in the expression &(*v.end()), with a corresponding
macro AfwSafeVectorEnd(v). The template to make this
transformation is the second template in Figure 7.

These transformations identified expressions where
invalid references to vector data are used. These expressions
are modified to call a macro to handle the situation safely.

One limitation of the lightweight approach is that the index is
compared directly to the literal value 0. If a macro, or
constant, or expression was used that evaluated to 0, then this
would not have been identified. The transformation can be
extended to special cases, but not easily to the general case
with a lightweight approach. However, we didn’t find any of
these examples in this study.

F. Fully-Qualifying Function Pointers

Another situation that arises specifically when compiler
migration is performed involves cases when a variable is not
fully prefixed. In our case study this occurred with function
pointers passed as arguments. For example, the function
pointer OnLookupAgain used as an argument to a call should
be fully qualified as &AfwNSI::CQM::OnLookupAgain.

This case presents a challenge to a lightweight approach.
Based on the usage of the variable and without a definition, it
is not possible to determine if a variable is a function pointer.
Since it is common for the declaration of a function pointer
to be defined in a source file external to the one being
transformed, or even at run-time based on startup options, an
examination of all files in the system may have to be done.

Since the purpose of these transformations was to assist
the developer by semi-automating their task, a full solution
was not used. In this case, the transformation is written
specifically for this function. The transformation is a single
template that matches expressions where the name of the
function pointer is used (as provided by the developer), and
qualifies them with the provided qualification. This
transformation can be generalized to convert any function
pointer with a fully qualified name if the developer provides
both. In this case, the transformation serves as a search and
replace, but with knowledge of context.

<!-- Match arguments of the form &v[0] where v is any variable name -->
<xsl:template match="
 src:argument/src:expr[
 op:operator='&' and
 src:name/src:index[src:expr='0'] and
 count(*)=2
]">AfwSafeVectorBegin(<xsl:value-of select=".//src:name/src:name"/>)</xsl:template>

<!-- Match arguments of the form &(*v.end()) where v is any variable name -->
<xsl:template match="src:argument/src:expr[
 op:operator[1]='&' and op:operator[2]='(' and op:operator[3]='*'
]">AfwSafeVectorEnd(<xsl:value-of select=".//src:name"/>)</xsl:template>

Figure 7. Main template of the transformation to keep STL vector data private.

We examined methods of automatically generating this
list of needed replacements. One approach is to use the
compiler to find the lines where this error occurred. While
this gave us the names of the function pointers, it did not
solve the problem of the proper qualification. A solution to
this is to first scan the entire system for a list of function
pointers, and then run the transformation on that list.

IV. EVALUATION

In order to evaluate the transformations described in
Section III, a set of case studies are conducted, consisting of
adaptive maintenance changes selected from two different
industrial systems developed at ABB. The first set of
adaptive changes deal with changes to the C++ standard
deployed in a new version of the VxWorks development
platform. The second set of adaptive changes deal with
changes to the Microsoft Visual Studio compilers and
underlying runtime framework. The goal of these studies is
to compare the manually changed code and the automatically
transformed code. Cases where the technique transformed
code in an incorrect place represent false positives, while
missing transformations represent false negatives. The
computer used for the automated transformation was a
Lenovo ThinkPad W500, containing a 2.5 GHz Intel Core 2
Duo CPU with 4 Gigabytes of RAM, running the Windows
XP operating system.

A. Case Study 1

The product in the first study contains approximately 122
KLOC of C and C++ code contained in 405 files. The code
is composed of a hybrid mix of procedural (54%) and object-
oriented code (46%). This system had previously undergone
manual adaptive maintenance, due to changes in the way the
gcc compiler handles the new operator in C++. Specifically,
the compiler adopted the new standard of throwing an
exception when memory is not available, as opposed to just
returning NULL. Due to this change, all instances of the
new operator had to be changed. Two baselines were used in
this study. The first is taken from just before the manual
adaptive maintenance changes were made, and is the starting
point for the automated transformation. The second baseline
was taken just after the manual changes were completed and
is used to verify that the automated transformation was
successful. In total, 479 manual adaptive maintenance
changes were made to accomplish this compiler update.

First, the source code for the entire system was converted
into srcML by the toolkit. It took only a few seconds to
convert the 122 KLOC into the srcML format. The
transformation was then run on the code, also taking only a
few seconds. Finally, the transformed srcML was converted
back to source code in only one second. Once the
transformations were run on the system, they were validated
against the manual changes to identify any false positives or
false negatives. Finally, the source repository was studied to
identify any cases where the original manual transformation
was incorrect, resulting in a later change. In these cases, the
automated transformation is also compared to these later

changes to determine if the tool performed more accurately
than the original manual transformation.

All 479 manual changes were made correctly by our
automated transformation approach when compared to the
manual changes. That is, we did not miss any of the changes
performed manually and did all of them correctly. In
addition, our automated approach identified 40 cases that
were missed by the developers during the initial manual
change (for a total of 519 changes). Upon examining later
versions of these files and their version history in the source
repository, it was determined that all of these 40 missed
changes were later identified and corrected manually. These
represent changes that were originally missed and detected at
later points in time by other forms of verification and
validation. However, our automated approach was able to
identify and correct all without additional effort or cost.
There is nothing unique about the 40 changes missed by
developers. They are all just instances of other changes that
the developers simply missed.

TABLE I. RESULTS FOR THE SECOND CASE STUDY

Correct Incorrect

Manually
Missed

Template Class 3 0 0

Iterator Variable 231 0 86

Deprecated Str 406 0 5

Data Private 1419 2 213

Qualifying
Functions

1 0 0

Totals 2060 2 304

B. Case Study 2

The system in the second study contains approximately
3.9 MLOC of C and C++ code spread among 13,800 source
files. This system is composed of mostly object-oriented
C++ code (84%) with the remaining 16% being procedurally
designed C code. The system has recently undergone
adaptive maintenance changes due to a C++ compiler
migration (i.e., Visual Studio 2003 to Visual Studio 2005).
Two different baselines of the source code are used for this
study, one just before, and one immediately after, the
adaptive maintenance changes were performed. All of the
changes were logged in a version control system as a single
transactional check-in. In total, the developers manually
performed 1756 adaptive maintenance changes.

First, the source code for the entire system was converted
into srcML by the toolkit. It took 211 seconds to convert the
entire 3.9 MLOC into the srcML format. All five
transformations listed in Table I were then run on the system,
taking a total of 653 seconds. Finally, the transformed
srcML was converted back to source code, which took 51
seconds. Once the transformations were run on the system, a
separate author validated the transformed changes against the
manual changes and any false positives or false negatives
were identified. Finally, the source repository was studied to
identify any cases where the original manual transformation
was incorrect, resulting in a later change. In these cases, the
automated transformation is also compared to these later

changes to determine if the tool performed more accurately
than the original manual transformation.

Table I shows the results of the transformations for the
second case study. All 1756 manual changes were made
correctly by our automated transformation approach. Our
approach did incorrectly transform two cases of the private
data problem. One case was due to imprecise matching of
the code pattern and could be corrected quite easily in the
transformation. The other case required more precise type
resolution to address properly. Doing this for all cases may
not be possible in our approach and require either full type
analysis of the system or developer input. Our automated
approach also identified 304 adaptive changes that were
missed by the developers during the initial manual change.
Upon examining later versions of these files, it was
determined that all of the 304 missed changes were later
identified and corrected in the source repository. Again, for
the most part these situations were not particularly unique, as
the missed changes were instances of changes that are
correctly made elsewhere in the source code.

V. EXTENSION FUNCTIONS

One of the advantages of the srcML format is that it
provides access to all parts of the source code. No detail of
what the developer writes, including comments and white
space, is lost. Queries and transformations can be performed
on all of these aspects. The format exists at a level right on
top of the source code text. In order to provide an
abstraction for concepts at a higher level then directly
expressed in the source code, and directly represented in
srcML, we have created srcML extension functions. Many
of these were used in the preceding transformation examples.
These extension functions can be used along with the full
XPath language in expressions for location of the source of
the transformation, in the source code analysis needed to
perform the transformation, and in the generation of the
transformed code.

An example srcML extension function, src:defnsize,, is
shown in Figure 8. These functions are helpful for fact
extraction and analysis, which would otherwise require more
complex XSLT and XPath statements. Another srcML
extension function, src:use2defn($name), is used to find
the definition where $name is the name of the variable. From

the variable definition for a statically sized array we can find
the expression of the size with the XPath expression:
src:index/src:expr. We also need to look for dynamic
allocation using malloc and new. This may occur in the
declaration, or as an assignment in a previous statement.
This is handled by other parts of the XPath expression.
Many of the srcML extension functions used in this paper
perform very general needs, such as determining variable
scope or type determination. Building a useful set of
extension functions will significantly help developer
adoption of this technique.

VI. RELATED WORK

We observed that automated source code transformations
intended to be handed back to a developer must preserve the
programmer's view of the document, i.e., preserve white
space, comments, and the expressions of literals, and failure
to do so may mean the rejection of the result [5, 13] and tool.
In [13] the concept of the documentary structure of source
code, whose elements include all white space and comments,
is presented. This documentary structure is often at odds
with the linguistic structure of the program. Unfortunately
for many parse-tree-based approaches, this documentary
structure is completely lost. Attempts to preserve these ties
often result in the documentary structure not being easily
integrated back into the representation.

In contrast to these requirements, software-development
tools typically take a totally compiler-centric approach of
representing the source code as an abstract syntax tree. It has
been observed that these approaches are often not a good
match to the problems that they are trying to solve [9, 13].
There are exceptions to this problem with compiler-centric
approaches however, with one example being the DMS
systems by Baxter [1]. Baxter has gone to great lengths to
address this specific issue by storing important textual items
within the underlying abstract-syntax graph. Also, as a full
compiler (i.e., heavy weight) approach, it allows for static
analysis to be built into the transformation. Our approach is
very lightweight by comparison and uses widely available
and accessible XML technologies. One approach is to move
down to the level of lexical analysis and provide for the
transformation at that level, as in [7]. This allows for the
preservation of all of the text, but at a cost of complex

<func:function name="src:defnsize">
 <xsl:param name="name"/>
 <xsl:variable name="attempts" select=
 src:use2defn($name)//src:index/src:expr
 src:use2defn($name)//src:init//src:call
 [src:name='malloc']/src:argument_list/src:argument/src:expr |
 preceding::src:expr[src:name[1]=$name and
op:operator[1]='=']/src:call[src:name='malloc']/src:argument_list/src:argument/src:expr |
 preceding::src:expr[src:name=$name and op:operator='new']//src:index/src:expr
)[last()]"/>
 <func:result select="$attempts"/>
</func:function>

Figure 8. The srcML extension function src:defnsize is an example of how static analysis of the code can be encapsulated. Given a name, the

function finds the size of the buffer by looking at the declaration. The buffer may be sized statically, or dynamically by a malloc or new. Each

form of buffer sizing is tried, with the last one found used. If no size can be found, the result is empty.

regular expressions. Also, with this approach, it is not as
easy to provide for abstractions that reflect static analysis.
Another approach that preserves the programmer’s view is to
move the transformation to the level of the grammar as in
TXL [6]. Using this approach, the transformations are
written as part of the grammar for parsing the language. The
approach shares many of the advantages of our approach:
preservation of programmer’s view, scalability, robustness,
etc. The difference is in the format of the transformation.
Instead of grammar rules, our approach treats the text of the
source code as data in XML, and the transformations are
XML transformations.

The Proteus system [14] addresses similar problems of
performing transformations on large C++ systems while
preserving the layout and handling code before
preprocessing. They refer to this as "high-fidelity"
transformations. An AST approach is used, with white space
and comments stored in additional AST nodes. They
provide their own language YATL for transformations on the
AST. Additionally, in [10] these documentary structure
issues are seen as a cross-cutting concern in the form of
annotated parse trees. Other approaches include using an
intermediate language to describe the source, as in the case
of the C Intermediate Language (CIL) [12].

The lightweight approach we have presented preserves
the documentary structure, as is done in some of these
approaches, while at the same time integrates static analysis
into transformations that go down to the lexical level. No
other work integrates a lightweight approach and static
analysis in an efficient and useable manner.

VII. CONCLUSIONS AND FUTURE WORK

The cases studies presented demonstrate that lightweight
parsing combined with lightweight static analysis is adequate
to support a transformational approach to automatically
addressing certain adaptive maintenance tasks on two large
real world systems of different domains and different
development platforms. The approach presented work as
well as developers in that it correctly modified all cases that
were manually done (except for two cases – less than one
percent for that particular type of adaptive change).
Moreover, it worked better than developers in that it
identified a significant number (13%) of cases that the
developers missed in the original changed version. The
developers later addressed these missed cases over a period
of time from later testing and failures. Our approach made
changes to all these cases correctly.

One clear limitation of our approach and the presented
transformation is that the determination of the proper buffer
size for the deprecated string change. In this case more
complete static analysis would help but pointer alias analysis
is a very difficult problem. We intend to see if we can
improve the extension function src:defnsize to increase the
accuracy, but we may need to do complete static analysis to
address this problem fully.

We believe that the results are applicable to not only
compiler migration, but to other adaptive maintenance tasks.

The use of XPath extension functions to hide the details of
complex XPath expressions made the transformations easier
to understand. Details of the exact generated code to fix an
adaptive maintenance issue may be project or even
programmer specific. These transformations are easily
modified to reflect this. They also provide a reusable set of
functions for further transformations. We are also creating a
larger library of extension functions to support general
maintenance transformations.

REFERENCES

[1] Baxter, I. D., Pidgeon, C., and Mehlich, M. DMS: Program
Transformations for Practical Scalable Software Evolution in
Proceedings of 26th Intl. Conference on Software Engineering
(ICSE04) (Edinburgh, Scotland, UK, May 23 -28, 2004), 625-634.

[2] Collard, M. L., Kagdi, H., and Maletic, J. I. An XML-Based
Lightweight C++ Fact Extractor in Proceedings of 11th IEEE Intl.
Workshop on Program Comprehension (IWPC'03) (Portland, OR,
May 10-11, 2003), 134-143.

[3] Collard, M. L. and Maletic, J. I. Document-Oriented Source Code
Transformation using XML in Proceedings of 1st Intl. Workshop on
Software Evolution Transformation (SET'04) (Delft, The
Netherlands, Nov. 9, 2004), 11-14.

[4] Collard, M. L., Maletic, J. I., and Marcus, A. Supporting Document
and Data Views of Source Code in Proceedings of ACM Symposium
on Document Engineering (DocEng’02) (McLean VA, November 8-
9, 2002), 34-41.

[5] Cordy, J. R. Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation in Proceedings of
11th IEEE Intl. Workshop on Program Comprehension (IWPC'03)
(Portland, OR, May 10-11, 2003), 196-206.

[6] Cordy, J. R., Dean, T. R., Malton, A. J., and Schneider, K. A. Source
transformation in software engineering using the TXL transformation
system. Information and Software Tech, 44, 13 (2002), 827-837.

[7] Cox, A. and Clarke, C. Relocating XML Elements from Preprocessed
to Unprocessed Code in Proceedings of Proceedings of the IEEE 10th
Intl. Workshop on Program Comprehension (IWPC’02) (Paris,
France, June, 2002), 229-238.

[8] Dragan, N., Collard, M. L., and Maletic, J. I. Reverse Engineering
Method Stereotypes in Proceedings of 22nd IEEE Intl. Conference on
Software Maintenance (ICSM'06) (Philadelphia, PA USA, Sept 25-
27, 2006), 24-34.

[9] Klint, P. How Understanding and Restructuring Differ from
Compiling - A Rewriting Perspective in Proceedings of 11th IEEE
Intl. Workshop on Program Comprehension (IWPC'03) (Portland,
OR, May 10-11, 2003), 2-12.

[10] Kort, J. and Lammel, R. Parse-tree annotations meet re-engineering
concerns in Proceedings of the Intl. Workshop on Source Code
Analysis and Manipulation (2003), 161–171.

[11] Maletic, J. I., Collard, M. L., and Marcus, A. Source Code Files as
Structured Documents in Proceedings of 10th IEEE Intl. Workshop
on Program Comprehension (IWPC'02) (Paris, France, June 27-29,
2002), 289-292.

[12] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. CIL:
Intermediate language and tools for analysis and transformation of C
programs. Lecture Notes in Computer Science (2002), 213-228.

[13] Van De Vanter, M. L. The Documentary Structure of Source Code.
Information and Software Tech, 44, 13 (October 1 2002), 767-782.

[14] Waddington, D. and Yao, B. High-fidelity C/C++ code
transformation. Science of Computer Prog, 68, 2 (2007), 64-78.

