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Abstract— An approach to automate adaptive maintenance 

changes on large-scale software systems is presented.  This 

approach uses lightweight parsing and lightweight on-the-fly 

static analysis to support transformations that make 

corrections to source code in response to adaptive maintenance 

changes, such as platform changes.  SrcML, an XML source 

code representation, is used and transformations can be 

performed using either XSLT or LINQ.  A number of specific 

adaptive changes are presented, based on recent adaptive 

maintenance needs from products at ABB Inc.  The 

transformations are described in detail and then demonstrated 

on a number of examples from the production systems.  The 

results are compared with manual adaptive changes that were 

done by professional developers.  The approach performed 

better than the manual changes, as it successfully transformed 

instances missed by the developers while not missing any 

instances itself.  The work demonstrates that this lightweight 

approach is both efficient and accurate with an overall cost 

savings in development time and effort. 
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I.  INTRODUCTION 

Many industrial software products have very long life-
cycles.  These systems represent substantial investments and 
are valuable assets that support the business of the 
organization.  Not only do these systems change as new 
features are added, but they must also undergo modification 
to address changes to dependent platforms and libraries.  
Here, we are particularly interested in these adaptive 
maintenance tasks.  These tasks involve changing the 
software to respond to changes in its environment or 
platform (e.g., operating systems, compilers, hardware 
components, APIs, etc). 

Adaptive maintenance changes are unique, as they are 
typically outside of an organization’s control.  Hardware 
component obsolescence, changes to underlying operating 
systems, and new compiler or platform versions are all 
examples of unexpected changes that have occurred recently 
at ABB Inc.  As these changes are oftentimes unexpected, 
organizations are forced to react to these adaptive changes as 
they are discovered.  This has a negative impact on the 
schedule and cost for projects.  Moreover, the changes are 
primarily repetitive in nature and can be highly fault prone 
when done manually by a developer.  

When an organization is faced with these changes, they 
must either adapt the system or, if possible, postpone the 
changes until a later time. While postponement is quite 
common, especially in operating systems and platforms, 
there are many practical reasons to make the investment. 
These include access to new features and technology that 
may be included in the new version as well as customer or 
market requirements. It may also prevent customers from 
having to perform invasive workarounds.  

Ideally, changes to a critical part of a software’s 
environment will be clearly documented in the change log or 
release notes.  Unfortunately, there is rarely enough detail to 
clearly direct a developer to the needed changes.  Due to this, 
many developers identify adaptive maintenance problems by 
experimentation.  The impact environmental changes have 
on a system can be observed statically at build time, or 
dynamically at run time.  Once the changes necessary to 
address the problems are identified, developers can be 
assigned to manually identify the errors and make 
corrections in the source code.  Regression testing can then 
be done to identify any errors that occur due to the changes.  

This paper presents a lightweight transformational 
approach to automate adaptive maintenance changes using 
the srcML toolkit [4, 11].  srcML was selected, as it 
preserves the programmer's view of the source document.  
As the resulting code from these transformations will be 
manually maintained by developers going forward, any 
changes to the overall structure or style may lead to a 
rejection of the new changes, as described in a number of 
studies on past real world projects [5, 13].  Examples have 
been given [5] on large projects where any potential changes 
to the system had to be presented to the programmers in the 
exact view of the source code that they were familiar with.  
If not, the proposed changes were rejected.  

The approach is also selected because it is robust in 
working with incomplete code, different compiler versions, 
and partially migrated source code.  Well known XML 
technologies such as XPath, XSLT, and LINQ can be used, 
thus reducing the overhead of training and other adoption 
costs.  The technique is evaluated by automating six types of 
adaptive maintenance changes on two different ABB Inc. 
products that were previously changed manually by 
developers.  The study shows that this approach is very 



efficient and is more accurate at identifying the changes than 
the manual change process. 

While other approaches have been successfully used to 
perform these types of adaptive maintenance changes, most 
notably the work by Baxter [1], here we demonstrate that a 
combination of lightweight parsing and lightweight static 
analysis is sufficient to accomplish this task in the context of 
large scale systems. Additionally, we demonstrate that 
standard, well known XML technologies can be used to 
address this problem in a cost effective manner.   

This paper is organized as follows. Section II presents the 
technique and the srcML tool.  Section III presents the 
transformations necessary for the migration along with the 
XSLT implementations.  A brief discussion of srcML 
extension functions that provide the lightweight static 
analysis needed is given in Section IV.  Section V describes 
the results of a case study of our transformations applied to 
two large industrial software systems that underwent 
adaptive maintenance changes.  We follow that with related 
work and conclusions. 

#include "rotate.h" 
 
// rotate three values 
void rotate(int& n1, int& n2, int& n3)  
{ 
    // copy original values 
    int tn1 = n1, tn2 = n2, tn3 = n3; 
 
    // move 
    n1 = tn3; 
    n2 = tn1; 
    n3 = tn2; 
} 

Figure 1.  Source code example. 

II. SRCML OVERVIEW AND IMPROVEMENTS 

Our approach for supporting adaptive maintenance tasks 
is based on the srcML format and toolkit.  srcML (SouRce-
Code Markup Language) [4, 11] is an XML format used to 
augment source code with syntactic information from the 
AST to add explicit structure to program source code.  All 
original text of the source code, including comments, 
preprocessing information, and formatting, is preserved and 
identified for use by program-comprehension tools and 
development environments.  The focus is to construct a 
document representation in XML instead of a traditional 
source-code document or data representation.  This 
representation supports a programmer-centric, rather than 
compiler-centric, view of the source code. 

The srcML format is supported with a toolkit, src2srcml 
and srcml2src, that supports conversion between source code 
and the format.  Multiple languages, including C, C++, and 
Java, are supported.  This format has been previously used 
for lightweight fact extraction [2], source code 
transformation [3], and pattern matching of complex code 
[8].  The format and translation tools for srcML have many 
advantages for adaptive maintenance tasks.   

Complete view of the code:  srcML takes an unprocessed 
view of the source code.  This means that all preprocessor 
statements, template definitions, etc. are preserved and can 

be transformed.  For example Figure 1 shows a small C++ 
function and Figure 2 shows the srcML for this code.  Note 
that all original program elements and text are preserved. 

Robustness:  srcML is able to represent code that cannot 
be compiled.  The src2srcml tool is able to convert 
incomplete code even when there are translation problems.  
These problems only have an effect on the quality of the 
markup and do not lead to a loss of any of the original text. 

Efficiency:  The tool is very efficient with a translation 
speed of 25 KLOC per second and can handle almost 3,000 
files per minute, e.g., the entire Linux kernel can be 
converted to the srcML format in less than seven minutes.  
Going from srcML back to source code is handled by the 
tool srcml2src, which is even faster with speeds over 250 
KLOC per second. 

Independence:  The srcML translator is not based on the 
parser of a particular compiler.  It contains its own parser 
that only needs to understand enough about the code to insert 
the proper markup.  Because it stops at this markup, it can 
allow syntax that a particular compiler cannot. 

XML:  The srcML format is an XML representation, and 
is designed to take advantage of current and future XML 
tools for transformation, validation, etc.  To date the format 
has been successfully used with XSLT, DOM, and SAX. 

The representation and toolkit are used to support 
lightweight fact extraction, querying, transformation, and 
validation of source code.  With this format, our approach 
must address two requirements to fully address the problem 
of adaptive changes.  First, we must specify the location of 
the transformation.  For a given maintenance task, the area of 
the code that needs to be transformed must be identified, e.g., 
specific method or statement.  With the srcML format, these 
locations in the code can be specified with either an XPath 
expression or a LINQ query, both of which use the srcML 
markup.  For example, to match all if-statements that have 
the new operator in a condition (for C++) the XPath is: 

.//src:if[src:condition/op:operator=’new’] 
 

An example LINQ query is: 

var ifStmts = from stmt in doc.Descendants  
    (SrcML.SRCNS + "if") 
    where stmt.Element(SrcML.SRCNS + "condition"). 
    Descendants (SrcML.OPNS + "operator") 
    .Any(x => x.Value == "new") select stmt; 

 

Second, given the particular statement or location to be 
transformed, we must state the transformation.  The 
transformation describes how the code is modified, including 
any additions and/or deletions to the code.  The generation of 
the new code often requires information from the original 
code, some of which may not be explicit, and static analysis 
of the code may be required to obtain this pertinent 
information.  Based on the srcML format, transformations 
for adaptive maintenance can be written using any XML 
transformation tool, e.g., SAX, DOM, etc. 

For the rest of this paper, we write our transformations in 
XSLT.  This representation for the transformation was 
chosen mainly because it allows us to express the location of 



the needed transformation in XPath.  It is also a widely used 
XML technology that is well understood. 

Once an XSLT template is created that matches the 
location of the transformation, the body of that XSLT 
template can be used to construct the necessary 
modifications.  This modified code can include literal text for 
added code, copies of parts of the original code, static 
analysis conducted directly in the transformation, or any 
combinations of these.  More details on the transformations 
are provided in Section V. 

Another advantage of using XSLT is that XPath 
extension functions can be created.  For this application, 
these extension functions are used to encapsulate 
complicated and difficult-to-understand XPath patterns for 
locating the source of a transformation.  More importantly, 
they can be used to encapsulate the on-the-fly static analysis 
that may be needed to create the desired transformation.  
This approach has been successfully used with very 
complicated code patterns applied to methods [8]. 

Once the XSLT transformations for adaptive 
maintenance have been constructed, a number of important 
practical issues arise concerning how to apply the 
transformations to a complete large-scale system.  It is 
possible to use the src2srcml tool to convert a single source 
code file to srcML, apply the transformation to the srcML 
file using any XSLT tool, e.g., xsltproc, then use the 

srcml2src tool to convert the transformed srcML back to 
source code.  However, for large projects it is more practical 
to apply the transformation to the entire project at once.  This 
requires a change to the srcML toolkit which adds support 
for a srcML archive.  This format allows for an entire 
project, consisting of multiple source-code files, to be 
converted and stored in a single srcML document.  
Transformations are applied to the entire project at once.  
The modified source code files and their directory structure 
can then be extracted from the modified srcML archive. 

While representing an entire project in one srcML 
archive is convenient, the archive can become exceedingly 
large and create scalability issues for XSLT transformations.  
Similar to XML DOM approaches, XSLT requires the 
creation of the complete XML tree in memory before it can 
execute the transformation.  This is unlike SAX approaches 
that only store what is needed at the moment of 
transformation. 

To deal with the scalability issue, the srcml2src tool is 
also extended to support applying an XSLT transformation 
to a complete project in srcML in a more efficient manner.  
The tool takes a srcML archive and applies the XSLT 
transformation to each individual source code file, and then 
combines the output into a transformed srcML document.  
Since the XSLT transformation is only applied to the source 
code of a single file in the srcML archive at a time, the 
scalability issues are avoided.  This allows the 

<xsl:template match="src:decl_stmt[src:decl/src:init/src:expr/op:operator='new']"> 
  <!-- Copy the declaration, without any part of the initialization --> 
  <xsl:copy-of select="src:exclude(., src:decl/src:name/following-sibling::node())"/> 
 
  <!-- Wrap a try catch around the initialization of the variable, now in separate statements --> 
  <xsl:variable name="trycatch">                                                                                  
try {                                                                                                             
  <xsl:copy-of select="src:decl/src:name | src:decl/src:name/following-sibling::node()"/>;<xsl:text> 
</xsl:text>} catch (...) {                                                                                        
  <xsl:value-of select="src:decl/src:name[1]"/> = NULL;                                                         
}</xsl:variable> 
  <!-- Copy the generated try catch with the indentation of the original statement --> 
  <xsl:copy-of select="src:indent(src:indentation(.), $trycatch)"/> 
</xsl:template> 

Figure 3. XSLT template used for transformation of declaration statements due to change in behavior of operator new 

<cpp:include>#<cpp:directive>include</cpp:directive> <cpp:file>"rotate.h"</cpp:file> 
</cpp:include> 
 
<comment type="line">// rotate three values</comment> 
<function><type>void</type> <name>rotate</name> 
<formal-params>(<param><type>int&amp;</type> <name>n1</name></param>, 
<param><type>int&amp;</type> <name>n2</name></param>, 
<param><type>int&amp;</type> <name>n3</name></param>)</formal-params>  
<block>{ 
    <comment type="line">// copy original values</comment> 
    <decl-stmt><decl><type>int</type> <name>tn1</name> = <name>n1</name>, 
<name>tn2</name> = <name>n2</name>, <name>tn3</name> = <name>n3</name></decl>; 
</decl-stmt> 
    <comment type="line">// move</comment> 
    <expr-stmt><expr><name>n1</name> = <name>tn3</name></expr>;</expr-stmt> 
    <expr-stmt><expr><name>n2</name> = <name>tn1</name></expr>;</expr-stmt> 
    <expr-stmt><expr><name>n3</name> = <name>tn2</name></expr>;</expr-stmt> 
}</block></function> 

Figure 2. Source code from Figure 1 marked up in srcML with all original text preserved. 



transformation of very large systems stored in a single 
srcML document in a reasonable amount of time.  For 
example, an XSLT transformation can be applied to the 
entire Linux kernel in under five minutes.  

III. EXAMPLE TRANSFORMATIONS 

This study focuses on creating transformations in srcML 
for two large adaptive maintenance changes which occurred 
recently at ABB. These two changes involve two separate 
products, one of which is an embedded device and the other 
is a Windows desktop application.  These changes arise due 
to changes in the VxWorks and Microsoft Visual Studio 
development platforms.  Experienced developers at ABB 
originally performed the necessary changes manually on the 
source code. These changes dealt with changes to system 
APIs, runtime changes in the underlying platform, and 
changes to the compilers used to build the products. Each of 
the specific adaptive changes are described, along with how 
the particular transformation source is located and how the 
transformation constructs the transformed code.   

A. Change to Operator new 

The first adaptive change is in response to changes in the 
compiler due to a change in the C++ standard. This change 
affects the semantics of the operator new.  It was common 
practice to directly call the operator new in the initialization 
of a variable declaration, as we see below: 

CNICmdFactory *cmdFactory = new CNICmdFactory; 
 

Earlier versions of the language standard had new return 
NULL in the case of a memory error.  Error checking was 
done by simply checking the result for NULL and calling an 
error handler if necessary.  The behavior of the new operator 
was changed to throwing an exception when memory 
allocation issues occurr.  A local fix for the problem is to 
wrap the call in a try/catch block, preserving the original 
behavior and preventing any unhandled exception errors 
from crashing the system. An example is shown below: 

CNICmdFactory *cmdFactory; 
try { 
   cmdFactory = new CNICdmFactory; 
} catch (...) { 
   cmdFactory = NULL; 
} 

For this transformation, specific statements that include a 
call to the operator new must be identified, and the 
expression that calls new must be isolated in a try/catch 
block. Finally, the result must be tied into the original 
statement. A portion of an XSLT program that can detect this 
and make this transformation for a declaration is shown in 
Figure 3. First, the XSLT template is made to match any 
declaration statements (src:decl_stmt) that include a call to 

the operator new in the initialization.  The srcML translator 
optionally supports the markup of operators with the option 
“--operator”.  These operators have their own namespace, 
and the existence of the new operator can be checked using 
the predicate op:operator='new'.  In order to determine all 
of the uses of new in the source code, an XPath query is 
created using that predicate. The results of this query 
identified twelve different contexts for the use of new in the 
source code to be transformed.  These included uses of new 
statements inside expression statements, while loops, if 
statements, and return statements.  Each of these distinct 
contexts may require a different transformation. For 
example, a function that uses the new operator in a return 
statement will need to be transformed differently than a new 
operator used in an assignment statement.  

Once all of the uses of the new operators in the source are 
found, replacement code can be generated. For cases where 
new is used in a variable declaration, the original declaration 
is copied, but without the initialization.  In order to simplify 
the transformation, an extension function, src:exclude, is 
used to copy the declaration statement and exclude the 
initialization. The next part of the transformation creates the 
appropriate try/catch block.  This uses a combination of 
explicit text, i.e., try, and code copied from the original, i.e., 
variable name and assignment to initialization. The 
try/catch block is created in a variable and then copied to 
the output of the transformation reflecting the indentation 
used by the original declaration statement. Determining the 
indentation for the original statement is encapsulated in the 
srcML extension function src:indentation(), and applied 
to the generated try/catch with the srcML extension 
function src:indent(). 

Expression statements are handled in a similar manner 
with the entire expression moved into the try/catch block.  
However, for other statements the transformation is more 
involved. For example, it is common practice in this 
codebase to assign the value of a variable using a new 
expression in the condition of an if statement and trap the 
error using the if statement: 

if ((nioMemCpy = new DataByte) == 0 ) {} 
 

In this case, the required transformation must move the 
assignment of the variable outside the if statement and then 
compare the variable directly to NULL inside the if 
statement.  In the case of a new in the condition of a while 
statement, the assignment with the expression must also be 
inserted at the end of the block of the while statement, or a 
block statement created if the while statement did not 
originally have one.  

<!-- Match arguments to a template which are themselves templated,  
     but no template parameter is given --> 
<xsl:template match="src:argument_list/src:argument/src:name[ 
       ancestor::src:template and ancestor::src:class/src:name=.]"> 
<!-- Insert a template parameter --> 
<xsl:value-of select="."/>&lt;<xsl:value-of 
select="src:list(ancestor::src:template/src:parameter_list/src:param/src:name,  
                 ', ')"/>&gt;</xsl:template> 

Figure 4. Main portion of the transformation to fix a use of a C++ templated class that requires specialization 



Due to the large number of different usages of new in the 
source code, the complete transformation used twelve small 
XSLT templates.  By using srcML as a fact extractor 
initially, all uses of the new operator can be identified quickly 
and transforms can be created. In addition, if a use requires a 
complicated transformation, but occurs in a small number of 
places, the developer can decide to perform those changes 
manually and just create transformations for the more 
frequently occurring cases. 

B. Template Class Requires Specialization 

Another recent adaptive maintenance change involves a 
change in the compiler where a default must now be 

explicitly stated for C++ templates where arguments in a 
template definition must be specialized.  For example, in the 
following code the template class CItemTraitsHelper is 
used as a template argument. 

template <class T> 
class ATL_NO_VTABLE CItemTraitsHelper : 
   public 
CPropertyObjectHelper<CItemTraitsHelper, T> 

 

Note that when used as a template argument, the class is 
not specialized. In this example we need to replace the use of 
the class CItemTraitsHelper with CItemTraitsHelper<T>, 
where T is the template parameter.  After the transformation 
the resulting code is: 

template <class T> 
class ATL_NO_VTABLE CItemTraitsHelper : 
   public 
CPropertyObjectHelper<CItemTraitsHelper<T>, T> 

 

The transformation consists of a single XSLT template 
and is shown in Figure 4. The XPath expression for the 
location starts with matching all arguments: 

src:argument_list/src:argument/src:name 
 

To refine this to template arguments the predicate checks 
that the context is in a template definition, i.e., includes the 
check that this is a template argument: 
ancestor::src::template.  At this point we have the 
names of all template arguments.  Now we need to determine 
if the name of the argument is the same as the templated 
class: .=ancestor::src:class/src:name. 

Next, the template argument that requires specialization 
is corrected.  First, we copy the name of the argument: 
<xsl:value-of select="."/>.  Then a template argument 

list is inserted.  The template argument angle brackets are 
literally escaped and inserted into the text.  It is not a 
requirement that a srcML document be fully marked, so we 
only have to put in the text and not try to match the 
complete, correct srcML elements. 

The other piece of information that needs to be derived 
from the original code is the name of the template parameter 
from the class template.  From our location in the code, a list 
of the template parameters can be found with the XPath: 

ancestor::src:template/src:parameter_list/ 
                         src:param/src:name 

There may be more than one template parameter, and in a 

template parameter list a comma must separate these.  To 
make the transformation more clear, we have used a srcML 
extension function src:list that takes every element of the 
first list, i.e., a template parameter, and separates it with a 
comma and a space. 

With this transformation we have identified where 
templated classes are used unspecialized in their own 
declaration, prevented false positives, i.e., other code which 
uses parameters and templates, and handled multiple 
template parameters. 

C. Iterator Variable Scope 

In this adaptive change, the scope of a variable 
declaration in a for statement was previously that of the 
enclosing block, e.g., for (int i = 0;;) { … }.  Many 
programmers assumed, to be the same as 

int i = 0; 
for (;;) { … } 

 

This creates a problem when the variable i is used in the 
code following the for statement. This transformation 
involves locating for statements where this occurs, and 
moving the variable declaration outside of the loop. 

The main portion of the transformation is shown in 
Figure 5.  First, we must match the occurrences of iterator-
variable declarations that must be moved: 

src:for[src:init/src:decl/  
 src:name=following-sibling::src:*//src:name] 

This example matches all for statements where the name 
of a declaration in the initialization, src:init/src 

:decl/src: name, is used anywhere in the statements that 
follow the for-statement: 

<!-- Match declarations in initialization of for statements 
     where the code following the for statement uses the name --> 
<xsl:template match="src:for[ 
                 src:init/src:decl/src:name=following-sibling::src:*//src:name]"> 
 
  <!-- explicitly output the initialization as a declaration before statement on its own line --> 
  <xsl:copy-of select="src:init"/><xsl:text> 
</xsl:text> 
  <!-- output rest of for, but without initialization --> 
  <xsl:copy-of select="src:exclude(., src:init/src:decl)"/> 
</xsl:template> 

Figure 5. Transformation to move declarations of iterator variables when they are used outside of a for-statement 



following-sibling::src:*//src:name 
 

In this case the following-siblings axis includes all 
statements that follow the completion of the for statement, 
i.e., they do not include the statements in the for-statement 
block.  These are the statements that are in the old scope of 
an iterator variable declaration. We examine these statements 
and determine if the iterator variable is being used. If so, 
then this scope problem on the iterator variable is fixed. 

Matching and then moving particular statements is not 
straightforward in XSLT.  In XSLT we match parts of the 
input and indicate the processing of these parts.  Rearranging 
statements may involve multiple templates.  Generally, this 
would be done with an empty template to match the old 
position, and another template that inserted the moved 
statement along with the existing code.  The first 
transformation for this problem used this approach. 

To avoid using multiple templates, we created an XSLT 
extension function that allows us to perform this in one 
template.  To perform the move first we copy the current 
iterator variable declaration so that it now occurs outside of 
the for-statement: <xsl:copy-of select="src:init"/>.  
We put this copied declaration on its own line using the 
<xsl:text>...</xsl:text>.  Now we need to copy almost 
all of the for-statement, excluding the iterator variable 
initialization.  To make this easier, we created a srcML 
extension function src:exclude(to-copy, to-exclude).  
This function recursively copies the first parameter, but 
during the recursive copy any elements in the second 
parameter are excluded.  The effect is to copy the tree to-
copy but exclude the subtree to-exclude.  The second 
parameter is treated as a node-set, so it can include more than 
one element, i.e., more than one subtree can be excluded. 

In this particular case, we want to copy the for statement 
but exclude the declaration that is in the initialization: 

<xsl:copy-of  
select="src:exclude(.,src:init/src:decl)"/> 

 

Note that we copy the entire initialization, src:init, but 
exclude only the declaration, src:init/src:decl.  The 
reason for this is that we have to change the declaration into 
a declaration statement, i.e., the semicolon has to be 
duplicated. 

D. Deprecated String Functions 

In order to prevent buffer overruns, string functions that 
do not take the size of the destination buffer into account 

need to be replaced with those that do. In general, this is a 
transformation dealing with security issues.  In our case, the 
new version of the compiler issues a deprecation-type 
warning whenever the function strcpy is used.  The solution 
is to replace this call with the safer function strcpy_s that 
includes a destination buffer size.  The function strcpy_s is 
Microsoft specific and is similar to the standard function 
strncpy.  The main portion of the transformation to make 
this change is given in Figure 6. The template matches any 
calls to the function strcpy:src:all[src:name='strcpy']. 
Most of this part of the transformation is constructing the 
text of a new call.  The name of the new call is inserted as 
text: <xsl:text>strcpy_s(</xsl:text>).  The arguments 
are mapped from the old call to the new call.  For the first 
parameter this is: 

<xsl:copy-of  
select="src:arg_list/src:argument[1]"/> 

 

What cannot be directly copied from the original code is 
the derivation of a new second parameter to the strcpy_s 
function, which is the size of the first argument.  This size 
depends on how the buffer for this argument was created, 
i.e., in its declaration, use of malloc, use of new, etc.  Also, 
the variable used for the first parameter may have been set 
through various aliases.  Accurately determining this would 
require heavyweight analysis of the program and in some 
cases may not be possible.  For this lightweight approach we 
analyze the current file and, when we are unable to 
automatically determine the size, a comment is added 
identifying where manual changes are needed. 

To hide the complexity of the analysis to determine the 
proper size of the buffer, we have used a srcML extension 
function src:defnsize that, given the name of a variable, 
tries to determine the size.  In this transformation it is used as 
follows: 

src:defnsize(src:argument_list/src:argument[1]) 
 

If the size of the buffer cannot be determined by the 
function src:defnsize, the default text /* FIXSIZE */ is 
inserted.  Another srcML extension function, src:default is 
used to avoid if-else code.  So the second parameter is a 
result of 

src:default(src:defnsize(src:argument_list/ 
        src:argument[1]), '/* FIXSIZE */') 

 

With this transformation we have successfully identified 
calls to a specific function, e.g., strcpy, and constructed a 
new call based on the arguments to the original call.  We 

<!-- Match calls to deprecated str*cpy functions --> 
<xsl:template match="src:call[src:name='strcpy']"> 
  <xsl:text>strcpy_s(</xsl:text> 
  <xsl:copy-of select="src:argument_list/src:argument[1]"/> 
  <xsl:text>, </xsl:text> 
  <xsl:copy-of select="src:default(src:defnsize(src:argument_list/src:argument[1]),  
                                                                          '/* FIXSIZE */')"/> 
  <xsl:text>, </xsl:text> 
  <xsl:copy-of select="src:argument_list/src:argument[2]"/> 
  <xsl:text>)</xsl:text> 
</xsl:template 

Figure 6.  Transformation to replace deprecated strcpy functions with the safer alternatives strcpy_s.  The new call requires an extra parameter 

which is the size of the destination buffer.  Whenever possible lightweight static analysis is applied on the context of the call by the srcML 

extension function src:defnsize.  If not found, a comment is inserted to indicate to the developer that the size needs to be manually inserted. 



have also determined the size of a buffer based on the 
original code and demonstrated the use of srcML extension 
functions to hide complexity, and provide reusable 
functionality.  Note that the developer will have to manually 
determine the proper buffer sizes in some cases.  However, 
these are clearly marked with an identification mark that can 
be easily found. In our case studies, we were able to identify 
the size correctly 38% of the time. Most of the cases where 
we are unable to automatically identify the size involve 
global pointers to complex data types. The manual changes 
performed by the developers required adding new functions 
to report the size of these complex data types. 

E. STL Vector Data is Private 

Changes to a run-time framework can cause run-time 
errors to occur, where they did not occur previously.  One 
case of this occurred with the STL vector concerning access 
to the start of vector data when done with the expression 
&v[0] (where v is an STL vector).  This expression was used 
as an argument to COM methods and caused a number of 
run-time errors in the new platform version.  In order to get 
around this problem, the macro AfwSafeVectorBegin(v) 
was defined to safely dereference v and to handle the case 
where the vector is empty.  The fix is to detect uses of &v[0] 
and to replace these with a call to the new macro. 

The basic transformation consists of a single XSLT 
template as shown in Figure 7.  The srcML for the location, 
with the operator & escaped, is: 

<op:operator>&amp;</op:operator><name> 
  <name>v</name><index>[<expr>0</expr>] 
   </index></name> 

 

The XPath expression for the location starts with 
matching all expressions used as arguments: 
src:argument/src:expr.  At this point we need to narrow 
this down using pattern matching to match the exact uses of 
&v[0].  First, we check that the expression contains the 
address operator.  The existence of the address operator can 
be checked using the predicate op:operator='&amp;'. Then 
we need to determine if the address is being taken of a 
variable indexed to 0 with the predicate: 
src:name/src:index[src:expr='0'].  Finally, the predicate 
checks that the expression consists only of the address 
operator and the index of the variable to 0. 

Once these locations are discovered, the expressions need 
to be rewritten to use the macro.  This is done by replacing 

the expression with the name of the macro, 
AfwSafeVectorBegin and inserting the current variable name 
with the expression: .//src:name/src:name.  The nested 
use of the src:name element in the path is to accommodate a 
variable name that is indexed.  A related problem is the 
application of the address operator to the end of the vector, 
as in the expression &(*v.end()), with a corresponding 
macro AfwSafeVectorEnd(v).  The template to make this 
transformation is the second template in Figure 7. 

These transformations identified expressions where 
invalid references to vector data are used.  These expressions 
are modified to call a macro to handle the situation safely.  

One limitation of the lightweight approach is that the index is 
compared directly to the literal value 0.  If a macro, or 
constant, or expression was used that evaluated to 0, then this 
would not have been identified.  The transformation can be 
extended to special cases, but not easily to the general case 
with a lightweight approach.  However, we didn’t find any of 
these examples in this study. 

F. Fully-Qualifying Function Pointers 

Another situation that arises specifically when compiler 
migration is performed involves cases when a variable is not 
fully prefixed.  In our case study this occurred with function 
pointers passed as arguments.  For example, the function 
pointer OnLookupAgain used as an argument to a call should 
be fully qualified as &AfwNSI::CQM::OnLookupAgain.   

This case presents a challenge to a lightweight approach.  
Based on the usage of the variable and without a definition, it 
is not possible to determine if a variable is a function pointer.  
Since it is common for the declaration of a function pointer 
to be defined in a source file external to the one being 
transformed, or even at run-time based on startup options, an 
examination of all files in the system may have to be done. 

Since the purpose of these transformations was to assist 
the developer by semi-automating their task, a full solution 
was not used.  In this case, the transformation is written 
specifically for this function.  The transformation is a single 
template that matches expressions where the name of the 
function pointer is used (as provided by the developer), and 
qualifies them with the provided qualification.  This 
transformation can be generalized to convert any function 
pointer with a fully qualified name if the developer provides 
both.  In this case, the transformation serves as a search and 
replace, but with knowledge of context. 

<!-- Match arguments of the form &v[0] where v is any variable name  --> 
<xsl:template match=" 
     src:argument/src:expr[ 
         op:operator='&amp;' and 
         src:name/src:index[src:expr='0'] and 
         count(*)=2 
     ]">AfwSafeVectorBegin(<xsl:value-of select=".//src:name/src:name"/>)</xsl:template> 
 
<!-- Match arguments of the form &(*v.end()) where v is any variable name  --> 
<xsl:template match="src:argument/src:expr[ 
     op:operator[1]='&amp;' and op:operator[2]='(' and op:operator[3]='*' 
     ]">AfwSafeVectorEnd(<xsl:value-of select=".//src:name"/>)</xsl:template> 

Figure 7. Main template of the transformation to keep STL vector data private. 



We examined methods of automatically generating this 
list of needed replacements.  One approach is to use the 
compiler to find the lines where this error occurred.  While 
this gave us the names of the function pointers, it did not 
solve the problem of the proper qualification.  A solution to 
this is to first scan the entire system for a list of function 
pointers, and then run the transformation on that list. 

IV. EVALUATION 

In order to evaluate the transformations described in 
Section III, a set of case studies are conducted, consisting of 
adaptive maintenance changes selected from two different 
industrial systems developed at ABB.  The first set of 
adaptive changes deal with changes to the C++ standard 
deployed in a new version of the VxWorks development 
platform.  The second set of adaptive changes deal with 
changes to the Microsoft Visual Studio compilers and 
underlying runtime framework.  The goal of these studies is 
to compare the manually changed code and the automatically 
transformed code.  Cases where the technique transformed 
code in an incorrect place represent false positives, while 
missing transformations represent false negatives.  The 
computer used for the automated transformation was a 
Lenovo ThinkPad W500, containing a 2.5 GHz Intel Core 2 
Duo CPU with 4 Gigabytes of RAM, running the Windows 
XP operating system.  

A. Case Study 1 

The product in the first study contains approximately 122 
KLOC of C and C++ code contained in 405 files.  The code 
is composed of a hybrid mix of procedural (54%) and object-
oriented code (46%).  This system had previously undergone 
manual adaptive maintenance, due to changes in the way the 
gcc compiler handles the new operator in C++.  Specifically, 
the compiler adopted the new standard of throwing an 
exception when memory is not available, as opposed to just 
returning NULL.  Due to this change, all instances of the 
new operator had to be changed. Two baselines were used in 
this study.  The first is taken from just before the manual 
adaptive maintenance changes were made, and is the starting 
point for the automated transformation.  The second baseline 
was taken just after the manual changes were completed and 
is used to verify that the automated transformation was 
successful.  In total, 479 manual adaptive maintenance 
changes were made to accomplish this compiler update.  

First, the source code for the entire system was converted 
into srcML by the toolkit.  It took only a few seconds to 
convert the 122 KLOC into the srcML format.  The 
transformation was then run on the code, also taking only a 
few seconds.  Finally, the transformed srcML was converted 
back to source code in only one second.  Once the 
transformations were run on the system, they were validated 
against the manual changes to identify any false positives or 
false negatives.  Finally, the source repository was studied to 
identify any cases where the original manual transformation 
was incorrect, resulting in a later change.  In these cases, the 
automated transformation is also compared to these later 

changes to determine if the tool performed more accurately 
than the original manual transformation.  

All 479 manual changes were made correctly by our 
automated transformation approach when compared to the 
manual changes.  That is, we did not miss any of the changes 
performed manually and did all of them correctly. In 
addition, our automated approach identified 40 cases that 
were missed by the developers during the initial manual 
change (for a total of 519 changes).  Upon examining later 
versions of these files and their version history in the source 
repository, it was determined that all of these 40 missed 
changes were later identified and corrected manually. These 
represent changes that were originally missed and detected at 
later points in time by other forms of verification and 
validation.  However, our automated approach was able to 
identify and correct all without additional effort or cost.  
There is nothing unique about the 40 changes missed by 
developers. They are all just instances of other changes that 
the developers simply missed. 

TABLE I.  RESULTS FOR THE SECOND CASE STUDY  

 
Correct Incorrect 

Manually 
Missed 

Template Class 3 0 0 

Iterator Variable 231 0 86 

Deprecated Str 406 0 5 

Data Private 1419 2 213 

Qualifying 
Functions 

1 0 0 

Totals 2060 2 304 

B. Case Study 2 

The system in the second study contains approximately 
3.9 MLOC of C and C++ code spread among 13,800 source 
files.  This system is composed of mostly object-oriented 
C++ code (84%) with the remaining 16% being procedurally 
designed C code.  The system has recently undergone 
adaptive maintenance changes due to a C++ compiler 
migration (i.e., Visual Studio 2003 to Visual Studio 2005).  
Two different baselines of the source code are used for this 
study, one just before, and one immediately after, the 
adaptive maintenance changes were performed.  All of the 
changes were logged in a version control system as a single 
transactional check-in. In total, the developers manually 
performed 1756 adaptive maintenance changes. 

First, the source code for the entire system was converted 
into srcML by the toolkit. It took 211 seconds to convert the 
entire 3.9 MLOC into the srcML format.  All five 
transformations listed in Table I were then run on the system, 
taking a total of 653 seconds.  Finally, the transformed 
srcML was converted back to source code, which took 51 
seconds.  Once the transformations were run on the system, a 
separate author validated the transformed changes against the 
manual changes and any false positives or false negatives 
were identified.  Finally, the source repository was studied to 
identify any cases where the original manual transformation 
was incorrect, resulting in a later change.  In these cases, the 
automated transformation is also compared to these later 



changes to determine if the tool performed more accurately 
than the original manual transformation.  

Table I shows the results of the transformations for the 
second case study. All 1756 manual changes were made 
correctly by our automated transformation approach. Our 
approach did incorrectly transform two cases of the private 
data problem.  One case was due to imprecise matching of 
the code pattern and could be corrected quite easily in the 
transformation.  The other case required more precise type 
resolution to address properly.  Doing this for all cases may 
not be possible in our approach and require either full type 
analysis of the system or developer input.  Our automated 
approach also identified 304 adaptive changes that were 
missed by the developers during the initial manual change.  
Upon examining later versions of these files, it was 
determined that all of the 304 missed changes were later 
identified and corrected in the source repository.  Again, for 
the most part these situations were not particularly unique, as 
the missed changes were instances of changes that are 
correctly made elsewhere in the source code. 

V. EXTENSION FUNCTIONS 

One of the advantages of the srcML format is that it 
provides access to all parts of the source code.  No detail of 
what the developer writes, including comments and white 
space, is lost.  Queries and transformations can be performed 
on all of these aspects.  The format exists at a level right on 
top of the source code text.  In order to provide an 
abstraction for concepts at a higher level then directly 
expressed in the source code, and directly represented in 
srcML, we have created srcML extension functions.  Many 
of these were used in the preceding transformation examples.  
These extension functions can be used along with the full 
XPath language in expressions for location of the source of 
the transformation, in the source code analysis needed to 
perform the transformation, and in the generation of the 
transformed code. 

An example srcML extension function, src:defnsize,, is 
shown in Figure 8. These functions are helpful for fact 
extraction and analysis, which would otherwise require more 
complex XSLT and XPath statements. Another srcML 
extension function, src:use2defn($name), is used to find 
the definition where $name is the name of the variable.  From 

the variable definition for a statically sized array we can find 
the expression of the size with the XPath expression: 
src:index/src:expr.  We also need to look for dynamic 
allocation using malloc and new.  This may occur in the 
declaration, or as an assignment in a previous statement.  
This is handled by other parts of the XPath expression.  
Many of the srcML extension functions used in this paper 
perform very general needs, such as determining variable 
scope or type determination. Building a useful set of 
extension functions will significantly help developer 
adoption of this technique. 

VI. RELATED WORK 

We observed that automated source code transformations 
intended to be handed back to a developer must preserve the 
programmer's view of the document, i.e., preserve white 
space, comments, and the expressions of literals, and failure 
to do so may mean the rejection of the result [5, 13] and tool.  
In [13] the concept of the documentary structure of source 
code, whose elements include all white space and comments, 
is presented.  This documentary structure is often at odds 
with the linguistic structure of the program.  Unfortunately 
for many parse-tree-based approaches, this documentary 
structure is completely lost.  Attempts to preserve these ties 
often result in the documentary structure not being easily 
integrated back into the representation. 

In contrast to these requirements, software-development 
tools typically take a totally compiler-centric approach of 
representing the source code as an abstract syntax tree.  It has 
been observed that these approaches are often not a good 
match to the problems that they are trying to solve [9, 13].  
There are exceptions to this problem with compiler-centric 
approaches however, with one example being the DMS 
systems by Baxter [1].  Baxter has gone to great lengths to 
address this specific issue by storing important textual items 
within the underlying abstract-syntax graph.  Also, as a full 
compiler (i.e., heavy weight) approach, it allows for static 
analysis to be built into the transformation.  Our approach is 
very lightweight by comparison and uses widely available 
and accessible XML technologies.  One approach is to move 
down to the level of lexical analysis and provide for the 
transformation at that level, as in [7].  This allows for the 
preservation of all of the text, but at a cost of complex 

<func:function name="src:defnsize"> 
  <xsl:param name="name"/> 
  <xsl:variable name="attempts" select=       
        src:use2defn($name)//src:index/src:expr  
        src:use2defn($name)//src:init//src:call 
              [src:name='malloc']/src:argument_list/src:argument/src:expr |       
        preceding::src:expr[src:name[1]=$name and   
op:operator[1]='=']/src:call[src:name='malloc']/src:argument_list/src:argument/src:expr |           
        preceding::src:expr[src:name=$name and op:operator='new']//src:index/src:expr               
)[last()]"/> 
  <func:result select="$attempts"/> 
</func:function> 

Figure 8. The srcML extension function src:defnsize is an example of how static analysis of the code can be encapsulated.  Given a name, the 

function finds the size of the buffer by looking at the declaration.  The buffer may be sized statically, or dynamically by a malloc or new.  Each 

form of buffer sizing is tried, with the last one found used.  If no size can be found, the result is empty. 



regular expressions.  Also, with this approach, it is not as 
easy to provide for abstractions that reflect static analysis.  
Another approach that preserves the programmer’s view is to 
move the transformation to the level of the grammar as in 
TXL [6].  Using this approach, the transformations are 
written as part of the grammar for parsing the language.  The 
approach shares many of the advantages of our approach:  
preservation of programmer’s view, scalability, robustness, 
etc.  The difference is in the format of the transformation.  
Instead of grammar rules, our approach treats the text of the 
source code as data in XML, and the transformations are 
XML transformations.   

The Proteus system [14] addresses similar problems of 
performing transformations on large C++ systems while 
preserving the layout and handling code before 
preprocessing.  They refer to this as "high-fidelity" 
transformations.  An AST approach is used, with white space 
and comments stored in additional AST nodes.  They 
provide their own language YATL for transformations on the 
AST.  Additionally, in [10] these documentary structure 
issues are seen as a cross-cutting concern in the form of 
annotated parse trees.  Other approaches include using an 
intermediate language to describe the source, as in the case 
of the C Intermediate Language (CIL) [12]. 

The lightweight approach we have presented preserves 
the documentary structure, as is done in some of these 
approaches, while at the same time integrates static analysis 
into transformations that go down to the lexical level.  No 
other work integrates a lightweight approach and static 
analysis in an efficient and useable manner. 

VII. CONCLUSIONS AND FUTURE WORK 

The cases studies presented demonstrate that lightweight 
parsing combined with lightweight static analysis is adequate 
to support a transformational approach to automatically 
addressing certain adaptive maintenance tasks on two large 
real world systems of different domains and different 
development platforms.  The approach presented work as 
well as developers in that it correctly modified all cases that 
were manually done (except for two cases – less than one 
percent for that particular type of adaptive change).  
Moreover, it worked better than developers in that it 
identified a significant number (13%) of cases that the 
developers missed in the original changed version.  The 
developers later addressed these missed cases over a period 
of time from later testing and failures.  Our approach made 
changes to all these cases correctly.   

One clear limitation of our approach and the presented 
transformation is that the determination of the proper buffer 
size for the deprecated string change.  In this case more 
complete static analysis would help but pointer alias analysis 
is a very difficult problem.  We intend to see if we can 
improve the extension function src:defnsize to increase the 
accuracy, but we may need to do complete static analysis to 
address this problem fully.   

We believe that the results are applicable to not only 
compiler migration, but to other adaptive maintenance tasks.  

The use of XPath extension functions to hide the details of 
complex XPath expressions made the transformations easier 
to understand.  Details of the exact generated code to fix an 
adaptive maintenance issue may be project or even 
programmer specific.  These transformations are easily 
modified to reflect this. They also provide a reusable set of 
functions for further transformations.  We are also creating a 
larger library of extension functions to support general 
maintenance transformations. 
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