
Effective Identifier Names for Comprehension and Memory

Dawn Lawrie, Christopher Morrell, Henry Feild, David Binkley

Abstract

Readers of programs have two main sources of domain
information: identifier names and comments. When func-
tions are uncommented, as many are, comprehension is
almost exclusively dependent on the identifier names. As-
suming that writers of programs want to create quality
identifiers (e.g., identifiers that include relevant domain
knowledge) how should they go about it? For example, do
the initials of a concept name provide enough information
to represent the concept? If not, and a longer identifier is
needed, is an abbreviation satisfactory or does the con-
cept need to be captured in an identifier that includes full
words? What is the effect of longer identifiers on limited
short term memory capacity?

Results from a study designed to investigate these ques-
tions are reported. The study involved over 100 program-
mers who were asked to describe twelve different functions
and then recall identifiers that appeared in each function.
The functions used three different ‘levels’ of identifiers:
single letters, abbreviations, and full words. Responses al-
low the extent of comprehension associated with the differ-
ent levels to be studied along with their impact on memory.

The functions used in the study include standard com-
puter science text-book algorithms and functions extracted
from production code. The results show that full-word
identifiers lead to the best comprehension; however, in
many cases, there is no statistical difference between using
full words and abbreviations. When considered in the light
of limited human short-term memory, well chosen abbre-
viations may be preferable in some situations since identi-
fiers with fewer syllables are easier to remember.

Keywords Program Comprehension, Software Quality,
Quality Assessment

D. Lawrie
Computer Science Department, Loyola College, 4501 N. Charles St.,
Baltimore, MD 21210-2699, USA

C. Morrell
Loyola College

H. Feild
Loyola College

D. Binkley
Loyola College

1 Introduction

Conventional wisdom says that choosing meaningful
identifier names improves code quality and thus the ability
of future engineers to manipulate the code [9]. Quality is
important to all software engineering projects as it effects
the bottom line: lower quality leads to higher costs [16].
Quality is particularly important in safety critical applica-
tions where the ‘cost’ of a failure is considerably higher.
Software quality is impacted by program features such as
code structure and identifier naming. Of particular interest
herein is the key role that identifier naming plays in code
quality.

Further motivation for studying identifiers comes from
a number of prior studies. For example, Rilling and Kle-
mola observe “In computer programs, identifiers represent
defined concepts”[15], while Caprile and Tonella point
out that “Identifier names are one of the most important
sources of information about program entities”[5]. An-
other motivation for studying identifiers comes from Deis-
senböck and Pizka who note that “research on the cogni-
tive processes of language and text understanding shows
that it is the semantics inherent to words that determine
the comprehension process”[7]. Finally, Takang et al. note
“The quality of identifier names is an issue that merits
closer consideration and exploration in its own right”[19].

As a relatively young field, computer science is still
guided by a collection of commonly held, but often unsub-
stantiated, beliefs. Through empirical study one can ascer-
tain the veracity of such beliefs.

This paper reports on a study aimed at better understand
the effect of identifier makeup on a programmer’s ability
to manipulate code. For example, the ability to compre-
hend source code or the ability to recall particular iden-
tifiers. One hundred twenty-eight participants took part in
the study. The number and variety of participants make this
study unique. Furthermore, there is sufficient diversity in
the subject population to allow the results to broadly ex-
plain the impact that identifier construction choices have.

The study confirms the belief that identifiers made
up of well formed abbreviations and full words lead to
higher quality software; however, excessively long iden-
tifiers overload short term memory, negatively impacting
program comprehension. Thus, a balance between infor-
mation content and recall ability must be struck. This sug-

2

gests careful evaluation of identifier naming conventions.
For example, identifier prefixes potentially improve com-
prehension by providing ancillary information about the
identifier. However, they also make the identifier longer
and thus have the disadvantage of contributing to the over-
crowding of short-term memory.

The paper makes three primary contributions. First, it
presents data from a empirical study that involves a consid-
erably larger and more diverse selection of programmers
than similar past studies. Second, the paper interprets the
results of statistical models describing the collected data
using five hypotheses. The two most important of these re-
late to the impact of identifier quality on programmer com-
prehension and to programmer recall ability. Finally, com-
bining the two results, the paper discusses their impact on
variable naming in programming. For example, the results
can be used to inform naming convention choices.

The remainder of the paper first presents a description
of the experimental setup in Section 2, followed by neces-
sary background information in Section 3. This is followed
by a discussion of the results and then related work in Sec-
tions 4 and 5. Finally, Section 6 summarizes the paper and
suggests some places for future work.

2 Experimental Design

This section presents the experimental design. It first
provides an overview of the study’s five hypotheses and
then describes the process used to select and prepare the
source code for the study. Next, the experiential setup and
potential threats to the validity of the experiment are con-
sidered. The final two subsections summarize subject de-
mographics, and finally, the process of readying the data
for analysis.

2.1 Overview

Two primary hypotheses are studied:

(1) Full natural-language identifiers and well-constructed
abbreviations lead to better source code comprehen-
sion than less informative identifiers.

(2) Full natural-language identifiers and well-constructed
abbreviations lead to better programmer recall than
less informative identifiers.

Three additional hypotheses are also investigated:

(3) Increased work experience and schooling lead to a bet-
ter ability to comprehend source code.

(4) In support of related studies [14], gender plays a role
in confidence but not comprehension.

(5) Shorter meaningful identifiers are easier to remember
than longer meaningful identifiers.

To investigate these hypotheses a two part study was
conducted. The first part is aimed at ascertaining the effect

of identifier quality on comprehension. It investigates the
impact of three levels of identifier quality: full words, ab-
breviations, and single letters. The second part of the study
considers the ability of an engineer to recall identifiers and
thus investigates the impact of memory and recall on pro-
gram comprehension [8].

2.2 Source Code Preparation

The first step in constructing the study was to select
and then prepare twelve functions. Two kinds of functions
were determined to be of interest: algorithms and snip-
pets. Algorithms, taken from text books and course lecture
notes, include functions such as binary search andquick-
sort. Snippets, taken from production code available from
the world wide web, include functions for finding the best
move in the gamego and summing all the debits in an ac-
count.

The initial search revealed about fifty candidate func-
tions. From these, six algorithms and six snippets where
chosen for inclusion in the study. The selection was based
on features of the code. For example, the selected func-
tions ranged in size from eight to thirty-six lines of code.
Since the focus of the study is on identifiers, comments
were omitted from the code the subjects viewed. All infor-
mation about the purpose of the code came from its struc-
ture and its identifiers.

The next task was to create the three variants of each
function: full-word, single-letter, and abbreviation. The
variants differed only in the quality of the identifiers used.
First, the full (English) word variant of each function was
constructed. The identifier names came from the original
programmers if the code had been written with full-word
identifiers or were chosen by the authors to be particularly
meaningful. Then, the single-letter variants were created
by selecting the first letter of each word in each full-word
identifier.

Finally, the abbreviation variants were created based on
the full-word variants. Most of the identifiers had common
abbreviations (e.g., count → cnt, length → len). Ten of
the 63 identifiers (e.g., current board, target, and
credit) had no conventional abbreviation (as known to
the authors). In these cases a professional programmer un-
related to the experiment was asked to abbreviate the ten
identifiers. Five of the ten were the same abbreviations
as the authors proposed, three contained less information
(e.g., most frequent letter was abbreviatedmfl
rather thanmfreqlet), and two had minor differences
(scores was abbreviated asscrs rather thanscs and
creditwas abbreviatedcdt rather thancred. To avoid
experimenter bias, the professional programmer’s abbrevi-
ation were used in cases of disagreement.

To illustrate the difference in the variants, Figure 1
shows the three variants of the algorithm Sieve of Er-
atosthenes. The top function is the single-letter variant.
It is expected that comprehension using this variant will

3

Single Letter Variant

void fXX(bool pn[], int l)
{
int i, f, p;

pn[0] = false;
pn[1] = false;
for (i = 2; i < l; i++)

pn[i] = true;

for (p = 2; p < l; p++)
if (pn[p])

for (f = p; f * p < l; f++)
pn[f * p] = false;

}

Abbreviated Variant

void fXX(bool isPriNum[], int len)
{
int idx, fac, pri;

isPriNum[0] = false;
isPriNum[1] = false;

for (idx = 2; idx < len; idx++)
isPriNum[idx] = true;

for (pri = 2; pri < len; pri++)
if (isPriNum[pri])

for (fac = pri; fac * pri < len; fac++)
isPriNum[fac * pri] = false;

}

Full Word Variant

void fXX(bool isPrimeNumber[], int length)
{
int index, factor, prime;

isPrimeNumber[0] = false;
isPrimeNumber[1] = false;

for (index = 2; index < length; index++)
isPrimeNumber[index] = true;

for (prime = 2; prime < length; prime++)
if (isPrimeNumber[prime])

for (factor = prime;
factor * prime < length; factor++)

isPrimeNumber[factor * prime]
= false;

}

Fig. 1. The three variants of the algorithm
Sieve of Eratosthenes, which finds prime
numbers.

be worse than the other variants. The middle function
includes abbreviated identifiers (e.g., isPriNum). Fi-
nally, the bottom function uses full-word identifiers (e.g.,
isPrimeNumber).

2.3 Experimental Setup

This section describes the user interface used to conduct
the study. There are three main phases in the interface:
first, the collection of demographic information; second,
the presentation of and questions concerning the twelve
functions; and third, a solicitation of comments from par-
ticipants. The implementation of the GUI and the different
phases are discussed in detail below.

The experiment was setup to be conducted over the web
and thus allow a geographically diverse group of subjects
to take part. A Java applet was used as the user interface
to control the viewing of the source code (e.g., to prevent
subjects from making use of their browser’s ‘back’ but-
ton to view the code multiple times). In addition, an applet
simplifies the collection of timing data.

Subjects began with the demographics page, which col-
lected their years of computer science schooling, years of
computer science related work experience, the title of the
last computer science position held, age, and gender. In
addition, because the study involved reading code written
in the programming languages C, C++, and Java, each sub-
ject was asked to provide their comfort level with each lan-
guage on a scale of 1 to 5.

The middle part of the experiment involved showing the
twelve functions. Three screens were used for each func-
tion. Based on previous memory-based experiments, the
order of these screens is important [8]: the first shows the
subject the treatment, which is followed by a “memory
clearing” activity, and then finally the recall activity.

In this experiment, the first screen displayed one of the
three variants of the source code. Participants were asked
to spend one to two minutes reading the code and not
to write anything down regarding the code. The second
screen, shown on the left of Figure 2, had two purposes.
First, it served as the memory clearing activity. Second, it
provided two pieces of information used in the compre-
hension part of the study. It asked subjects to provide a
free-form written description of the purpose of the func-
tion and to rate their confidence in their description. (In a
few cases the confidence rating was misinterpreted. Partic-
ipants wrote “I don’t know” as the description but gave a
confidence of 5, indicating they were very sure they did not
know what the code did; however, most treated confidence
as intended.) The description provides a qualitative mea-
sure of comprehension without leading the subject toward
potential answers, while the confidence rating provides a
quantitative measure of the subject’s understanding. Mo-
tivation for including both is found in the following ob-
servation of Takang et al.: “the subjective nature of ‘qual-
ity’ suggests that the quantitative studies, which character-
ize this area, are less appropriate than studies focusing on
qualitative measures”[19].

Finally, the third screen, shown on the right of Figure 2,
presented the recall activity. It listed six possible identi-
fiers. Subjects were asked to select those identifiers that

4

they recalled appearing on the first screen. The actual num-
ber of identifiers from the source varied from one to four,
but was held constant for a given function no matter which
variant the subject saw. Thus, the list of identifiers was de-
pendent on both the function and the variant viewed by the
subject. For each list, there was at least one wrong answer
of the correct variant. Other wrong answers included vari-
ables used in other variants and names associated with the
domain of the function.

To ensure that each participant saw an even distribution
of the three different variants in a balanced fashion and to
ensure that, for each question, each variant was seen by
a similar number of participants, the sequence of variants
shown was randomly taken from three possible sequences
created using Latin Squares. From the data collected, the
actual number of responses for each variant was 357, 364,
and 366, which indicates that good balance was achieved.

The final screen, seen only by subjects who completed
all twelve questions, provides space for free-form com-
ments. Participants volunteered such information as their
opinion of particular questions, their frustration with the
choice of identifier names, and the amount of time that has
passed since they last had to read code. One subject re-
marked, “Nice survey. Programs are indeed inherently un-
intelligible especially for the unexperienced eye.” Another
subject wrote, “It made a difference if I studied the vari-
ables in addition to the code fragment. Most times I only
studied the code – a few I reviewed the variables and that
increased myconfidencein naming the ones present.”

2.4 Threats to Validity

In any empirical study, it is important to consider threats
to validity (i.e., the degree to which the experiment mea-
sures what it claims to measure). There are four types of
validity relevant to this research: external validity, internal
validity, construct validity, and statistical conclusionvalid-
ity.

External validity, sometimes referred to as selection va-
lidity, is the degree to which the findings can be gener-
alized to other organizations or settings. In this experi-
ment, selection bias is possible as the selected functions
and participants may not be representative of those in gen-
eral; thus, results from the experiment may not apply in the
general case. Careful selection of the functions mitigates
the impact of this bias in terms of the functions used in
the study. Given the demographic data, the subjects seem
fairly representative of the computer science community at
large.

Second, three threats to internal validity, the degree to
which conclusions can be drawn about the causal effect
of the explanatory variable on the response variable, are
considered. First, statistical associations do not imply cau-
sation; though, given the experimental setup, one should
be able to infer that differences between the question vari-
ants are due to the different types of identifiers. Second,

attrition effects occur with the loss of participants during
the treatment. There are several reasons an individual may
have discontinued participation in the study; however, no
evidence that the loss is systematically associated with ex-
periential conditions was suggested. Third, learning effects
occur where exposure to early questions have an effect
on responses to later questions. No evidence of this was
found in the participants responses. Finally, other poten-
tial threats to internal validity, for example, history effects
and subject maturation [2] are non-issues given the short
duration of the experiment.

Construct validity assesses the degree to which the vari-
ables used in the study accurately measure the concepts
they purport to measure. As human assessment of quality
is rather subjective, it is possible that some other aspect of
the code affected participants’ responses. The parallels be-
tween the models for the description rating and confidence
suggest that this is not a serious concern.

Finally, a threat to statistical conclusion validity arises
when inappropriate statistical tests are used or when vi-
olations of statistical assumptions occur. The models ap-
plied are appropriate for analyzing unbalanced, repeated-
measures data, so that the conclusions drawn from the
statistics should be valid.

2.5 Subject Demographics

This section summarizes demographic data on the
study’s subjects. These include current students and
alumni of several colleges and those reached via email sent
to various professional groups. In all, 192 people started
the survey. Of these 64 filled in only the demographic in-
formation. Thus, 128 participants answered at least one
question. Eighty of these completed all twelve questions.
Participants ranged from students (about 25 percent) to
professionals with over forty years of experience. The av-
erage age of the participants was 30 years with a standard
deviation of 11. The average number of years worked was
7.5 with a standard deviation of 8.8. Ten percent of the
participants were female. Finally, the average comfort sub-
jects reported for C, C++, and Java on a scale of 1 to 5,
were 3.3, 3.4, and 3.6, respectively.

All studies concerning human subjects must consider
drop-outs – subjects who do not complete the study. The
drop-out rate for this study, depicted in Figure 3, reports
the number of participants that stopped after each ques-
tion. Eighty of the 128 participants or 62.5%, answered all
twelve questions. As seen in the figure, all but one drop out
occurred during the first half of the study. It is likely that
fatigue played a part in dropping out. One subject com-
mented on fatigue multiple times when describing the pur-
pose of the functions. Other factors that may have lead
to dropping out include the unexpected difficulty and the
amount of time required to complete the study.

5

Fig. 2. Screen shots from the data collection applet. The lef t image shows the second screen where
subjects entered a free-form description and rated their co nfidence in their understanding. The right
image shows the third screen where subjects selected the ide ntifiers they thought appeared in the
code.

Fig. 3. The drop-out rate – the number of par-
ticipants that left the study after completing a
particular question.

2.6 Data Preparation

The data preparation involved three primary steps. First,
two non-numeric values from the demographic informa-
tion were replaced by approximate numeric values. These
two were the age ‘40+’, which was replaced by 45 and the
age ‘old’ which was replaced by 60. Both replacements
were based on the profession and the number of years of
work experience.

Second, the data associated with times that seemed un-
usually short or long were examined. Most of the ex-
tremely short times (less than 10 milli-seconds) came from
problems in the interface. In these cases, which numbered
5, the entire question was discarded for that particular sub-
ject. Considering short times also uncovered two subjects
who quit the study and then re-started it at a later time.
Since they closed their browser, they began with the first
question again and thus could answer some questions with-
out first analyzing the code. In these cases, the second re-

sponses to the questions were discarded and the remaining
responses were merged into a single record.

Long times were observed on all screens and appeared
to indicate some kind of distraction occurring (e.g., one
subject reported that a phone call had been taken). Since
these times would adversely effect the statistics, such out-
liers were treated as missing data, which is common in
similar studies. The statistical analysis can readily handle
this missing data.

In addition to cleaning the data, the free-form descrip-
tions were evaluated. Two of the authors independently
evaluated the correctness of each response on a 0 to 5 scale
with the following interpretations for each number:

5 correct
4 mostly correct
3 half right
2 mostly incorrect
1 incorrect
0 omitted an answer or reported a problem with

viewing the code

For some functions, further directions were agreed on such
as for the binary search algorithm a description was given
a 4 if the word “binary” was omitted from a description
that was otherwise correct.

In total, 1087 responses were evaluated in random or-
der to avoid any bias by variant. There was direct agree-
ment between the raters on 78% of the responses. In the
remaining cases, the average rating was used. To obtain a
statistical measure of overall agreement between the two
raters, aκ-statistic was computed. The result of 0.71 indi-
cates substantial agreement [10].

Finally, the responses to the third screen were analyzed.
The value extracted for use in the subsequent analysis was
the percent of correct answers for identifiers that appeared
in the code (hereafter referred to aspercent correct in

6

source, PCIS). Using a proportion rather than the actual
count facilitates comparing questions as the number of cor-
rect answers varies by question. It also better supports the
evaluation of subject recall ability. Analysis of wrong an-
swers is also interesting as it supports the understanding
of the conditions that lead to mistakes. Such an analysis is
also conducted.

3 Background

This section provides some background related to the
memory aspects of the study and describes the statistical
tests used to analyze the data collected.

3.1 Memory

The memory portion of the study was inspired by the
work of Jones who investigated the consequences of lim-
ited capacity short-term memory on subjects performance
in tasks related to the comprehension of short sequences
of code [8]. The study presented herein includes a sim-
ilar focus on the recall of identifiers; however, there are
two significant differences between the experimental setup
of the two studies. First, “real world” code was used in
this study rather than a sequence of assignment statements.
Second, the identifiers in this study were inspired by the
task, whereas the identifiers in the Jones study, which were
comprised of an arbitrary grouping of words, were focused
on investigating memory needs. For example, in this study,
participants saw the identifiersmoves, currentBoard, re-
sult, bestScore, andcurrentScore. In the Jones study,
groupings were chosen based on syllable count (a proxy
for their memory demand). As an example, participants
saw the three syllable identifiersprevented, liberation,
andconception.

From a memory perspective, the key difference between
the two is that task-inspired identifiers allow for possible
ties to long-term memory. Thus, in this study participants
could rely on their understanding and recall of the code’s
purpose in addition to their ability to recall the actual iden-
tifiers. In contrast, the Jones study participants had no ad-
ditional information apart from their memory. Although
this makes the results of the Jones study easier to interpret,
they are also more distant from the program comprehen-
sion process. Together these two studies compliment each
other and provide a better picture of the influence that iden-
tifier construction and memory requirements have on com-
prehension.

3.2 Statistics

As the data includes repeated-measures and miss-
ing values (e.g., due to participant drop out) linear
mixed-effects regression models were used to analyze the
data [20]. Such models easily accommodate unbalanced

data, and, consequently, are ideal for this analysis. These
statistical models allow the identification and examination
of important explanatory variables associated with a given
response variable.

The construction of a linear mixed-effects regression
model starts with a collection of explanatory variables and
a number of interaction terms. The interaction terms allow
the effects of one explanatory variable to differ depend-
ing upon the value of another explanatory variable. For
example, if confidence interacts with gender in a model
where rating is the response variable, then the effect of
confidence on rating depends on gender (i.e., is different
for men and women). Backward elimination of statistically
non-significant terms (p > 0.05) yields the final model.
Note that some non-significant variables and interactions
are retained to preserve a hierarchically well-formulated
model [13]. Therefore, individualp-values for terms par-
ticipating in an interaction are not reported.

When interpreting the mixed-effects models described
in the next section, graphs are often used to illustrate sig-
nificant effects in the model. However, when the models
have more than two explanatory variables (which most do)
it is not pragmatic to graph all the variables. Thus, when
plots are constructed, variables not being discussed are set
to their variant-specific means or, in the case of categorical
variables, a representative value.

In addition to linear mixed-effects regression, when a
basic comparison of distributions without considering ex-
planatory variables is needed, Friedman’s test is used. This
test is often used as an alternative to the parametric re-
peated measures ANOVA where the assumption of nor-
mality is not acceptable. The test is used to detect differ-
ences in treatments across multiple test attempts. The pro-
cedure involves ranking each block together, then consid-
ering the values of ranks by columns.

The study requires many instances of multiple compar-
isons. For instance, when comparing three variants and
twelve questions, thirty-six comparisons are made. Com-
puting a standardt-value for each comparison and then us-
ing the standard critical value increases the overall prob-
ability of a type I error. Thus, Bonferroni’s correction is
made to thep-values to correct for multiple testing. In
essence eachp-value is multiplied by the number of com-
parisons and the adjustedp-value is compared to the stan-
dard significance level (0.05) to determine significance.

4 Experimental Results

This section first formalizes the studies five hypothe-
ses. Statistical analysis of the data collected is then used
to build mixed effects regression models fordescription
ratings, confidence, and percent correct in source (PCIS).
An analysis of wrong answers recalled is presented in Sec-
tion 4.5. Finally, in Section 4.6, results from the analysis

7

of these models is used to accept or reject each of the five
hypotheses.

The five hypotheses consider comprehension, memory,
experience and education, gender, and identifier length,
and are formalized as follows.

Comprehension Hypothesis
H0: There is no difference in comprehension among

different identifier variants.
Ha: Full word identifiers and abbreviations lead to

better source code comprehension.

Memory Hypothesis
H0: The ability to recall an identifier is the same for

all variants.
Ha: It is easier to recall abbreviations and full words

than identifiers of the single-letter variant.

Experience and Education Hypothesis
H0: Work experience and schooling have no impact

on comprehension.
Ha: Increased work experience and schooling lead to

a better ability to comprehend source code.

Gender Hypotheses
H01

: Gender plays no role in confidence.
Ha1

: Gender plays a role in confidence.
H02

: Gender plays no role in ability to describe code.
Ha2

: Gender plays a role in ability to describe code.

Identifier Length Hypothesis
H0: The length of meaningful identifiers has no im-

pact on memory.
Ha: Longer meaningful identifiers are harder to re-

member than shorter ones.

4.1 Initial Comparison

The statistical analysis begins with an initial simple
comparison of means for eachvariant for each of the
three response variables:description ratings, confidence,
andPCIS. Subsequently, mixed effects regression models
are considered. The averages for each variant are shown in
Table 1.

The analysis was conducted in two (equivalent) ways.
First, a mixed-effects model was fit with only variant as a
factor. Least squares means are used to perform pairwise
comparisons of the three variants with a Bonferroni cor-
rection. Second, a two way randomized block design was
used with subject as a random factor. This is the simplest
repeated measures analysis. Bonferroni multiple compar-
isons of the three means were conducted.

Variant
single abbre- full p-
letter viation word value

Description Rating 3.10 3.72 3.91 <.0001
Confidence 3.07 3.55 3.68 <.0001
PCIS 0.72 0.81 0.81 <.0001

Table 1. Means and p-values for description rating,
confidence, and PCISby variant.

Both approaches give the same results. For all three
variables, full word and abbreviations did not differ sig-
nificantly but single letter were significantly lower then the
other two variants. The analyses for all three response vari-
ables provides limited support for the alternative Compre-
hension and Memory Hypotheses.

4.2 Description Rating Model

The next three subsections consider statistical models
for description rating, confidence, andPCIS. Each subsec-
tion presents two mixed effect regression models: first a
simplemodel and then acompletemodel. In each case, the
simple model is first constructed to gain an initial impres-
sion as to the influence ofquestion, variant, and their inter-
action, hereafter denotedquestion*variant, on one of the
three response variables:description rating, confidence,
andPCIS. Second, the complete model is generated to as-
sess the effects of four general categories of explanatory
variables on the given response variable. The first cate-
gory includes demographic information such as thegen-
der, (language)comfort, and years-worked. The second
category includes question characteristics, which includes
code type(snippetor algorithm), lines of code, number of
identifiers in the code (identifiers), and number of identi-
fiers squared (identifiers2) – included after a graphical in-
spection of the data revealed a quadratic shape. The third
category includes the time spent analyzing the code, writ-
ing the descriptions, and for memory, the time spent recall-
ing identifiers. The fourth category includes answer char-
acteristics, which, for example in the case of description
rating, include the variablesconfidenceand length of de-
scription.

In the complete model, the variables from the second
category are used in place ofquestionto provide a finer
level of granularity; consequently,questionis not included
in these models. Finally, the complete model includes the
variablevariant and its interactions with the other vari-
ables. Because each model contains significant interac-
tions,variant is always discussed in conjunction with other
variables.

The simple model for description ratings examines how
question, variant, and their interaction,question*variant,
effectdescription rating. Mixed effects analysis shows that
all three factors are statically significant. Because the in-

8

Fig. 4. The interaction between questionand vari-
ant when predicting the mean description rating.
Significant differences occurred in Questions
5, 6, and 8 where circled points separate sig-
nificantly different means.

teraction is significant, only thep-value for the interaction
(<0.0001) is relevant. The significance of the interaction
means that the effect ofvariant on description ratingdif-
fers byquestion.

Given that the interaction is significant, no trends can be
discussed forvariant or questionindependently. Figure 4
depicts a plot of the two variables illustrating the inter-
action. First, notice that the single-letter line is generally
below the other two lines. Interestingly, there is one ex-
ception with Question 9,quicksort. It appears that this is
such a well-studied algorithm that the structure of the code
alone is sufficient to determine its purpose.

The three questions where circles appear in Figure 4
show significant differences (the other questions did not
exhibit statistically significant differences). When more
than one variant appears in the same circle, it means that
there is no statistical difference between those variants.In
all three cases, full-word identifiers lead to significantly
better description ratings than single-letter identifiers. In
two cases, abbreviated identifiers also lead to significantly
better description ratings than the single letters. There is
never a statistical difference between full words and ab-
breviations, which means that the subjects who viewed the
abbreviations appear to get as much information out of the
identifiers as those that viewed the full-word identifiers.
However, given that the mean of the full word descrip-
tion ratings is generally higher than the abbreviations, it
is possible that with a larger sample size the difference be-
tween full word and abbreviation would become statisti-
cally significant. In conclusion, the simple model provides
evidence that the null hypothesis for the Comprehension
Hypothesis should be rejected, and, the alternative hypoth-
esis that abbreviations and full words lead to better com-
prehension than single letters, accepted.

One final interesting observation that comes from this

model is that only one of the three questions that showed
significant differences was an algorithm, while two were
snippets. The one algorithm, Sieve of Eratosthenes (Ques-
tion 8) determines whether a number is prime. In this func-
tion, the identifierisPrimeNumber appeared in the full-
word variant, which partially explains the higher mean de-
scription rating. In the abbreviation variant, the variable
was renamed toisPriNum, which (along with the struc-
ture of the code and other identifiers) appears sufficient for
most participants to correctly comprehend the purpose of
the code. This led to a mean description rating of about
4.48 (slightly less that the 4.98 when using full-word iden-
tifiers). In the single-letter variant, the variable was named
pn, which did not enable as many subjects to identify the
purpose of the code correctly.

The snippet questions should be more representative of
the code that an engineer would encounter. In this case,
a third of the snippet questions show significant improve-
ment in description rating when full words are used for
identifiers rather than single letters. These observations
indicate that the identifier names for non-algorithms are
more important than for algorithms.

After considering the simple model, the complete
model, which brings some additional information to light,
was constructed. Recall that this model is based on four
categories of explanatory variables: demographic informa-
tion, question characteristics, time, and answer character-
istics. From the first category there were significant in-
teractions betweengenderand variant (p = 0.0062) and
betweencomfortin multiple programming languages (de-
fined below) andvariant (p = 0.0106). Thegender*variant
interaction, shown in Figure 5, reveals that men produced
better descriptions when seeing full-word identifiers, while
for women there was no difference between seeing the full
word or abbreviation variant. As is also evident in Figure 5,
both genders did significantly worse with the single-letter
variant and it appears that women have more difficulty
with single letters than men. Together, these observations
indicate that informative identifier names are more impor-
tant for women than for men; but, that women comprehend
more from abbreviations than men do.

In this study participants rated their comfort with each
of the three programming languages on a scale from 1 in-
dicating low comfort to 5 indicating high-comfort. To sim-
plify the presentation these ratings are summarized by two
categories:high comfort, for subjects indicating a comfort
level of 4 or 5 in two of the three languages, andlow com-
fort, for all others.

The complete model includes the interactioncom-
fort*variant. Visually this interaction, shown in Figure 6,
appears as the different slopes in the three lines. Thus, the
interaction and the relative values for the two groups indi-
cate thatvariant has a much greater impact on those with
less expertise. In particular, uninformative identifiers hurt
the inexperienced more than the experienced (p = 0.0032).
Figure 6 also reveals that for both groups, there is no sta-

9

Fig. 5. The interaction between genderand vari-
ant when predicting the mean description rating.
Two variants in the same circle show no sig-
nificant difference.

Fig. 6. The interaction between comfortand vari-
ant when predicting the mean description rating.
Two variants in the same circle show no sig-
nificant difference.

tistically significant difference between full words and ab-
breviations, and both are significantly better than single
letters.

All four explanatory variables in the second category
are significant in the description rating model.Code type,
having ap-value= 0.0001, reveals that algorithms have
higher description ratings than snippets – most likely be-
cause participants stand a much higher chance of hav-
ing seen them before, making the code easier to identify
and describe. To a lesser extend the algorithms are also
easier to describe because they have well known names.
The model shows thatdescription ratingincreases with
lines of code(p-value = 0.0013), indicating that more code
improves comprehension, at least over small blocks such
as those ranging from 8 to 36 lines. Finally, the vari-
ablesidentifiersandidentifiers2 are both significant as well
as their interactions withvariant. The interactionsidenti-

Fig. 7. Graph of each variants description rating
against the time spent describing the code.

fiers*variantandidentifiers2*variant both hadp-values of
<0.0001. From a plot (not shown) of these variables, the
optimal number of identifiers for full words and abbrevia-
tions hovers around five. Description ratings of code with
greater or fewer identifiers continuously decline as the dis-
tance from five grows. The single-letter variant has a dif-
ferent behavior (thus the interaction), with description rat-
ing decreasing as the number of variables increases. Given
that the single letters, provide little domain information, it
is not surprising that its trend is different.

Variables in the third category have to do with time. For
description rating, the amount of time spent on the sec-
ond screen (time2) is significant, but the effect is complex.
From a plot of the fitteddescription ratingsversustime2,
shown in Figure 7, it can be observed that initially there
is a rapid increase in the ratings and then at about 16 sec-
onds, the ratings level off and thereafter tend to gradually
decline with increasing time. To account for this pattern,
an indicator variable that allows the association between
description ratingandtime2to be different before and af-
ter 16 seconds was added to the model. This variables is 0
before 16 seconds and 1 thereafter.

The model contains the indicator variable, the variable
log time2, and the interaction between them as each is sta-
tistically significant (p <0.0001). Using the parameters
from the fitted model, the results show the same sharp in-
crease in ratings followed by a gradual decline. This be-
havior is accounted for by the observation that early on
(during the first 16 seconds) additional time allows sub-
jects who understood the code to write better descriptions.
However, as is apparent in their inferior descriptions, some
subjects with a weaker understanding took longer.

From the fourth category, there are two significant vari-
ables in the complete model. First, theconfidencesubjects
have in their understanding of the code has ap-value<

0.0001, which shows thatdescription ratingincreases with
confidence. This results is not surprising, but rather con-
firmatory, as bothconfidenceand description ratingare

10

measures of comprehension. The other is thelength of
the description measured as the number of characters it
contained. In the model,description ratingincreases with
the length (p-values = 0.0077); thus, subjects who wrote
longer descriptions understood the function better.

In summary, the simple and complete models indicate
that subjects wrote the best descriptions for functions with
full-word identifiers. They also show that gender plays a
role in the comprehension of code as does programming
expertise when it comes to interpreting abbreviations. In
addition, it finds that five is an optimal number of (do-
main information carrying) identifiers to be considered at
one time. This is consistent with more general research
on memory [6] and the slightly dyslexic bias in computer
professionals [17]. Finally, an interesting side note is that
work experience and schooling are not significant factors
for writing correct descriptions.

4.3 Confidence Model

The second pair of models considers the response vari-
ableconfidence, which is an important reflection of com-
prehension as it reports the subjects’ belief in their under-
standing. The discussion ofconfidencefollows the same
pattern as that fordescription ratingwhere first a sim-
ple and then a complete model are considered. Like the
simple model fordescription rating, the simple model for
confidenceexamines howquestion, variant, and their in-
teraction effectconfidenceas reported by the subjects. All
three variables are statistically significant to the model.
The p-value for the interaction is 0.0130. Consequently,
as shown in Figure 8, the effect ofvariant on confidence
differs among the questions.

Subjects generally had lowerconfidencein their com-
prehension of code with single letters than the othervari-
ants, and most often the highestconfidencecame from
code with the full-word identifiers. However, significant
differences only occurred in four questions where differ-
ences came between single letters and full words. It is in-
teresting to note that the three questions with significant
differences indescription ratingalso had significant dif-
ferences inconfidenceindicating that these two response
variables measure similar information, namely compre-
hension.

The complete model forconfidencebegan with almost
the same explanatory variables as that fordescription rat-
ing. The first three categories (demographic data, question
characteristics, and the time spent analyzing the code and
writing the descriptions) were the same. In the fourth cat-
egory, answer characteristics,description ratingwas sub-
stituted forconfidence. Despite starting with largely the
same variables, the final model includes different signifi-
cant variables.

From the first category (demographic information), sig-
nificant variables include the number ofyears worked
(p = 0.0138), number ofyears in school(p < 0.0001),

Fig. 8. The interaction between questionand vari-
ant when predicting mean confidence. Significant
differences occurred in Questions 4, 5, 6, and
8 where circled points separate significantly
different mean values.

andgender(p = 0.0154). The data reveals thatconfidence
increases both with number ofyears workedand number
of years in school. Neither of these two results is unex-
pected. When consideringgender, females rate theircon-
fidence0.4 lower than males despite showing no perfor-
mance difference. This pattern has been observed by oth-
ers [14]. At first glance, it may appear that there are too few
female participants to draw such conclusions; in fact, this
only means that in order for a statistically significant dif-
ference to occur, a very large difference must be observed,
making the result noteworthy.

In terms of the second category, question characteris-
tics, two of the four characteristics are significant:code
type(p = 0.0004) andnumber of identifiers(p < 0.0001).
Algorithms lead to higherconfidenceand more identifiers
lead to lowerconfidence. This second conclusion is rather
non-intuitive. It is difficult to say why this occurred. Fi-
nally, it is interesting to note thatlines of codeis not found
to be significant, so encountering more code (in the 8 to 36
line range) does not necessarily improve one’s confidence
in understanding, although it does improve one’s ability to
write an accurate description as seen in the previous sec-
tion.

The third category, concerning time, found that both the
time spent on the first screen analyzing the code (time1)
and time spent on the second screen answering the ques-
tions (time2) are significant. However, the relation is non-
linear. As with description rating, multiple variables are
used to describe each of the times. In generalconfidence
increases astime1 increases from 0 to about 15 seconds.
After that pointconfidenceslowly decreases astime1 in-
creases. This indicates that there is an optimal amount of
time that one can spend analyzing source code and after
that point there are diminishing returns. The variables that
represent this arelog time1 (p-value< 0.0001) and (log

11

time1)2 (p-value< 0.0001). The same pattern occurs on
the second screen; however, the cut-off time is 16 sec-
onds, rather than 15. Again, some time is necessary, but
too much time predicts lower confidence. The significant
variables include the indicator variable like the one dis-
cussed in the prior section,log time2, and their interaction
(all p-values< 0.0001).

In the fourth category, there are two variables found to
be significant:description length(p = 0.0012) and de-
scription rating(p < 0.0001). Confidenceincreases with
both increaseddescription lengthanddescription rating.
The increase indescription lengthshows that subjects who
have more to say are moreconfident. When considering
description rating, it is not surprising that it is a signifi-
cant factor sinceconfidenceis a significant factor in the
description ratingmodel.

In summary, the hypothesis thatconfidenceis related to
years of experience is supported by the data. Also,gender
plays a role inconfidence, with women generally having
lowerconfidencethan men.

4.4 PCIS Model

The final pair of models considers the ability of partic-
ipants to recall identifiers. Few engineers appreciate how
small short-term memory actually is – it has the capac-
ity to hold information related to only a few statements at
a time [6]. One important implication of this is that long
identifier names may ‘crowd-out’ needed information. In
addition, long names can be misread when they differ little
from each other. This section examines a subject’s ability
to recall specific identifier names.

As before, the analysis includes both simple and com-
plete models. The simple model for memory examines
how question, variant, and their interaction effectsPCIS
(percent correct in source–the percent of identifiers that ap-
peared in the source code and were recalled by a subject).
As noted above,PCIS ignores the responses to identifiers
that did not appear is the source, so the range of possible
correct values is between 1 and 4 (of the 6 identifiers). Be-
causePCIS ignores wrong choices, these are considered
separately below.

In the simple model, all three factors are statistically
significant to the model (p-values<0.0001). Like the other
simple models, the effect of variant onPCIS, shown in Fig-
ure 9, differs among the questions. Subjects generally have
a harder time remembering single-letter identifiers, but this
is not a uniform result. For many questions, no significant
differences were found among the variants.

In Questions 6 and 7 (both snippets) and 8 (the algo-
rithm Sieve of Eratosthenes) differences were observed.
Considering first full-word identifiers and single-letter
identifiers, for the snippets, full-word identifiers were eas-
ier to recall than single-letter identifiers. The same is not
true for the algorithm. Next, considering full-word identi-
fiers and abbreviations, for the snippets there are no dif-

Fig. 9. The interaction between question and
variant when predicting mean PCIS. Significant
differences occurred in Questions 6, 7, and
8 where circled points separate significantly
different mean values.

ference between the two; however, for the one algorithm,
the difference is significant. In general, the two snippets
exhibit the expected behavior showing that it is harder to
recall single-letter identifiers than the other two variants.

Interestingly, for Question 8 there was no significant
difference between full words and single-letter identi-
fiers. It seems counter-intuitive that abbreviations would
be harder to recall than the single-letters identifiers. On
a closer examination of the data, it was found that a dis-
proportionate number of subjects selected no identifiers
when given the abbreviation code, which accounts for the
low mean value (0.46). Although several hypotheses were
considered to account for this behavior (including an ex-
tremely short time viewing the code and a lack of under-
standing of the code) no trends were evident from the data.
Therefore, no explanation can be offered as to why several
subjects selected no identifiers for this particular question.

The complete model includes the explanatory variables
of the prior complete models fordescription ratingsand
confidenceplus four new variables. In the second category,
the question characteristics are augmented with the ex-
planatory variable number ofsyllables. The third category
now includes the time spent on the third screen (time3),
and the fourth category includes bothdescription rating
andconfidence.

In terms of first category (subject specific information)
one variable is found to be significant:school years(p =
0.0494) and there is no interaction so the effect is straight
forward. For each additionalschool year, PCIS increases
by 2.4%. This result may come from the fact that with in-
creased schooling, one is more likely to encounter the al-
gorithms presented in the study or perhaps related algo-
rithms and may also have seen code similar to the snippets
presented. Therefore, these subjects can make use of ties to
long term memory to help recall identifiers [8]. For exam-
ple, in binary search one usually encounters the variables

12

right and left, so familiarity with the algorithm helps one
remember these identifiers regardless of variant.

The second category on question characteristics in-
cludes several significant variables:syllables(p <0.0001),
variant*in-source(p = 0.0004), andvariant*code type(p
= 0.0002). The interpretation for the number of syllables is
straight forward; for each additional syllable present in the
set of identifiers, on averagePCISdecreases by 1.4%. This
is consistent with an overcrowding of short-term memory
thus, other things being equal, shorter identifiers are easier
to remember.

The other two variables are involved in two separate in-
teractions. Figure 10 shows a plot of the first interaction
variant*in-source. In-sourceproves difficult to explain as
it is an artifact of the design of the experiment and is not
related to other variables such as the number of identifiers
present in the code. However, the general trend supports
the expected results that full-words or abbreviations are
easier to recall than single-letters.

Figure 11 shows a plot of the second interaction,vari-
ant*code type. For snippets, it is much easier to recall full
words and abbreviations than single letters. However, for
algorithms, full words are easier to recall than single let-
ters but no difference is observed between abbreviations
and single letters. This indicates that recall of single letters
is much more difficult for snippets, which provides further
evidence for the value of ties to long term memory. For
one familiar with an algorithm, even the single letters may
gain some advantage from ties to long term memory. For
example,p may stand forpivot in quicksort, makingp
easier to recall. This is not the case for snippets wherea
priori knowledge of the purpose of the code is less likely
to provide an indication of which variables are used. It is
interesting to note thatlines of codeandnumber of identi-
fiersare absent from this model. This indicates that length
of the name (measured by syllables) has a greater impact
on memory than the number of identifiers (although there
may be some association between the two).

In terms of the third category, both the time spent on the
first and third screens have an impact on the ability to recall
identifiers. However, the time spent on the second screen
is absent from the model. This indicates that subjects spent
sufficient time for it to serve its purpose of clearing short-
term memory.

In addition to the times themselves, thelog of each time
is included in the initial model as an explanatory variable
because of the shape of the data when graphed. In essence,
this shape indicates that after some initial time necessary
to read the code or select a few answers, there are dimin-
ishing returns for continued study of the code or pondering
possible answers. This diminishing returns follows a loga-
rithmic shape.

In more detail, three variables associated with time are
significant:variant*log time3 (p = 0.0414), (log time3)2

(p < 0.0001), andlog time1(p < 0.0001). When consid-
eringtime3and its interaction withvariant (the interaction

Fig. 10. Mean PCISvalues based on variant and
in-source

Fig. 11. Mean PCISvalues based on variant and
code type

variant*time3 is shown in Figure 12) the ability to recall
full words occurs faster than abbreviations or single letters,
and although parallel, one will recall abbreviations better
than single letters.

For time1there is no interaction withvariant so the ef-
fect of time1onPCISis the same for all variants:PCISin-
creases rapidly for the first 20 seconds and then continues
to increase more gradually. This is different from other be-
haviors of time because performance never degrades. The
longer a subject studies the code, the more variables are
recalled. The plot in Figure 13 shows how subjects re-
member more abbreviations in a given time period than
the other variants.

In the forth category,confidence(p = 0.0008) is found to
be significant. Likeschool years, there is no interaction so
the effect is straightforward. A unit increase inconfidence
brings an averagePCIS increase of 2.4%. Given that con-
fidence is an indication of comprehension, this provides
evidence that the ability to recognize the purpose of the
code improves the ability to recall the identifiers. This is

13

Fig. 12. Mean PCISvalues based on variant and
log time3

Fig. 13. Mean PCISvalues based on variant and
log time1

likely an indicator of subjects exploiting ties to long term
memory.

4.5 ‘Wrong’ Answers

The consideration of subject recall concludes by con-
sidering wrong answers. The response variablePCIS ig-
nores responses to identifiers that did not appear in the
source code. However, the kinds of errors programmers
make when trying to recall identifiers in the code could im-
pact how one goes about creating high-quality identifiers.
For instance, Deissenböck and Pizka hypothesize that hav-
ing two different identifiers that refer to the same concept
or one identifier referring to multiple concepts negatively
impacts comprehension [7].

To explore this, wrong answers were divided into three
categories based on two boolean factors: was the variant
of the identifier the same as the variant of the code and
was the concept associated with the identifier the same as
the main concept present in the code. For example, with

the full-word variant ofquicksort, the identifiersdata and
current high are both the same variant as the question
(full-words), while the identifierspvt andp are of a dif-
ferent variant. The second factor istrue if the concept as-
sociated with a given identifier occurs in the code. Thus,
again using the full-word variant ofquicksort as an exam-
ple, the concepts associated with the identifiersmidpoint
andinitial low occur in the code while the concepts asso-
ciated with the identifiersbest score or bst scr do not.
Combinations of these two factors create four categories,
but the category “correct variant where the concept appears
in the code” is always a correct answer; wrong answers in
this category are accounted for inPCIS.

The analysis of the remaining three wrong answer cate-
gories considers the mean likelihood that a wrong answer
falls into one of the three categories. As shown in Table 2,
it is much more likely that a subject selected an identifier
of the wrong variant, but having the correct concept,or an
identifier of the correct variant, but the wrong concept than
the category where both dimensions were incorrect.

Selecting an identifier of the wrong variant but whose
concept occurred in the code, indicates that subjects have
tied the variable to some concept stored in long term mem-
ory. This supports Deissenböck and Pizka’s hypothesis that
two identifiers referring to the same concept can confuse
an engineer. For example, a quarter of all the incorrect an-
swers in this category came from confusingn with num,
n with number, or num with n. Thus, there is evidence
that many subjects knew the conceptnumberappeared in
the source code but when asked to recall it, did not re-
member the variant they had seen. Having more than one
of these identifiers in a program would likely effect com-
prehension. The most frequently confused identifier was
buf with buffer. Two other frequent confusions were asso-
ciated with the conceptevaluate(evaluate with eval and
eval with e) andcount(count with cnt and vice versa).

The second category of wrong answer, where subjects
selected a variable of the correct variant but whose con-
cept was not present, indicates that some participants did
fixate on the variant. The top three most frequent wrong
answers in this category arecurrent count, curcnt, and
fib. The first two occur in code finding the most frequent
letter in a string. Thus, the concept is closely related to the
concepts in the code. The third identifier was from the Fi-
bonacci code. Understandably, a subject who recognized
the purpose of this code might believe that this identifier
appeared.

Errors with identifiers in the final category are much
less frequent. This category includes both the incorrect
variant and a concept not present in the code. The errors
in this category are rather erratic; that is, they do not ap-
pear to follow any systematic pattern.

Statistically, the percent of wrong answers are com-
pared by creating a variable to represent each unique
subject-questioncombination. Because there are three cat-
egories for wrong answers, each subject-question combi-

14

Average
Category % misses

1) Incorrect variant and concept in source 10.6%
2) Correct variant and concept not in source 9.4%
3) Incorrect variant and concept not in source 2.6%

Table 2. Wrong answer means

nation has three repeated values. A randomized block de-
sign allows for the repeated measures. Friedman’s non-
parametric test is used to test the equality of the distri-
butions of percent wrong answers across the categories
adjusting for the subject-question combinations. The test
shows that the percent wrong is not the same among all
three categories (p < 0.0001). In addition, using a Bonfer-
roni adjustment to compare the categories pairwise reveals
thatcorrect variant and concept not in sourcedoes not dif-
fer from incorrect variant and concept in sourcebut that
incorrect variant and concept not in sourceis significantly
different from the other two.

4.6 Summary of Results

The models discussed in the preceding sub-sections
support the five hypotheses presented at the beginning of
the section to varying degrees. Each of the hypotheses are
now discussed in greater detail.

For the Comprehension Hypothesis, there is evidence
to reject the null hypothesis (that there is no difference
in comprehension among different identifier variants). Al-
though many questions did not show any differences, the
ones that did show full-word identifiers, and in many cases
abbreviations, lead to better comprehension as measured
by description ratingand confidence. Other evidence in
support of the alternative hypothesis comes from the inter-
actionsgender*variantand comfort*variant for descrip-
tion rating. For all groups identifiers composed of full
words or abbreviations lead to better comprehension than
single-letter identifiers. Given this evidence, the null hy-
pothesis is rejected and the alternative hypothesis, that full
word identifiers and abbreviations lead to better source
code comprehension is accepted.

Next, consider the Memory Hypothesis. The evidence
is less clear in this case. In general, there is no clear evi-
dence to reject the null hypothesis (that the ability to recall
identifiers is the same for allvariants). However, for snip-
pets there is a difference in performance. Thus, restricted
to snippets, there is evidence to reject the null hypothesis
and accept the alternative hypothesis (that it is easier to
recall abbreviation and full-word identifiers).

The third hypothesis, Experience and Education, con-
siders how these two aspects impact comprehension. In the
complete confidence model, there are no interactions with
variant; thus the model shows that lower quality identifiers
have less of a negative impact on those with greater experi-
ence and education. In other words, confidence in compre-

hending the source code increases with both years of ed-
ucation and years of work experience. Therefore, the null
hypothesis (that experience and education have no impact
on comprehension) is rejected, and the alternative hypoth-
esis (that increased work experience and schooling lead to
better comprehension) is accepted.

Next, when considering the Gender Hypotheses regard-
ing Confidence, females rate theirconfidencelower than
males, so null hypothesis can be rejected and the alter-
native hypothesis that gender plays a role in confidence
accepted. However, in terms of ability to describe code,
as measured bydescription rating, there is no statistical
difference. (Although, men performed best with full-word
identifiers, while there was no significant difference be-
tween full-words and abbreviations for women.) There-
fore, the null hypotheses is not rejected. In summary, al-
though women have less confidence in their answers, they
perform at the same level as men, a pattern seen else-
where [14].

Finally, for the Identifier Length Hypothesis, the ex-
planatory variablesyllablesis significant in the memory
model where recall decreased as the number of syllables
increased (length is measured as the number of syllables
in an identifier). Thus, the null hypothesis (that the length
of an identifier has no impact on memory) is rejected, and
the alternative hypothesis (that longer identifiers are harder
to remember) accepted.

5 Related Work

There is considerable ongoing interest in identifier qual-
ity and in particular identifier naming. Although educa-
tors tend to stress the importance of meaningful iden-
tifier names, such is not universally valued. For exam-
ple, Sneed observes that “in many legacy systems, pro-
cedures and data are named arbitrarily· · · programmers
often choose to name procedures after their girlfriends or
favorite sportsmen” [18]. However, simply because un-
informative identifiers may exist, does not mean that the
code using them is of good quality. Caprile and Tonella
state that “identifier names are one of the most important
sources of information about program entities” [5].

Given the importance of identifier naming, several re-
search projects have considered the issue of identifier nam-
ing conventions. Naming conventions are important be-
cause “studies of how people name things (in general not
just in code) have shown that the probability of having two
people apply the same name to an object is between 7%
and 18%, depending on the object” [3]. Anquetil and Leth-
bridge [1] define what it means to have a “reliable naming
convention.” Deissenböck and Pizka [7] create a formal
model for concepts and names, which is used to determine
reliable names. Caprile and Tonella [4] use a grammar to
define the naming convention and use the grammar to find
semantic meaning in the words. In addition to naming con-

15

ventions, the informativeness of identifiers has been exam-
ined by Takang et al. [19], and Jones [8] examined how
short-term memory impacts the recall of several types of
identifiers.

Anquetil and Lethbridge hypothesized that a “naming
conventionis reliable if there is an equivalence between
the name of the software artifacts and the concepts they
implement” [1]. This hypothesis was studied through the
examination of record definitions. In the legacy code they
studied, it was evident that a naming convention existed
because records with similar names had similar fields.

Deissenböck and Pizka create a formal model based on
bi-jective mappings between concepts and names [7]. The
idea is that within a given program a concept should al-
ways be referred to by the same name. They introduce an
“identifier dictionary” and provide a tool that helps main-
tain consistent naming throughout the lifetime of a soft-
ware project. Deissenböck and Pizka argue that naming
conventions are needed to enforce consistency and to pro-
vide guidelines about the mechanics of turning a concept
into a name. With such guidelines, names should con-
tain enough information for an engineer to comprehend
the precise concept without too big a strain on short-term
memory.

Caprile and Tonella analyze function identifiers by con-
sidering their lexical, syntactical, and semantical structure.
They break identifiers into word segments and then use a
grammar to find semantic meaning in the words. By fol-
lowing a grammar, Caprile and Tonella anticipate improve-
ments in the readability, understandability and, more gen-
erally, maintainability of a program [4].

Others have attempted to determine the informative-
ness of identifiers including Takang et al. [19]. The Takang
study compared abbreviated identifiers to full-word identi-
fiers and uncommented code to commented code. The ab-
breviations were created from the first two letters of the
English word (e.g., CalculateNumericScore was
abbreviated asCaNuSc). Given that it may be difficult to
recognize the base word in the abbreviation, these abbrevi-
ations are more similar to the single-letter identifiers used
in the study reported in this paper. Subjects for the study
consisted of first year students, which means that results
may not be applicable to those with significant experience.
To assess understanding of the code, multiple choice test
scores and participant’s subjective scores were used. The
objective test scores showed that commented programs are
more understandable than non-commented programs. The
subjective scores showed that programs that contain full-
word identifiers are more understandable than those with
abbreviated identifiers; however, nothing can be concluded
about more informative abbreviations. Also only a single
program was used in the analysis, so it is more difficult to
generalize the results to other types of programs in other
domains. The study was unable to show any improvement
from both full-word identifiers and comments.

Finally, the study of identifiers by Jones [8] investigated
the consequences of a limited human short-term memory
capacity on subjects’ performance in some representative
tasks needed to comprehend short sequences of code. The
study had two parts, one was based on the ability to recall
identifiers and the other on the ability to follow the path
of execution of code given nested if-statements and val-
ues of variables. The Jones study found that programmers’
performance in processing character sequences varied be-
tween different kinds of sequences (e.g. words vs. non-
words). For instance, frequently used character sequences
(i.e., words) are recognized faster and are more readily re-
called than rare ones. Also many performance characteris-
tics are slower and more error prone for non-words com-
pared to words. Recognizing known subsequences (e.g.,
the three that make upibmciairs) within a longer sequence
allows division into more manageable chunks.

6 Conclusion

The study described in this paper shows that better com-
prehension is achieved when full-word identifiers are used
rather than short (virtually) meaningless identifiers. It also
shows that in many cases abbreviations are just as useful as
the full-words, although this is more true for women than
for men.

Gender, work experience, and education also impact
confidence, but not ability to correctly describe code. Here
men generally report higher confidence as do those with
greater training and experience. This has implications at
the managerial level where hiring decisions, made in part
based on the perceived confidence during an interview,
may not necessarily lead to employing the best candidate.

In terms of memory, increased education and increased
confidence have a positive effect on subject’s ability to re-
call identifiers. This most likely comes from a greater abil-
ity to tie the identifiers to concepts in long term memory.
The study also finds that full-word and abbreviated iden-
tifiers are generally easier to recall than single-letter iden-
tifiers. This is especially true for snippets as compared to
algorithms; as snippets are akin to code seen “in the field,”
the study confirms the belief that engineers should be en-
couraged to use good recognizable abbreviations or full
words for identifiers.

However, longer variables names are harder to remem-
ber and it takes more time to do so. This indicates that pro-
ductivity of software engineers is improved through care-
ful control on identifier length. For example, well chosen
abbreviations are an asset; however, extraneous characters
that increase the length of an identifier (e.g., the ‘its’ in the
attributeitsHeight of aPerson class or the use of Hungar-
ian Notation) have a negative effect on comprehension, in
particular from a recall perspective. Thus, the use of nam-
ing conventions that involve prefixing or suffixing an iden-

16

tifier should be carefully evaluated to ensure that the added
information outweighs the added (recall related) cost.

Finally, from the results of the study, it is clear that
whether writing or purchasing software analysis tools,
such tools must be able to make use of abbreviated iden-
tifier names. For example, consider a tools aimed at aid-
ing programmer comprehension. One technique such a
tool might employ would be to automatically associate
meanings with abbreviations using machine learning tech-
niques [12] to select key components from the documen-
tation. A second example incorporates into an IDE the
tracking and transforming of abbreviations [11]. The track-
ing feature could provide, perhaps via tool-tip, expansion
of abbreviations unknown to an engineer. Transformation
would be used to ensure that consistent naming structure
is used in a project.

7 Acknowledgements

The expertise of Jim Glenn and Barbara Vann were in-
valuable in preparing this study. Special thanks to all the
participants as this work would not be possible without
their time. This work is supported by National Science
Foundation grant CCR-0305330.

References

1. N. Anquetil and T. Lethbridge. Assessing the relevance ofiden-
tifier names in a legacy software system. InProceedings of the
1998 conference of the Centre for Advanced Studies on Collab-
orative Research, Toronto, Ontario, Canada, November 1998.

2. D. Sjøberg, J. Hannay, O. Hansen, V. Kampenes, A. Kara-
hasanovic, N. Liborg, and A. Rekdal. A survey of controlled ex-
periments in software engineering.IEEE Transactions on Soft-
ware Engineering, 19(4), 1993.

3. G. Butler, P. Grogono, R. Shinghal, and I. Tjandra. Retrieving
information from data flow diagrams. InWorking Conference
on Reverse Engineering, November 1995.

4. B. Caprile and P. Tonella. Nomen est omen: analyzing the lan-
guage of function identifiers. InWorking Conference on Reverse
Engineering, Altanta, Georgia, USA, October 1999.

5. B. Caprile and P. Tonella. Restructuring program identifier
names. InICSM, 2000.

6. N. Cowan. The magical number 4 in short-term memory: a re-
consideration of mental storage capacity.Behavioral and Brain
Sciences, 24(1), 2001.

7. F. Deißenböck and M. Pizka. Concise and consistent naming.
In Proceedings of the 13th International Workshop on Program
Comprehension (IWPC 2005), St. Louis, MO, USA, May 2005.
IEEE Computer Society.

8. D. Jones. Memory for a short sequence of assignment state-
ments.C Vu, 16(6), December 2004.

9. D. Knuth. Selected papers on computer languages. Stanford,
California: Center for the Study of Language and Information
(CSLI Lecture Notes, no. 139), 2003.

10. J. R. Landis and G. G. Koch. The measurement of observer
agreement for categorical data.Biometrics, 33, 1977.

11. D. Lawrie, D. Binkley, and H. Feild. Syntactic identifiercon-
ciseness and consistency. InProceedings of 2006 IEEE Work-
shop on Source Code Analysis and Manipulation (SCAM’06),
Phidelphia, USA, September 2006.

12. T. Mitchell. Machine learning. WCB McGraw-Hill, 1997.
13. C. Morrell, J. Pearson, and L. Brant. Linear transformation

of linear mixed effects models.The American Statistician, 51,
1997.

14. P. De Palma. Why women avoid computer science.Communi-
cations of the ACM, 44(6), 2001.

15. J. Rilling and T. Klemola. Identifying comprehension bottle-
necks using program slicing and cognitive complexity metrics.
In Proceedings of the11th IEEE International Workshop on
Program Comprehension, Portland, Oregon, USA, May 2003.

16. H. Saiedan and L. M. Mc Clanahan. Frameworks for qual-
ity software process: SEI capability maturity model.Software
Quality Journal, 5(1):1, 1996.

17. S Silberman. The geek syndrome.Wired, 9(12), December
2001.

18. H. Sneed. Object-oriented cobol recycling. In3rd Working Con-
ference on Reverse Engineering. IEEE Computer Society., 1996.

19. A. Takang, P. Grubb, and R. Macredie. The effects of comments
and identifier names on program comprehensibility: an experi-
ential study.Journal of Program Languages, 4(3), 1996.

20. G. Verbeke and G. Molenberghs.Linear mixed models for longi-
tudinal data. Springer-Verlag, New York, second edition, 2001.

