
 

 

 
 
 

Supporting Source Code Difference Analysis 
 

Jonathan I. Maletic, Michael L. Collard 
Department of Computer Science 

Kent State University 
Kent Ohio 44242 

jmaletic@cs.kent.edu, collard@cs.kent.edu 
 
 

Abstract 

The paper describes an approach to easily conduct 
analysis of source-code differences.  The approach is 
termed meta-differencing to reflect the fact that 
additional knowledge of the differences can be 
automatically derived.  Meta-differencing is supported by 
an underlying source-code representation developed by 
the authors.  The representation, srcML, is an XML 
format that explicitly embeds abstract syntax within the 
source code while preserving the documentary structure 
as dictated by the developer.  XML tools are leveraged 
together with standard differencing utilities (i.e., diff) 
to generate a meta-difference.  The meta-difference is 
also represented in an XML format called srcDiff.  The 
meta-difference contains specific syntactic information 
regarding the source-code changes.  In turn this can be 
queried and searched with XML tools for the purpose of 
extracting information about the specifics of the changes.  
A case study of using the meta-differencing approach on 
an open-source system is presented to demonstrate its 
usefulness and validity.  

1. Introduction 
Current mechanisms for source-code versioning do 

not easily take advantage of structural and syntactic 
information in the source code.  This hinders the analysis 
and manipulation of the difference information in a 
version history to support complex development and 
maintenance tasks. 

The reason for these limitations is that popular 
differencing algorithms and tools, i.e., UNIX utilities 
diff and patch, take a character-based document view 
of source-code files.  Obviously, this is not the 
programmer-centric view of the source code as originally 
entered into the file.  In the diff view, all lexical 
information in the file is preserved, differences are 
changes to characters, but no information about the 
syntactic-structure is explicitly stored. 

An alternative approach is a compiler-centric or data 
view of the source code (i.e., post parsing).  In this view 

all of the syntactical information is stored in an abstract 
syntax tree (AST) and differences are operations on that 
tree (or graph).  In the process lexical information is lost 
and there is a lack of traceability back to the original 
source code document.  In addition, only source code that 
can produce an AST can be used and during maintenance 
may be problematic. 

The research presented here develops a fine-grained 
syntactic-level differencing approach.  This approach 
directly supports the analysis of source-code differences.  
We term this meta-differencing as additional knowledge 
of the differences can be automatically derived through 
simple queries.  For example, one can automatically 
determine that a condition in an if-statement was added 
in a given change.  Meta-differencing allows software 
engineers to easily ask complex questions about the 
differences between two versions of software.  In order to 
realize meta-differencing, an underlying infrastructure 
with a new representation of source code is necessary.    

Meta-differencing is built on top of an XML 
representation of the source code, specifically srcML1 [4, 
5, 19].  This representation explicitly embeds high-level 
syntactic information within the source code in such a 
way as to not interfere with the textual/documentary 
context of the source code.  The representation is unique 
in that it preserves the programmer’s view of the source 
code while at the same time explicitly adding parts of the 
abstract syntax to the source.  srcML directly supports 
such things as lightweight fact extraction and 
construction of source models (e.g., call graphs) using 
standard XML tools such as XQuery and XPath.  It also 
supports the embedding of meta-information into the 
source (e.g., hyperlinks) and source-code 
transformations. 

By using this approach we can easily determine what 
type of syntactic construct or program entity was 
modified.  More importantly, we can track the 
morphological changes that occur within the source.  
Because both the source code and the difference are 

                                                           
1 Pronounced “source M L”  



 

 

represented in XML, the transformational language, 
XSLT, can be used to model these changes.   

The next section (2) describes the current state of 
affairs with regards to conducting analysis of source-code 
differences.  Related research on differencing approaches 
is examined in perspective to our work and their 
limitations to this problem.  Section 3 presents an 
overview of the underlying infrastructure (i.e., srcML) to 
address our problem.  We also summarize supporting 
evidence that srcML is a sound basis for difference 
analysis.  Section 4 describes our approach and 
introduces the concept and details of meta-differencing. 

In an attempt to validate our approach we present a 
small case study in section 5.  We demonstrate our 
approach by examining HippoDraw, a well known open-
source application framework.  We study the differences 
between two versions of this system by asking a number 
of questions regarding the nature of the changes. 

2. Current Problems and Solutions 
Current mechanisms for source code differencing 

center on computing textual differences between two 
files or comparing the parse trees generated for the 
source code.  In order to find the changes that occurred 
between two existing source code documents either 
textual, syntactic, or semantic differencing can be used 
[6].  Most commercial tools use textual deltas with 
syntactic and semantic deltas used for operations such as 
merging [23].  The most popular differencing algorithms 
and tools, i.e., UNIX utilities diff [16] and patch, 
take a character-based document view of source code 
files.  In the case of the extraction of textual differences 
using diff [16] (or a variation), line differences 
between two files are found with added/deleted/changed 
lines recorded by their line numbers in the files and by 
changed content.  The lines in the file are compared using 
the LCS (Longest Common Subsequence) algorithm [17] 
which is computed relatively efficiently.  Because the 
comparison is character-based the algorithm can be 
applied to any text file.  Since the algorithm ignores the 
underlying syntax of the source code it is very robust and 
tolerant of source-code irregularities.   

The UNIX utility patch can then be used to generate 
a modified version of the document given the original 
version and the output of diff.  In the extraction and 
application of differences the character-based view used 
in both the difference extraction by diff and the 
application by patch allows these utilities to preserve 
the original textual information and context of the source 
code. 

Differences can also be found at the syntactical level.  
In general this is a difference comparison of two AST’s.  
Syntactical differencing has been primarily used for 
improving merging of differences [23].  The main 

drawback is that the algorithm must understand the 
syntax of the source code, and the difference comparison 
is typically not as efficient as LCS. 

Of particular interest is the work by Hunt, on LTDIFF 
[13] where the LCS algorithm is used on sequences in the 
parse tree combining the advantages of syntactic 
information with the efficiency and results of the LCS 
algorithm [13].  In its worst case the resulting difference 
algorithm is as efficient as the LCS algorithm.  This 
approach has been applied to merging in ELAM 
(Extensible Language Aware Merging) [13] for syntactic 
merging.  Hunt identifies that full support of non-
language constructs, such as comments and preprocessor 
directives, are necessary for full practical application of 
syntactic differencing [14].   

In semantic differencing, such as in [12], code 
segments are considered equivalent if they perform the 
same computation.  The general case is undecidable 
therefore limited heuristics have been developed [15]. 

In the work by Magnusson et al. [18], fine-grained 
version control is used in a collaborative software 
environment.  Individual elements inside source-code 
documents are selected for version control.  The elements 
used are then set for the entire project.  In the Fluid 
project [30] a fine-grained version-control infrastructure 
for trees, such as AST's is provided.  Both of these cases 
are complete source-code management systems and are 
not directly compatible with other versioning systems. 

Differences are also of interest in the area of mobile-
code systems where the need to be able to update code 
easily is necessary.  The model CodeWeave has been 
proposed for fine-grained mobility of code [22] and is 
implemented using XML for a simple programming 
language [8].  

2.1. Limitations of Character-Based Solutions 

Textual-differencing approaches are limited to a line-
level granularity.  That is, the difference algorithms find 
line-based differences, represent the differences as 
changes between lines, and apply the differences to 
individual lines in the patched file.  Extraction is limited 
to differences between multiple versions of the same file 
and the application of a patch is on an entire file.   

Other limitations of textual differences concern both 
the given location and content of a change, i.e., where a 
change occurred and what changed.  Both limitations 
cause problems for the analysis of source-code changes.  
For the location of a change a general-purpose textual 
difference has no choice but to refer to the physical line 
location of where a change occurred.  First, this gives no 
context of the change with regards to the programming-
language syntax and it can only be utilized in the context 
of the original document.  Secondly, a line number is not 
robust in the case of further changes, e.g., the line 



 

 

address of a difference will change when other 
differences are made.  Thirdly, what is a single syntactic 
change to the programmer may be represented as two 
individual line changes (e.g., moving all of the statements 
inside of an if-statement block by deleting the starting 
and ending lines for the block).  For the contents of the 
change we are given the line and without knowing the 
specific context of the change we are unable to easily 
determine exactly what was changed.  Only by close 
manual examination of the source code can we determine 
what syntactic elements in the code were changed. 

These textually-based tools are often at odds with the 
syntactic structure of the source code crosscutting the 
structure that the developer understands and hindering 
the analysis, manipulation, and tool construction based 
on source-code differences.  During the extraction of 
differences this character-based view hinders the support 
of more abstract extraction mechanisms.  Extraction of 
syntactic-level elements is particularly difficult.  For 
example, a developer may be interested in extracting all 
the changes to a specific function or only comment 
changes. 

Also problematic in the character-based view is such 
things as expressing the difference between two versions 
in a form that a developer easily understands.  
Determining the characteristics of a set of changes and 
placing them into categories is also difficult.  This would 
be useful for detecting when only documentary changes 
occur, i.e., changes only to white space and comments, 
with no changes to the interface or logic.   

 

 
Figure 1.  Realizing meta-differencing by leveraging 

XML representations, XML tools, and diff. 

In general there is no practical means to search the 
differences for particular code patterns or construct 
queries on the differences, e.g., detection of the version 
in which a particular function last changed.   

With regard to patching, the character-based view 
inhibits applying fine-grained differences.  The 
differences cannot be applied to individual syntactic 
elements, specific locations in the source code, or based 
on a category that the patch is in.  A large patch (such as 
for an API change) cannot be split into a series of 
patches, where each patch only changes small groups of 
functions at a time.  

3. Supporting Difference Analysis  
To realize meta-differencing we utilize an underlying 

XML representation, namely srcML, for the source code 
that explicitly embeds syntactic information with the 
source.  srcML is a synergistic representation that 
preserves the textual context of the source code while 
adding the required abstract syntactic context.  
Additionally, srcML can represent source code at all 
stages of development and evolution, e.g., non-
compilable code and code fragments.   

The current popular use of differencing gives a model 
for what is required to successfully enhance the analysis 
of differencing.  In order to represent the differences 
between source-code documents, the representation must 
preserve all textual information in its original order, and 
allow access to all textual information at the same level.  
It must also be able to handle source code in a realistic 
state, i.e., code fragments and un-compilable code 

3.1. Overview of Approach 

Figure 1 presents an overview of how the source code, 
srcML, and meta-differencing tie together.  At the bottom 
layer is the source code and the results of diff 
represented as simple text files.  The next layer consists 
of documents in srcML.  We currently have a fairly 
robust prototype to translate C++ to srcML that forms the 
basis for much of this research.  Once the source-code 
file is represented in srcML one can utilize a wide array 
of XML tools (e.g., XPath, XQuery, etc.) to construct 
higher-level models.  For example a static call graph 
model can very easily be constructed from a given srcML 
document.  At the top layer, XML tools can again be 
leveraged to construct applications.  These applications 
take the form of fact extractors, pretty printers 
(reformatting), or other program-analysis tools.  These 
applications work on both the srcML and the higher-level 
source models. 

Meta-differencing is implemented using a 
combination of diff and srcML by translating line 
differences into srcML.  This combines many advantages 



 

 

(i.e., efficiency and robustness) of the character-based 
approach with a source-code representation that supports 
both document and data views of source code.  This 
syntactic view of the source code and the differences, 
along with higher-level source models, can then be 
opportunistically combined with XML tools to support 
analysis and development tasks.   

The process starts at the textual layer with the source 
code and the differences between them generated by 
diff.  This is the view of the source code and the 
version changes as used in popular versioning systems.  
We must now raise the textual level of the differences to 
a syntactic level just as we did for the source code.  We 
use a syntactical XML representation of the source-code 
differences combining the srcML versions of the original 
and modified documents along with their textual 
differences.  This format, called srcDiff, includes both 
versions of the document and the required difference 
information.   

As a result of using an XML 
representation, locations in the 
source code can be referenced 
using  XPath, the XML language 
for addressing locations inside 
XML documents [29].  These 
addresses can be used to extract 
particular source-code elements 
[4] and to form links to an 
element.  Once in a syntactic-
level XML format standard XML 
tools, API’s and programming 
languages (e.g., DOM, SAX, XPath, XSLT) can be used 
to locate, query, and transform a combination of the 
source code and the differences.  This allows for a wide 
variety of analysis, transformation, and practical 
development tools to be constructed on this base. 

The next section describes srcML in more detail, 
followed by a short description of how XML tools 
integrate with the representation.  Then an example of 
using srcML as the basis for a lightweight C++ fact 
extractor is presented along with how abstract source 
models can be tied into this representation.  A description 
of how meta-differencing will be realized is then given 
with a discussion on some limitations of this approach. 

3.2. Source Code Representation in srcML 

srcML (SouRce Code Markup Language) [4, 5, 19] is 
an XML application that supports both document and 
data views of source code.  The format adds structural 
information to raw source-code files.  The document 
view of source code is supported by the preservation of 
all lexical information including comments, white space, 
preprocessor directives, etc. from the original source-
code file.  This permits transformation equality between 

the representation in srcML and the related source-code 
document. 

A lightweight data view of source code is supported 
by the addition of XML elements to represent syntactic 
structures such as functions, classes, statements, and 
entire expressions.  Other structural information 
including macros, templates, and compiler directives 
(e.g., #include), are also represented.  The data view 
stops at the expression level with only function calls and 
identifier names marked inside of expressions thus 
allowing reasonable srcML file sizes.  The srcML for the 
simple program below is given in Figure 2.   

 
#include <iostream> 
 
// A function 
void 
f(int x) 
{ 
  std::cout << x + 10; 
} 

In this example we see that all of the original text is 
present, including the preprocessor directive include 
and all original comments.  Some of the original text that 
are meta-characters in XML, e.g., ‘&’, have been 
encoded but all text is preserved.  The documentary 
structure of the original text including spacing and lines 
are also preserved.  The inserted XML tags allow for the 
addressing and location of textual elements according to 
their location in the XML document. 

The data view allows for a search-able and query-able 
representation.  This can be mixed with a document view 
to permit multiple levels of abstraction (or views), and 
allows a data view of the document without losing any of 
the document information.  The reverse is also allowed 
with document information, e.g., white space, comments, 
etc., used in the data view for searches or queries.  

Once the document is in srcML locations in the srcML 
document (and corresponding locations in the textual 
source-code document) can be referred to using the XML 
addressing language XPath.  For example, to refer to the 
second if-statement inside of a function named foo we 
can use the following XPath:  

//function[name=”foo”]/ block/if[2]. 

<unit xmlns="http://www.sdml.info/srcML/src" xmlns:cpp="http://www.sdml.info/srcML/cpp"> 
<cpp:include>#<cpp:directive>include</cpp:directive><cpp:file>&lt;iostream&gt;</cpp:file></cpp:include> 
 
<comment type="line">// A function 
</comment><function><type>void</type> 
<name>f</name><formal_params>(<param><type>int</type> <name>x</name></param>)</formal_params> 
<block>{ 
  <expr_stmt><expr><name>std::cout</name> &lt;&lt; <name>x</name> + 10</expr>;</expr_stmt> 
}</block></function> 
</unit> 
 

Figure 2. Example of srcML.   



 

 

XPath can also be used to represent groups of 
elements, such as all functions.  The capability to use 
XPath addresses is built into most XML tools and is used 
extensively in XML transformation languages such as 
XSLT.  The XPath standard forms the base of the XML 
query language XQuery. 

Unlike the physical representation of an address that a 
line number references, XPath addresses describe one of 
many possible paths to a location.  The XML elements 
serve as reference points along the path.  This makes 
XPath addresses much more resilient to changes in other 
parts of the document, unless they change the nested 
XML elements. 

A C++ source code to srcML translator has been 
developed that takes advantage of the flexibility of the 
srcML representation for robust and lightweight 
conversion of C++ to srcML.  Unprocessed source code 
(source code before the C preprocessor is run) is 
converted into the srcML format. 

The translator uses a partial parsing approach based 
on island grammars [24, 25] allowing for the insertion of 
tokens around only the textual elements of interest, such 
as the beginning and ending of a statement or an 
identifier name.  Textual items of little interest, such as 
the operators in an expression, are not marked up.  This 
allows for very flexible parsing of well-formed source 
code, i.e., source code with structural elements such as 
semicolons and curly braces in the right place.  This 
allows it to be able to translate incomplete and non-
compilable source. 

The translator is written using a recursive-descent 
parser permitting on-the-fly translation.  Start elements 
marking the beginning of a statement are issued before 
the entire statement is parsed.  This allows for the 
integration into memory-efficient stream-oriented XML 
processing (such as SAX) which is needed for scalability 
and for integration into development environments. 

A number of options currently exist for representing 
source-code information (e.g., AST or ASG) in a XML 
data format namely, GXL [11], CppML [21], ATerms 
[28], GCC-XML, and Harmonia [3].  In these formats the 
AST (actually an ASG) of the source code, as output 
from a compiler intended for code generation, is stored in 
a data XML data format.  These XML data views of 
source code, since they are based on the AST, are a 
“heavyweight” format that requires complete parsing of 
the original document and generation of the complete 
AST.  Closely related to srcML is Badros’ work on 
JavaML [2], which is an XML application that provides 
an alternative representation of Java source code.  Other 
work on source-code interchange formats includes the 
work by Malton et al [20].  While this work is not an 
XML application it has many of the same features as 
srcML and the other formats described previously.   

3.3. srcML Based Fact Extraction 

In order to demonstrate the capabilities of the srcML 
format, a lightweight fact extractor was created that 
utilizes XML tools, such as XPath and XSLT, to extract 
static information from C++ source code programs.  The 
srcML translator was used with source-code files from a 
C++ Fact-Extractor Benchmark [26, 27] and the results 
of those experiments are presented in [4]. 

The benchmark consisted of a number of test cases 
and a number of different questions.  Cases included 
incomplete and non-compilable code.  The benchmark 
had previously been applied to a selection of C++ fact-
extraction tools such as Acacia [1], Columbus [9], and 
Cppx [7]. 

Overall the lightweight approach of using XPath to 
query srcML documents with common XML tools was 
quite reasonable in comparison to the published results of 
the other parser-based tools.  Our lightweight approach 
performed as well as many of the heavyweight parsing 
approaches.  In addition the extraction of information in 
XML allows for integration into other tools and for a 
multitude of purposes.  The work demonstrates that a 
lightweight and robust source-code representation can be 
queried for fact extraction using XPath. 

4. Meta-Differencing 
The format used to represent differences between 

versions of a srcML document is called srcDiff.  srcDiff 
is an intensional version format [23] that embeds 
versioning information as tags inside of a srcML 
document.  The difference documents contains both 
versions of the source-code documents simultaneously 
permitting querying and transformation that is an 
extension of querying and transformation of srcML 
documents. 

Textual differences, as from the utility diff, are 
mapped to locations in the srcML document.  The 
specific line changes are then mapped to source-code 
elements.  Because the line changes at the textual level 
can crosscut the corresponding syntactic elements (e.g., a 
deleted line may include the keyword “if” and the 
condition of an if-statement) the syntactic elements must 
be matched to the line change.  The deletion of a 
syntactic element may correspond to separate line 
changes that occur far from one other, e.g., an if-
statement with a block.   

These differences are marked in the srcDiff format 
with the addition of new tags to indicate which srcML 
elements are added to, or deleted from, the source code 
along with which srcML elements are in both versions. 

The addition of the version information allows for 
queries on the differences between source-code 
documents to be an extension of source-code queries on 



 

 

<diff:common> 
<diff:old><cpp:include># include &lt;../trial1&gt;</cpp:include> 
</diff:old><diff:new><cpp:include># include &lt;trial1&gt;</cpp:include> 
</diff:new> 
 
<comment type=”block”>/* 
    a function 
 
<diff:old>2003</diff:old> 
<diff:new>2004</diff:new> 
 
*/</comment> 
<function>int f(int a, int b, int c) <block>{ 
<diff:old><if>if (a == b) <block>{ 
<diff:common> 
 a = b; 
 b = c; 
<diff:new>    total = total + a; 
 product = product * a; 
</diff:new> 
 c = a; 
</diff:common>}</block></if> 
</diff:old>}</block></function> 
</diff:common> 
 
Figure 3. A srcDiff program fragment with selected srcML markup.  Textual Deletions 

are shown in strikethrough; textual additions are shown in bold. 

srcML.  Information 
can be extracted that 
summarizes the 
number or types of 
changes, that is how 
many program 
elements were 
deleted, added, or 
replaced and what 
kind of program 
elements are changed.  
Also supported are 
queries involving the 
location of changes 
with respect to 
program elements, 
e.g., how many 
changes are located in 
a particular program 
element such as a 
particular method. 

4.1. srcDiff Format 

The srcDiff format is a single multi-version source-
code document with additional elements to mark version 
differences.  The original and modified versions of the 
srcML representation of the source code are integrated 
with version differences.  Differences are marked by 
XML elements inserted into the multi-version source-
code document around the syntactical elements that were 
added or deleted. 

Figure 3 presents a fragment of a srcDiff document.  
Textually deleted source code (and srcML) is shown in 
strikethrough, added code is shown in bold.  Critical 
srcML elements are shown while a number are left out 
for brevity.  Notice the additional tags to support the 
difference (i.e., diff:common, diff:old, 
diff:new) these will be detailed in section 4.3. 

In order to construct this single document we must 
address the merging of the versions and at the same time 
deal with marking of the differences.  The merging of 
srcML versions must produce well-formed XML, and the 
difference elements must be inserted while preserving the 
well-formed property.   

4.2. Merging Document Versions 

The srcDiff format contains all the elements from both 
the original and modified versions of the source code 
simultaneously.  Elements that are common to both 
deleted and added are combined in the same document.  
This must be done in such a way as to preserve the well-
formed properties of the resulting XML. 

A srcML element from the original document interacts 
with a srcML element from the modified version of the 
document in a number of ways.  The elements may not 
overlap, that is one element must start and end before the 
other starts.  This occurs when a complete element is 
deleted or added to the document, e.g., a complete 
statement is added or deleted: 

<if>...</if>...<while>...</while> 
One element may be completely nested inside another 

element.  This occurs when an element is inserted inside 
of an existing element or an element inside an existing 
element is deleted, e.g., a statement is inserted or deleted 
from the inside of a block in an if-statement: 

<if> <expr_stmt> </expr_stmt> </if> 
Finally, two elements may share a common ending 

point.  This occurs when the start of a statement is 
deleted in one version and similar statement is added.  
For example, a while-statement is replaced with an if-
statement but the contents of the statement (the contents 
of the block) remained the same: 

   <if><block> <comment></comment> 
  <while> ... <block> 
    ... 
     </block></while></if> 
The ending tag of the block is shared between both 

statements and the starting tag cannot be shared because 
of the preceding comment. 

For the well-formed cases, i.e., no overlap and nested 
cases, integration of the two versions is straightforward.  
The problem case of shared elements must be detected 
and handled appropriately.   

 



 

 

A solution to the shared element is simply to duplicate 
the ending block: 

<if><block><comment></comment> 
<while><block> 
              ... 
</block></while></block></if> 
 
Now that the different versions of the srcML 

documents are integrated into a single document the 
location of difference elements must be determined.  In 
the next section we examine the insertion of difference 
elements into the document to mark these areas of 
change. 

4.3. Difference Elements 

In order to mark where changes occurred in the 
srcDiff document difference elements are inserted.  The 
difference elements are in their own namespace to allow 
for easy detection apart from the srcML elements of the 
source code.  In the examples the namespace alias diff is 
used.  The namespace diff is composed of three elements: 

• <diff:common> - Used to mark sections 
containing srcML elements and source code that 
are common to both versions of the document. 

• <diff:old> - Used to mark sections 
containing srcML elements and source code that 
are present in the original version of the 
document but deleted in the modified version. 

• <diff:new> - Used to mark sections 
containing srcML elements and source code that 
are not present in the original version of the 
document but added to the modified version. 

An explicit element for replacement changes is not 
used here because they can be detected by a 
<diff:old> section followed immediately by a 
<diff:new> section.   

It is often necessary to nest these elements for well-
formed XML.  For example, if we delete an if-statement 
but not the statements inside the if-statement block, then 
we require an element <diff:old> around the if-
statement with a nested element <diff:common> 
around the statements inside the block. 

The difference elements, i.e., <diff:*>, form a 
difference axis of the document.  We can determine 
which difference elements contain any point in the 
document.  A given location in the source code may exist 
in more than one difference element since the difference 
elements can be nested. 

Interesting parts of the document can be extracted by 
looking at the parent of an element along the difference 
axis.  Elements with a parent of type <diff:common> 
along the difference axis are those that exist in both 
documents.  Elements with a parent of type 

<diff:old> along the difference axis are those that 
only exist in the original version of the document and 
elements with a parent of <diff:new> along the 
difference axis are the elements that only exist in the 
modified version of the document. 

The different srcML versions of the document, i.e., 
original and modified version, can be extracted from the 
srcDiff multi-version form of the document.  The original 
document is the text and markup with a parent element of 
<diff:common> or <diff:old> along the 
difference axis.  The modified version of the document is 
the text and markup with a parent element of 
<diff:common> or <diff:new> along the 
difference axis. 

4.4. Mapping Changes to Difference Elements 

A textual difference, such as a deleted line or range of 
lines, maps to a range in the srcDiff document.  If the 
contents of the srcML elements (i.e., all elements and 
text not in the difference axis) in this range is well 
formed, then the textual difference can be directly 
marked using the appropriate difference element, i.e., 
elements <diff:*>.  However a single textual 
difference may cross-cut the syntactic structure of the 
program (e.g., a line containing the start of a block is 
deleted while the contents of the block remain).  We 
cannot directly mark this range of the document within a 
difference element because it will lead to a document that 
is not well-formed.  A single textual difference (range) 
and a single srcML element interact in the following 
ways: 

• well-formed - The srcML element is totally 
contained in the range, i.e., both the start and end 
tags of the element occur between the two points. 

• start tag only - The srcML element starts in the 
range (the start tag is contained in the range) but 
does not end inside the range (the end tag for this 
element is not in the range). 

• end tag only - The srcML element ends in the 
range (the end tag is contained in the range) but 
does not start inside the range (the start tag for 
this element is not in the range). 

If only one of the tags for a single srcML element is 
not inside of a range of a single textual difference then 
the other tag must occur in a textual difference 
earlier/later in the document.  If not, than the version of 
the document related to this difference (the original 
version and <diff:old> or modified version and 
<diff:new>) was not well formed.  When crosscutting 
occurs, combinations of textual differences must be 
correctly matched to each other so that the appropriate 
difference element can be wrapped around the section. 



 

 

4.5. Generating srcDiff 

The srcDiff format is constructed using the original 
and modified version of the document in srcML.  The 
output of the utility diff between the original textual 
versions of the documents is used to control the 
combination of the two versions and to mark where 
changes occurred.   

The srcDiff format is generated with a Python 
program using the libxml2 library for XML processing.  
Because the simplest way to write the program is as a 
stream the DOM (Document Object Model) was not 
used.  The SAX (Simple API for XML) was considered, 
however it was not used since working with multiple 
input streams is difficult to write using the event-driven 
model of SAX.  Instead of these traditional XML API’s 
the “pull” API TextReader is utilized.  TextReader allows 
stream access to the document, which makes it 
straightforward to navigate through multiple srcML 
documents simultaneously.  Like SAX it does not store 
the entire document in memory at one time which makes 
it more efficient for large documents. 

Both srcML documents are processed in sections 
common to both versions, they are taken from the 
original srcML document in sections of deleted text, and 
taken from the modified srcML document in sections of 
added text.  The decision to change sections is controlled 
by the textual-difference information, while whether to 
return from a nested section or embed a new section is 
based on the current markup.  The section changes are 
marked with the difference elements, while the srcML 
output is from the appropriate input stream. 

In general, the textual differences control which 
section the srcDiff translator processes.  These textual 
changes match well to the srcML markup since it closely 
follows the text.  However, since the textual differences 
do not take into account the srcML markup some special 
cases have to be handled for example, the end tag of a 
line comment. 

5. Case Study 
In an attempt to validate our approach we performed a 

case study regarding changes to a source-code document.  
Current approaches to change analysis cannot easily 
address these fairly simple questions: 

Q1. Does the change only affect comments? 
Q2. Are new methods added to an existing class? 
Q3. Are there changes to pre-processor directives? 
 
Our approach is applied to an open source application, 

HippoDraw [10], to demonstrate that these questions can 
be addressed.  HippoDraw is used to build data analysis 
applications and it consists of both a library and an 
application.  The application contains approximately 60 

KLOC of source code in over 400 C++ files for each 
version.  The most recent versions at the time of the 
study, versions 1.4.0 and 1.5.1 are used in the case study.  
The following steps were applied on a 3 GHz PC running 
Linux: 
1) The source code for both versions is first converted 

to srcML using the srcML translator.  This took 
under two minutes for all 422 files from version 
1.4.0 and all 423 files from version 1.5.1. 

2) The utility diff is then individually applied to each 
file in the older version and the matching file in the 
newer version.  This took 2 minutes for the 422 files. 

3) For each file in the older version, the srcML of the 
original file, srcML of the newer version, and the 
output of the utility diff was used to build a 
srcDiff file.  This was only applied to files that had 
differences between them.  This took less than 10 
minutes for the 144 files with changes. 

5.1. Only Comment Change 

Identifying changes in srcDiff documents is an 
extension of querying of srcML documents.  XPath 
statements to find the program items of interest mixed 
with difference elements allow us to automatically 
determine the kind of changes that occurred.  XPath 
statements can be used to find comments that include 
deleted text:  //comment[.//diff:old] 

Added text is found by comparison to diff:new.  To 
find comments that are in a changed section we need to 
look at the context of the comment in terms of the 
difference elements.  XPath statements can be used to 
find deleted comments: 

//comment[ancestor::diff:*[1] 
==ancestor::diff:old[1]] 

The index of 1 refers to the parent along the difference 
axis since XPath starts indexing at 1.  Added comments 
can be found in a similar manner by comparison to 
diff:new.  To determine if a change contains anything 
other than comments the following statement is used: 

//*[not(comment)][ancestor::diff:*[1] 
!=ancestor::diff:common[1]] 

It is more direct to use XPath within an XSLT 
program to filter comment changes and see what remains.  
By applying an XSLT filtering program based on these 
XPath statements to the srcDiff files for HippoDraw we 
can automatically determine that the change from version 
1.4.0 to 1.5.1 for the file ColorPlot.h only includes 
comment changes. 

5.2. New Method Added 

In order to find new methods we first determine which 
classes exist in both versions.  We use the following to 
extract the existing classes: 



 

 

//class[ancestor::diff:*[1] 
=ancestor::diff:common[1]] 

An XPath statement is then be applied to these classes 
to determine the names of new methods: 

//function_decl[ancestor::diff:*[1] 
=ancestor::diff:new[1]]/name 

The command-line utility xpath allows us to execute 
the first XPath statement to find the class and then apply 
the second XPath statement to the result.  By applying 
the above XPath statement to the srcDiff files for 
HippoDraw we can automatically determine that the 
change from version 1.4.0 to 1.5.1 added the methods 
setZoomPan, and isZoomPan to the class CutController 
in the file CutController.h. 

5.3. Preprocessor Change 

In srcML, preprocessor directives are in a separate 
namespace from the other language elements allowing 
for easier processing as a group.  All preprocessor 
directives are in elements of the form <cpp:*> when 
the namespace alias cpp is used.  Since preprocessor 
directives are on their own lines they can be directly 
extracted.  All deleted preprocessor directives can be 
matched using the XPath statement: 

//diff:old//cpp:* 
All added preprocessor directives can be matched using 
the XPath statement: 

//diff:new//cpp:* 
Specific directives, e.g., include, can be found and 
specific information, e.g., included file name, can be 
extracted using an XPath of the form: 

//diff:old//cpp:include/cpp:file 
By applying the above XPath statement to the srcDiff 

files for HippoDraw we can automatically determine that 
the change from version 1.4.0 to 1.5.1 to file 
FunctionController.h additionally includes the file 
axes/AxesType.h. 

6. Limitations 
Because the srcDiff translator uses textual differences 

from the utility diff it has a line-based granularity of 
differences.  This leads to more changes than is actually 
necessary, e.g., two lines of expressions with a single 
variable difference.  Further processing of individual 
differences, such as comparing beginning and ending of 
lines, could reduce this to a finer granularity level with 
no increase in complexity.  However, this can still miss 
common sequences within the line.  Only the application 
of the LCS on the elements in the lines will permit true 
fine-grained differencing.  We are currently working on 
how to integrate this into the srcDiff translator.  

One of the goals of meta-differencing is to support a 
variety of applications in the program analysis and 

development areas.  The use of the general infrastructure 
of XML along with independent tools to convert from the 
textual representations of both source-code documents 
and the differences allows the use of meta-differencing 
for a customizable variety of applications in a wide 
variety of tools. 

In terms of the analysis of differences, the meta-
difference format allows the exploration of the changes 
that developers make to a specific project.  This analysis 
can be used for such things as difference categorization, 
identification of program areas where changes are most 
prevalent, and calculations of metrics. 

Since the work is based on srcML it is currently 
limited to C/C++ source code.  However, C/C++ source 
code, with its non-CFG (Context Free Grammar) and use 
of the preprocessor, provides a particularly difficult case 
compared to other languages.  The results that are 
generated by the application to C/C++ are applicable to 
other languages, particularly procedural and object-
oriented languages.  In most cases, these other languages 
will often provide an easier case. 

7. Conclusions 
Based on our initial investigations meta-differencing 

proves to be a very useful, reasonably efficient, and 
robust approach to supporting the analysis of source-code 
differences.  The lightweight XML approach is easy to 
use and integrates well with other tools.   

In general, the approach benefits the greater software-
engineering community by supporting both the analysis 
of individual source-code differences and version 
histories.  This will support the automatic identification 
of the specific syntactic nature of a change (e.g., a 
conditional added to an if-statement), the creation of 
software metrics based on a change, and assist in impact 
analysis based on changes.  Developers/researchers can 
readily analyze what is actually happening during the 
practice of software development and we hope our tools 
will support the efforts to empirically analyze version 
histories in a systematic fashion. 

8. Acknowledgements  
We would like to thank the program committee for 

their excellent comments.  This work was supported in 
part by a grant from the National Science Foundation 
(CCR-02-04175).   

9. References 
[1] Acacia, "Acacia - the C++ Information Abstraction 
System", Date Accessed: 11/01/2001, Online at 
http://www.research.att.com/sw/tools/Acacia/, 2001. 



 

 

[2] Badros, G. J., "JavaML: A Markup Language for Java 
Source Code", in Proceedings 9th International World Wide 
Web Conference (WWW9), Asterdam, May 13-15 2000 

[3] Boshernitsan, M. and Graham, S. L., "Designing an XML-
Based Exchange Format for Harmonia", in Proceedings 
Seventh Working Conference on Reverse Engineering 
(WCRE'00), November 23-25 2000, pp. 287-289. 

[4] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-
Based Lightweight C++ Fact Extractor", in Proceedings 11th 
IEEE International Workshop on Program Comprehension 
(IWPC'03), Portland, OR, May 10-11 2003, pp. 134-143. 

[5] Collard, M. L., Maletic, J. I., and Marcus, A., "Supporting 
Document and Data Views of Source Code", in Proceedings 
ACM Symposium on Document Engineering (DocEng’02), 
McLean VA, November 8-9 2002, pp. 34-41. 

[6] Conradi, R. and Westfechtel, B., "Version Models for 
Software Configuration Management", ACM Computing 
Surveys, 30, 2, June 1998, pp. 232 - 282. 

[7] CPPX, "CPPX - Open Source C++ Fact Extractor", Online 
at http://swag.uwaterloo.ca/~cppx/, 2001. 

[8] Emmerich, W., Mascolo, C., and Finkelstein, A., 
"Implementing Incremental Code Migration with XML", in 
Proceedings 22nd International Conference on Software 
Engineering (ICSE'00), June 4-11 2000, pp. 397 - 406. 

[9] Ferenc, R., Magyar, F., Beszedes, A., Kiss, A., and 
Tarkiainen, M., "Columbus – Tool for Reverse Engineering 
Large Object Oriented Software Systems", in Proceedings 
SPLST 2001, June 2001 2002, pp. 16-27. 

[10] HippoDraw, "HippoDraw:  Main Page", Online at 
www.slac.stanford.edu/grp/ek/hippodraw/index.html, 2004. 

[11] Holt, R. C., Winter, A., and Schürr, A., "GXL: Toward a 
Standard Exchange Format", in Proceedings 7th Working 
Conference on Reverse Engineering (WCRE '00), Brisbane, 
Queensland, Australia, November, 23 - 25 2000, pp. 162-171. 

[12] Horwitz, S. and Reps, T. W., "The Use of Program 
Dependence Graphs in Software Engineering", in Proceedings 
International Conference on Software Engineering (ICSE), 
Melbourne, Australia, May 11 - 15 1992, pp. 392 - 411. 

[13] Hunt, J. J., "Extensible Language-Aware Differencing and 
Merging", in PhD thesis: Universitt Karlsruhe, 2001. 

[14] Hunt, J. J., "Fast Semi-Semantic Differencing and 
Merging", Date Accessed: 02/01/2004, Online at 
http://wwwswt.fzi.de/cocoon/mount/swt/mitarbeiter/jjh/, 2004. 

[15] Hunt, J. J. and Tichy, W. F., "Extensible Language-Aware 
Merging", in Proceedings IEEE International Conference on 
Software Maintenance (ICSM'02), Montreal, Canada, October 
3-6 2002, pp. 511-520. 

[16] Hunt, J. W. and McIllroy, M. D., "An Algorithm for 
Differential File Comparision", AT&T Bell Labs Inc.1976. 

[17] Hunt, J. W. and Szymanski, T. G., "A Fast Algorithm for 
Computing Longest Common Subsequences", CACM, 20, 5, 
May 1977, pp. 350 - 353. 

[18] Magnusson, B., Asklund, U., and Minor, S., "Fine-grained 
revision control for collaborative software development", in 
Proceedings 1st ACM Symposium on Foundations of Software 
Engineering (FSE'93), 1993, pp. 33-41. 

[19] Maletic, J. I., Collard, M. L., and Marcus, A., "Source 
Code Files as Structured Documents", in Proceedings 10th 
IEEE International Workshop on Program Comprehension 
(IWPC'02), Paris, France, June 27-29 2002, pp. 289-292. 

[20] Malton, A. J., Cordy, J. R., Cousineau, D., Schneider, K. 
A., Dean, T. R., and Reynolds, J., "Processing Software Source 
Text in Automated Design Recovery and Transformation", in 
Proceedings IEEE 9th International Workshop on Program 
Comprehension (IWPC'01), May 12-13 2001, pp. 127-134. 

[21] Mammas, E. and Kontogiannis, C., "Towards Portable 
Source Code Representations using XML", in Proceedings 7th 
Working Conference on Reverse Engineering (WCRE '00), 
November, 23 - 25 2000, pp. 172-182. 

[22] Mascolo, C., Picco, G. P., and Roman, G.-C., 
"CodeWeave:  Exploring Fine-Grained Mobility of Code", 
Journal of Automated Soft Engineering, 2005, pp. (to appear). 

[23] Mens, T., "A State-of-the-Art Survey on Software 
Merging", IEEE Transactions on Software Engineering, 28, 5, 
May 2002, pp. 449 - 462. 

[24] Moonen, L., "Generating Robust Parsers using Island 
Grammars", in Proceedings 8th IEEE Working Conference on 
Reverse Engineering (WCRE'01), October 2-5 2001, pp. 13-24. 

[25] Moonen, L., "Lightweight Impact Analysis using Island 
Grammars", in Proceedings of the 10th International Workshop 
on Program Comprehension (IWPC’02), Paris, France, 2002, 
pp. 219-228. 

[26] Sim, S. E., Holt, R. C., and Easterbrook, S., "On Using a 
Benchmark to Evaluate C++ Extractors", in Proceedings 10th 
International Workshop on Program Comprehension, Paris, 
France, 2002, pp. 114-123. 

[27] Sim, S. E. and Kienle, H. M., "Concordance for CppETS 
1.1 Test Buckets", Date Accessed: 11/15/2002, Online at 
http://cedar.csc.uvic.ca/twiki/kienle/pub/IWPC2002/Benchmark
/concordance11.htm, 2002. 

[28] van den Brand, M., Sellink, A., and Verhoef, C., "Current 
Parsing Techniques in Software Renovation Considered 
Harmful", in Proceedings 6th International Workshop on 
Program Comprehension (IWPC'98), Ischia, Italy, June 24-26 
1998, pp. 108 - 117. 

[29] W3C, "XML Path Language (XPath) Version 1.0 W3C 
Recommendation", Date Accessed: 01/20/2002, Online at 
http://www.w3.org/TR/1999/REC-xpath-19991116, 1999. 

[30] Wagner, T. A. and Graham, S. L., "Incremental Analysis 
of Real Programming Languages", in Proceedings ACM 
SIGPLAN Conference on Programming Language Design and 
Implementation, 1997, pp. 31-43. 

 


