
Dex: A Semantic-Graph Differencing Tool for Studying Changes

in Large Code Bases

Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, Vinay Augustine

Electrical Engineering & Computer Science Department

Case Western Reserve University

10900 Euclid Avenue

Cleveland, Ohio

+1 216 368 6884

{sxr67, rjr11, dzl, podgurski, vja2}@ case.edu

Abstract

This paper describes an automated tool called Dex

(Difference extractor) for analyzing syntactic and

semantic changes in large C-language code bases. It is

applied to patches obtained from a source code

repository, each of which comprises the code changes

made to accomplish a particular task. Dex produces

summary statistics characterizing these changes for all of

the patches that are analyzed. Dex applies a graph

differencing algorithm to abstract semantic graphs

(ASGs) representing each version. The differences are

then analyzed to identify higher-level program changes.

We describe the design of Dex, its potential applications,

and the results of applying it to analyze bug fixes from the

Apache and GCC projects. The results include detailed

information about the nature and frequency of missing

condition defects in these projects.

1. Introduction

The history of changes made to the code base of a

software system or application embodies a wealth of

information about deficiencies in the software that were

discovered and addressed during its lifecycle. This sort

of information is invaluable for assessing software

engineering techniques that are intended to prevent,

reveal, or correct such deficiencies. For example, many

software testing techniques are based on assumptions

about the nature and frequency of software defects.

These assumptions can be checked by studying bug fixes

applied in actual software projects. Moreover, doing so

leverages work already done by developers.

Nevertheless, such studies are seldom conducted,

presumably because of the time and effort required.

The biggest obstacle to conducting rigorous empirical

studies of the nature of software changes is the amount of

manual labor required to analyze them, which is often

substantial. Another problem is that developers’ own

descriptions of changes and the reasons for them are

typically informal and vary in specificity from developer

to developer. These problems can be addressed by

providing automated support for analyzing the code

changes recorded in source code repositories. Most large

projects maintain such a repository with the aid of a

version control system such as CVS [8]. It is typically

the most complete history of changes to a project’s code

base that is available for study. Such repositories are

often so large that manually analyzing all of the code

changes recorded in them would be prohibitively

expensive. Analysis of the changes recorded in source

code repositories is aided by the use of text differencing

tools such as Gnu diff [11]. However, because such tools

do not understand program syntax and semantics, they

can provide only limited help [4][14][27].

This paper describes an automated tool called Dex

(Difference extractor) for analyzing syntactic and

semantic changes in large C-language code bases. Dex is

meant to be useful both to software developers who wish

to understand the nature of software changes made in

their projects and to software engineering researchers

studying the nature of typical code changes. It is applied

to patches extracted from a source code repository, where

a patch consists of all the code changes made to

accomplish a particular task such as fixing a bug.1 Dex

produces summary statistics characterizing these changes

for all of the patches that are analyzed. Note that a single

patch may affect multiple source files. Dex compares the

original and modified version of each of these files to

determine their differences and aggregates the results. To

enable syntactic differences and certain semantic

1 It is up to the user of Dex to gather the source files and patches to be

analyzed. That is, Dex does not interface directly with a version control

system.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

differences to be determined, Dex uses CPPX [22][23] to

create an abstract semantic graph (ASG) representation

of each version (see Section 3) and then applies a graph

differencing algorithm to the resulting pair of ASGs. This

algorithm produces an edit script that describes how the

ASG for the original version of the file can be converted

into the ASG for the modified version by matching,

inserting, deleting, updating, or moving nodes. This edit

script is then analyzed to obtain a profile of the

differences between the two files.

Dex currently collects 398 different statistics (counts)

about each patch that is analyzed. These statistics are

then aggregated over all patches to produce summary

statistics, such as the percentage of patches that exhibit a

particular type of change. It is fairly easy to modify Dex

to collect other statistics that are defined in terms of

changes to a program’s ASG. We evaluated its accuracy,

performance, and usefulness by using it to analyze bug

fixes from two large open-source software development

projects: the Apache HTTP server and the GCC compiler

suite. In these experiments Dex showed good accuracy

and acceptable performance. In addition, the statistics it

produced revealed some facts about the nature of bug

fixes in GCC and Apache projects that have important

implications for how this software should be validated.

To our knowledge, these are the first detailed statistics to

be presented in the literature that characterize missing

condition defects in major software products.

2. Applications of Dex

Dex provides a practical means to study the nature of

code changes in large software projects, to justify or

evaluate proposed software engineering techniques, and

possibly to improve them. Perhaps the most obvious

application of Dex is to automate the process of software

defect classification [7] and to make it more precise,

objective, and repeatable. Our original reason for

creating Dex was to analyze bug fixes in large code bases

in order to determine the kinds of execution profiling that

should be used in conjunction with observation-based

testing [9][18].2 We are particularly interested in

revealing missing condition defects, which involve

omitted conditional code and are notoriously difficult to

expose. Hence, many of the statistics Dex currently

generates address such defects. As shown in Section 7,

Dex provided valuable information about the nature and

frequency of missing condition defects in the Apache and

GCC projects. Dex may also prove useful in other kinds

of software testing. A number of regression testing

2 Observation-based testing involves applying statistical and data mining

techniques to profiles of software tests or captured operational

executions in order to identify “suspicious” executions to be audited

manually.

techniques employ textual, binary, or dependence-based

differencing algorithms to enable test cases to be selected

or prioritized based on whether they exercise changed

code [4][24]. Dex could be used in these applications to

obtain a more precise characterization of program

changes. We believe that with appropriate modifications,

Dex can provide information that is useful for evaluating

a variety of other software engineering techniques related

to software maintenance.

3. Abstract semantic graphs

An abstract semantic graph (ASG) is an abstract

syntax tree (AST) with extra edges indicating certain

semantic information, namely type information. We call

these extra edges non-tree edges. They connect literals

and declarations to their types and variable references to

their variable declarations. Figures 1 and 2 show two

ASTs; a sample of non-tree edges have been added to the

AST in Figure 1. The CPPX tool [22] uses a modified

version of GCC to generate ASGs from C source code.

The modified GCC runs the C-preprocessor on the source

code, parses the result, performs some semantic analysis,

and generates an optimized internal tree representation.

The internal representation is then translated into a Datrix

ASG in GXL format [13]. The representation is a

computationally equivalent program, but is not a direct

translation of the original source code. This process also

strips layout, spacing and comments, resolves macros to

their implementation, strips unnecessary operators,

converts boolean expressions to conjunctive normal form,

folds literals, and expands expressions that have implicit

meaning.

4. Architecture

Figure 3 depicts the architecture of Dex and the data

flow between its components. As indicated in the figure,

CPPX is applied to pairs of source code files (original and

modified) comprising a patch, to produce files containing

corresponding abstract semantic graphs in GXL format.

The latter are input to the DifferenceAnalyzer, which is

Dex’s driver module. The DifferenceAnalyzer parses user

input parameters and initiates analysis of each pair of

GXL files. The GXLParser parses the files and creates

internal representations of the ASGs they describe. It

passes the two ASGs to the GraphComparator for

comparison. The GraphComparator uses the

CostCalculator to determine edit distances between nodes

and produces an edit script called a NodeMatching that

classifies nodes as being matched, inserted, deleted,

updated, and/or moved.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

The DifferenceItemizer analyzes the edit script to

gather data about the differences between the two ASGs,

creating an itemization or profile that is returned to the

DifferenceAnalyzer together with metadata. The

DifferenceAnalyzer maintains a MetaDataSet to store

information from each pair of files that might be relevant

to processing other pairs of files. For example, metadata

is stored that describes function calls and function

declarations within each pair of files. This is necessary

because a file can include a function call that refers to a

function defined in a different file. Once all pairs of files

in a patch have been analyzed, the DifferenceAnalyzer

passes the resulting profiles and final MetaDataSet to the

Aggregator, which combines the profiles, creating a

single profile containing key-value pairs, and appends the

metadata. The Aggregator outputs a properties file

describing the changes in the patch.

At present, Dex consists of 14,181 lines of Java code,

of which 6,822 lines implement the differencing

algorithm, 4,380 lines implement itemization, and 2,979

lines implement classes used in both of these functions.

Currently Dex handles GXL files representing C source

code, but it is possible to extend it to handle other

languages.

5. Differencing algorithm

In this section, we describe Dex’s complex graph

matching algorithm in detail, for the benefit of readers

interested in understanding, adapting, or improving it.

(Readers who are interested mainly in applications of Dex

may wish to skip this section.) To determine the

differences between two abstract semantic graphs, we

created a heuristic algorithm that is specialized for ASGs

with Datrix semantics. The algorithm is based on

comparing two ordered, rooted trees3, extracted from the

ASGs. We call these abstract semantic trees (ASTs).

They are similar in structure to the more common abstract

syntax trees, but have additional semantic information

embedded in them, e.g. type information. ASTs are

obtained by retaining tree edges from the original ASG,

3 In an ordered, rooted tree, the children of each node are ordered.

Var Ref: y Var Ref: x Literal: 0 Literal: 2 Var Ref: z Literal: 2

Function:

myFunc

blockParameter: x

Variable: z if

Operator:

Assignment

Operator:

Assignment

Operator:

Equals

Parameter: y

void myFunc(int x, int y) {

 int z;

 if(x == 0) y = 2;

 else z = 2;

}

Var Ref: yVar Ref: x Literal: 0 Literal: 3

Var Ref: z Literal: 2

Function:

myFunc

blockParameter: x

Variable: z if

Operator:

Assignment

Operator:

Assignment

Operator:

Equals

Parameter: y

void myFunc(int x, int y) {

 int z;

 if(x == 0) y = 3;

 z = 2;

 x = 1;

}

Var Ref: x Literal: 1

Operator:

AssignmentMoved

Inserted

Updated

Figure 1: Simple C function and corresponding AST. Some sample non-tree edges shown.

Figure 2: Modified version of function in Figure 1 and corresponding AST. Annotations
indicate edit operations according to Dex.

Condition Then Else

Condition Then

Sample

non-tree

edges
Type: Integer

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

by adding node attributes to represent the information

given by non-tree edges, and by doing some additional

cleanup of the graph. Our algorithm relies on iteratively

matching parts of the ASTs and recalculating matching

costs based on the whole ASGs, until all the nodes are

matched. Note that this is different from the more

commonly studied tree differencing problem [16][28][29]

where costs are computed a priori. Our technique allows

us to, for example, match variable references to a variable

whose name changed, once the variable declaration is

matched.

When our algorithm is applied to two ASTs T1 and T2,

it produces an edit script describing how T1 can be

transformed into T2 in a “natural” way. Because of the

heuristic nature of the algorithm, this script is not

guaranteed to have minimal length. It consists of a

sequence of match, insert, and delete operations applied

to particular nodes of the two trees. Each operation has

an associated cost (see Section 5.2.1). Match operations,

which map a node of T1 to a node of T2, are of four types.

An update is a match between nodes that are not

identical, e.g., nodes representing a literal whose value

has changed. A simple match is a match between two

nodes n1 and n2 such that the parents of n1 and n2 also

match and the sibling ranks of n1 and n2 are the same. A

move that changes parent is a match between nodes

whose parents are not matched to each other. A move

that changes order is a match between two nodes with

matching parents but different sibling ranks. Other

algorithms for computing edit distances between ordered

trees [16][28] do not include a move operation. We felt

this operation was necessary for analyzing code changes,

because programmers sometimes move a statement or set

of statements from one place to another. Since moves are

not frequent, however, preference should be given to

matches that do not result in a move. Adding a move

operation complicates the differencing algorithm

significantly, because it admits a much larger number of

possible matches.

A node in an AST has a type, such as literal, name

reference (variable name), for-loop, logical operator or

relational operator. A node in T1 will match a node in T2

only if the two nodes have the same type, which

simplifies cost calculations.

A top-level pseudocode description of the differencing

algorithm is shown in Figure 4. On every iteration, the

algorithm attempts to match everything that can be

matched from the roots of ASTs T1 and T2 down toward

their leaves, and then it attempts to match everything that

can be matched from the leaves of the ASTs upward.

Nodes in T1 that do not match any node in T2 are

considered to be deleted; nodes in T2 that do not match

any node in T1 are considered to be inserted. Between

stages of the algorithm, the costs are recalculated, since

matching nodes in the two trees with one another can

change the cost of matching other nodes. In the

remainder of this section, we present an overview of the

principal aspects of the differencing algorithm. Further

details can be found in [20].

5.1. Top-down matching algorithm

The purpose of the top-down matching is to quickly

establish a rough correspondence between T1 and T2, to

reduce the number of pairwise node comparisons that

must be done. In the case studies described in Section 7,

the number of nodes in typical ASTs ranged between

1 MATCHNODES

2 FINDMATCHESFROMROOT()
3 CREATENEWCOSTMATRICES()
4 WHILE (NUMBER OF REMAINING NODES > 0)
5 FINDEXACTMATCHES()
6 RECALCULATEIFNEEDED()
7 FINDINSERTSANDDELETES()
8 RECALCULATEIFNEEDED()
9 FINDUPDATES();
10 RECALCULATEIFNEEDED()
11 IF(NOCHANGESSINCEPREVIOUSPASS)
12 BREAKNONZEROCOSTTIES()
13 RECALCULATEIFNEEDED()
14 POSTPROCESS()
15 RETURN NODEMATCHING

1 RECALCULATEIFNEEDED

2 IF(MATCHINGCHANGED)
3 FINDMATCHESFROMROOT()
4 CREATENEWCOSTMATRICES()

Figure 4: Top-level pseudocode. Figure 3: Data flow diagram for Dex

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

20,000 and 60,000,4 whereas the number of nodes

corresponding to changed code was only between 20 and

200 nodes. The top-down matching algorithm succeeded

in matching 94% of all nodes on average, greatly

reducing the overall running time of the differencing

algorithm. For example, when comparing Figures 1 and

2, top-down matching will match all the nodes except for

the assignment operator nodes and their subtrees.

The top-down matching algorithm does not consider

the costs of edit operations. Starting at the roots of T1 and

T2, this recursive algorithm finds potential matches

between nodes one level at a time. On each recursive

call, the children of two nodes n1 T1 and n2 T2 that

are known to match are compared. A child of n1 is

considered to match a child of n2 if there are paths of

length four beginning with those children whose

corresponding nodes have identical types and attributes.

Children that match uniquely are added to a set of such

nodes. Sometimes there are multiple children of n1 that

match a child of n2 and/or multiple children of n2 that

match a child of n1. In this case, a tie-breaking heuristic

is employed, which considers the results of previous

bottom-up matching. The algorithm checks if a child of

n1 has a descendant that matches a descendant of a child

of n2. If such children exist and are unique, they are

considered uniquely matched. Otherwise the algorithm

tries to break the tie by matching paths of length four. If

this does not succeed, the tied nodes are left for later

processing.

5.2. Bottom-up matching

Finding matches from the bottom up involves finding

subtrees in T1 identical to subtrees in T2. For each node

type , we use a dynamic programming algorithm to

compute a cost matrix indexed by pairs of nodes of type

, which indicates the costs of transforming T1 into T2 in

different ways. The entry for n1 T1 and n2 T2

contains the minimum cost of an edit sequence that

matches n1 and n2. The cost matrix also indicates the cost

of inserting or deleting particular nodes. Entries of zero

indicate exact matches of nodes and their entire subtrees.

5.2.1. Cost calculation. The rules for computing costs,

which were refined by experimentation with a set of

example AST pairs, are as follows:

� The total cost of matching two nodes of the same

type is the sum of three terms: (1) a cost of 3 times the

number of differences in their attributes and non-tree

edges, (2) the added cost of optimally matching their

children, and (3) a cost of 2 if the match is a move

4 Many of these nodes correspond to code from library header files

(#include files).

operation that changes parent.

� The cost of optimally matching two nodes with

different numbers of children includes the cost of

inserting or deleting children and their subtrees.

� In computing the optimal cost of matching the

children of n1 T1 and n2 T2, the costs of matching n1

with each child of n2 and matching n2 with each child of

n1 are considered.

� The cost of matching two nodes of different types is

20.

� The insert/delete cost is 2 per node.

Computing the cost of optimally matching the children

of two nodes involves finding an optimal matching in a

weighted bipartite graph. Note that our bottom-up

matching algorithm allows the children of a node to be

reordered, but at present it does not associate costs with

such reordering.

Another consideration is the treatment of nodes that

are strongly associated with their parent, as are many

leaves and blocks. In an AST, leaves often correspond to

literals and variable names, rather than to statements.

Comparing a literal or variable to every other literal or

variable, respectively, is unnecessary work and would

produce spurious moves. Therefore, a leaf is compared

only to the children of whatever its parent is compared to,

unless the leaf’s parent is a scope, in which case the leaf

represents a statement. Similarly, a block associated with

a function, conditional statement, or loop should be

matched in conjunction with its parent. Such nodes are

left out of the cost matrix.

5.2.2. Finding Exact Matches. When attempting to find

exact matches between nodes of T1 and T2 (line 5 of

Figure 4), the bottom-up matching algorithm looks for

entries of zero in the cost matrix, which indicate not only

that two nodes match exactly but also that their entire

subtrees do. For a given node n1 T1, if the algorithm

finds exactly one matching node n2 T2, it checks to be

sure that n2 matches exactly one node in T1. If so, it adds

these nodes and their subtrees to the matching.

Otherwise, ties are broken by considering previous

matches involving parents and siblings, and by

considering depth from the root (see Section 5.2.5).

5.2.3. Finding Inserts and Deletes. A node n of type in

T1 or T2 is marked as deleted or inserted, respectively,

when there are no potential matches between n and nodes

in the other tree. The bottom-up matching algorithm is

conservative in deciding that there are no potential

matches with n. This occurs only when either (1) there

are no nodes of type in the other tree or (2) for each

node m of type in the other tree for which the cost of

matching n with m is minimal, both of the following

conditions hold: (a) there is a unique node k n in n’s

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

tree for which the cost of matching k with m is minimal

and (b) this cost is smaller than the cost of matching n

with m (that is, n is not an optimal match for m). When

comparing Figures 1 and 2, this portion of the algorithm

matches the inserted subtree.

5.2.4. Finding Updates. Updates are pairs of nodes that

match but have non-zero cost. For example, if the only

change in a patch is to rename a variable in its declaration

and all its uses, the variable declaration node will match

but will be considered an update, because the name

attribute is different, while the variable uses will be exact

matches, as the referenced declaration nodes match.

From a high level point of view, the algorithm looks for

pairs of nodes of the same type which have not been

matched but have matching parents. Alternatively, it

looks for pairs of nodes with a cost which is a minimum

in both its row and its column. It then updates these costs

in the cost matrix to be zero, so that they will be matched

as exact matches during the next iteration. In Figures 1

and 2 the updated assignment statement will be found

during this stage. No tiebreaking occurs during this

stage. Note that line 12 of Figure 4 will break ties for

nodes of nonzero cost, but this will only be done if no

other progress has been made during this iteration.

5.2.5. Tiebreaking. Tiebreaking is complicated by the

fact that arbitrary sections of each graph might have

already been marked as inserted or deleted. We have

developed heuristics that try to minimize the number of

moves. For example, consider the case where a program

is modified by copying a piece of code and pasting it to

multiple places. In this case, a node n1 in T1 matches to

multiple nodes in T2. Our heuristics break the tie based on

context, by first giving preference to nodes whose parent

has been matched to n1's parent, after skipping inserted or

deleted nodes. If there are multiple such nodes, as is the

case when code is duplicated in the same block, ties are

broken based on siblings. In the case that none of the

parents match, multiple heuristics are tried, which

consider the parents' node type, siblings, depth from root,

or to recursively break the tie among the parents. As with

all heuristics, there are always situations that it does not

handle properly. In the case studies described in Section

7, the incorrect matches which occurred were due to

tiebreaking errors.

5.3. Postprocessing

Since the differencing algorithm is heuristic in nature,

it may match, insert, or delete nodes prematurely, in the

sense that subsequent operations may alter costs in ways

that invalidate the earlier ones. To address this, the

algorithm ends with a postprocessing phase that uses

additional heuristics to find and rectify such mistakes

(line 14 of Figure 4). They are often indicated by

numerous changes to a small part of an AST.

5.4. Time and space complexity

The worst-case complexity of the differencing

algorithm is O(n4) and its space complexity O(n2), where

n is the total number of nodes in the ASGs that are

analyzed. The ASTs are created in linear time. Finding

matches from the root makes four passes over all the

nodes, as matches are verified to a depth of four. For

each pass, the time required to compare each set of

children is O(nk2), where k is the largest number of

identical children per node. Cost calculation requires

time and space on the order of the number of compared

nodes. This number is equal to the total number of

entries in all cost matrices, which is O(n2) in the worst

case. Finding matches, insertions, deletions, or updates

entails the following operations for each node r in one

AST: (1) finding the minimum-cost entries in r’s row of

the cost matrix for r’s node type and (2) checking

whether those entries are the smallest in their columns.

This requires O(n3) comparison operations in total. With

each pass, the number of nodes that haven’t been

matched, inserted, or deleted must decrease by at least

one, until there are none left. Therefore, the loop in

Figure 4 is iterated at most n times and hence the total

running time for the loop is at worst O(n4).

Postprocessing makes an undetermined number of passes

through all the nodes, but it will be at most mn where m is

some constant, making postprocessing occur in O(n2)

time. This algorithm will take at worst O(n4). The largest

amount of space is taken by the cost matrices and the

graphs, which will be at worst O(n2).

6. Itemizing differences

The DifferenceItemizer and Aggregator can be thought of

as implementing an automated survey of the patches

applied to a code base. In this survey, a set of questions

about the individual changes comprising each patch is

answered. Currently, the DifferenceItemizer and

Aggregator record statistics about certain code changes

that we judged to be useful for understanding the nature

of bug fixes, although these statistics are also relevant to

adaptive or perfective maintenance. Separate statistics

are kept for changes involving different types of

constructs. Changes involving conditional statements are

analyzed in particular detail, due to our interest in missing

condition defects (see Sections 2 and 7). The

DifferenceItemizer analyzes changes in the context of an

entire patch and, in several cases, in the context of the

program constructs in which they occur. For example,

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

separate (sub)profiles are kept for changes made to

branch conditions, function calls, and assignment

statements. Each program construct is represented by a

subtree of an AST. For our purposes, a new construct is

one whose root has been marked as an insert. An existing

construct is one that has been marked as a match to a

node in the original graph, which includes exact match,

an update, or a move. A construct is considered to be

altered if it or any node in its subtree is marked as an

insert, delete, update, or move.

The questions answered by the DifferenceItemizer

range from simple to complex. Examples of the former

include counts of how many existing function bodies

were altered, how many new functions were inserted,

how many function signatures changed, and how many

function calls, assignment statements, conditional

statements, loop statements and others statements were

added, removed and modified. Examples of more

complex questions include how many if conditions were

altered so as to add a use of a variable that was already in

scope and how many of these changes occurred for each

kind of scope (function parameter, local variable, global

variable). Notice that a textual difference does not

provide enough information to answer this last question,

which requires access to the semantic information

contained in the ASG. Dex currently collects 398

statistics, and it is not difficult to modify it to collect

different ones if needed. Further details about itemization

of differences and a complete list of the statistics

currently gathered can be found in [21].

7. Case studies

To evaluate the accuracy, performance, and usefulness

of Dex, we used it to analyze bug fixes from two large

open-source software development projects, the Apache

HTTP server and the GCC compiler suite. For these case

studies, we retrieved all the pertinent changes from the

projects’ mailing lists and CVS repositories, and then

wrote scripts to automatically feed these to Dex. The

Apache HTTP Server [1] is an open-source server

developed for use with operating systems such as UNIX

and Windows NT. For this study we selected seven

months of changes made to version 2.0, spanning April

2002 through November 2002. Only those patches that

included the (case insensitive) terms "bug", "fix", "fixed",

or "fixes" were considered. We examined the logs for

these patches by hand to remove those that were clearly

not bug fixes. The resulting set contains 112 patches

affecting 141 source files. GCC (Gnu Compiler

Collection) [10] is an open-source suite of compilers for

UNIX-compatible operating systems. For this study, we

chose to examine the changes made to the GCC C-

compiler between releases 3.2 and 3.2.1. According

GCC’s change log, most of these changes were bug fixes.

Those that were not were ignored, leaving 71 patches,

which affected 95 source files.

7.1. Accuracy

Because Dex employs a heuristic differencing

algorithm, its output is unlikely to be perfectly accurate.

To evaluate the accuracy of Dex’s output, we selected at

random 34 patches from the 71 for GCC and 39 patches

from the 112 for Apache, and we checked Dex’s output

for these patches manually.5 We found that Dex

produced output with some incorrect counts for 3 Apache

patches and 6 GCC patches. There was exactly one

incorrect count for each of the 3 Apache patches. For the

6 GCC patches, the number of incorrect counts ranged

from 2 to 7, with an average of 3.5. Of the 398 counts

gathered by Dex, 378 were always correct, 14 were

incorrect in 1.4% of all patches, 3 were incorrect in 2.7%

of the patches, 2 were incorrect in 4.1% of the patches,

and one was incorrect in 5.5% of the patches. The

average amount by which Dex was incorrect was 1.1.

7.2. Performance

In this study, Dex was run under the Windows 2000

Server operating system on a 1.8 GHz Pentium IV Xeon

processor with 1 GB of RAM. Figure 5 shows the

running time of the differencing algorithm, which

dominates Dex’s overall running time, on the Apache and

GCC files, as a function of the total number of nodes in

the two ASGs that are compared. With the Apache files,

the running time grows almost linearly until the total

number of nodes reaches about 40,000. With the GCC

files, the running time grows almost linearly until the

total number of nodes reaches about 100,000. For both

projects the running time of the differencing algorithm

spikes for some of the largest ASGs; we are unsure of the

cause of this phenomenon. For the Apache files, both the

mean and median numbers of nodes per pair of files are

about 30,000, and the corresponding running times are

about 60 seconds. The GCC files give rise to much larger

graphs: the mean number of nodes is about 75,000, and

the median is about 64,000. Consequently, average

running time of the differencing algorithm for the GCC

files is about 5 minutes. Note that 67% of the GCC

ASGs contain over 50,000 nodes, in comparison to only

13% of the Apache ASGs. We note that the performance

Dex’s differencing algorithm can probably be improved

substantially with tuning.

5 This process took several person days.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

7.3. Analysis of results

Table 1 shows the most common type of changes for

Apache and GCC and their frequencies. The six most

common changes are the same for both projects, but in

different order, which is somewhat surprising given the

differences in problem domain and coding style. On both

projects, the frequencies for the next most common types

of changes drop sharply. The frequencies for changes

that alter control flow by inserting a conditional statement

(if, switch, or ? operator) or by changing an existing

if condition are of special interest to us, because such

changes indicate attempted fixes of missing condition

defects. Dex collects additional statistics about these

changes, which permit a more detailed analysis. A large

percentage of changes to if conditions added a new

variable (62.32% for Apache, 47.50% for GCC). Over

25% of these changes added variables that were not even

in scope beforehand (30.23% for Apache and 26.32% for

GCC). For those if conditions that add only variables

already in scope, Table 2 shows the frequency of the

different types of variables inserted. There are large

differences between the projects, but in both it was most

common to add uses of local variables or of fields of

variables already in scope. Similar results hold with

respect to variables used in the branch conditions of

inserted conditional statements (see [21] for details). To

our knowledge, these are the first detailed statistics to be

presented in the literature that characterize missing

condition defects in major software products. Statistics

characterizing other types of Apache and GCC bug fixes

are addressed in [21].

The aforementioned statistics have important

implications for how revisions of Apache and GCC

should be validated. They indicate that missing condition

defects are a major problem in these projects. Such

defects present a difficult challenge for software testers.

They are triggered only where certain relations involving

program variables hold at particular locations in the code,

yet it is often the case that the relations and the locations

where they must hold are not specified in any project

documents, presumably because they involve overlooked

cases. Dex provides valuable clues about these relations

and locations: most of the relevant variables are already

in scope, though a significant number are not; many of

the relations can be expressed by modifying expressions

already present in the code; when a variable is missing

from such an expression, it is usually a local variable or a

field. In future work, we intend to modify Dex to further

pin down the nature and location of typical missing

condition defects, so that validation techniques can be

designed specifically to reveal them.

8. Related work

Horwitz proposed a technique for identifying semantic

and textual differences between program versions that is

based on partitioning program components into sets of

components with equivalent behaviors [14]. The

partitioning algorithm represents programs using

program representation graphs, which combine aspects

of program dependence graphs and static single

assignment forms but do not contain the kind of semantic

information in ASGs (e.g., type information). The

algorithm applies to programs in a limited language

without procedures or functions. Binkley used a similar

approach to define an algorithm for eliminating

unnecessary regression tests and for reducing the size of

the program that must be tested, although his algorithm

applies to a language with procedures [4]. Jackson and

Ladd proposed documenting the semantic difference

between two versions of a procedure by comparing the

dependence relations between input and outputs before

and after the change [15]. Berzkins shows how the

semantics of a program can be modeled by partial

functions, and sets up Boolean and Browerian algebras to

define what is meant by adding and removing

functionality in different version of a program [3]. He

then uses this model to study the problem of merging two

sets of changes.

Krinke presents a technique for detecting duplicate

code in a program based on detecting pairs subgraphs

with identical length-k paths in a fine-grained program

dependence graph [17],. A fine-grained PDG has nodes

similar to those on an AST, and edges corresponding to

those in the AST plus control and data dependence edges.

Analyzing this graph allows the algorithm to find similar

subgraphs based on data dependences, even if the control

0

200

400

600

800

1000

1200

1400

1600

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

Combined Number of Nodes

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Apache GCC

 Figure 5: Running time vs. number of nodes

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

dependences have changed. The end result is a many-to-

many matching of subgraphs of size at most k, and not all

parts of the graph are matched. This is useful for finding

duplicated code, and Krinke shows that this produces few

false positives and has high accuracy.

Yang described an algorithm for finding syntactic

differences for use with version control software between

two programs that works by analyzing their parse trees

[27]. Unlike our algorithm, Yang’s parse trees do not

contain the semantic information present in ASTs and his

algorithm places restrictions on admissible matchings that

our algorithm does not: (1) two nodes may only match if

their parents match and (2) the order of sibling nodes

must be preserved. Wang et al describe a binary

matching tool called BMAT [25]. This tool works on

program binaries, by matching basic blocks from the

original binary to basic blocks in the new one. Matching

is done based on similarity of basic blocks and limited

control flow information. Software differencing can also

be aided with support from the editing tool. Berlage and

Genau propose representing differences by the sequence

of commands executed by the user to make the change,

which are automatically recorded by the application [2].

They also study how to merge two command sequences.

A well-studied application of software differencing is

software merging, where two sets of changes to a

program have to be merged into a single final version.

One of the first algorithms to provide guarantees on the

behavior of the merged program is given by Binkley et al

in [5]. Mens surveys current results on software merging,

including an overview of several differencing algorithms

currently used for software merging [19], most of which

are presented in this section. Westfechtel presents an

approach for merging of revisions where the editor is

aware of the AST of the document and automatically

assigns tags to new and modified nodes, making it trivial

to find the differences between versions [26].

Zhang and Shasha review older work on tree

differencing and present a fast algorithm for solving the

edit-distance problem on ordered trees, with updates,

insertions, and deletions [28]. These classical algorithms

require all costs to be known beforehand, and cannot

handle changing costs for parts of the trees based on

whether other parts match. Chawathe and Garcia-Molina

presented an algorithm to find changes in structured data

modeled by unordered trees, which also includes move,

copy and glue operations [6]. Their algorithm is a

heuristic, iterative update mechanism like ours, but only

accommodates tree edges. Note that the edit-distance

problem between unordered trees is, in general, NP-

complete [29].

Changes from a source control repository can be

analyzed without using software differencing. Graves and

Graves and Mockus investigated the possibility of

determining effort spent on different changes by

analyzing size and type of each change, together with

reported total monthly effort for each developer from an

accounting database [12]. Using this technique they

looked for modules that were becoming harder to

maintain, and also compared the amount of effort

necessary for bug fixes versus new features.

9. Conclusion

Dex provides an automated means to collect detailed

information about the nature of code changes in large

software projects, including syntactic changes and certain

semantic ones. The case studies reported in Section 7

demonstrate that Dex can provide information that is

valuable for evaluating the applicability of certain

software testing techniques to a project. In these studies,

Dex showed good accuracy and acceptable performance,

although its matching algorithm would benefit from

further tuning. We believe that with appropriate

modifications, Dex can provide information that is useful

for evaluating a variety of software engineering

techniques related to software maintenance. An

interesting topic for future work is how Dex can be

adapted to detect higher-level code changes, such as ones

that crosscut multiple modules or that involve

dependences between non-contiguous program elements.

Such extensions to Dex are likely to require the

integration of other semantic differencing techniques such

as ones based on program dependence analysis (see

Section 8).

Table 1: Frequency of the six most common
types of changes in both GCC and Apache, as

percentage of patches

Type of change Apache GCC

Altered existing function bodies 94.64% 90.14%

Inserted conditional statements

 into existing functions
37.50% 43.66%

Inserted function calls 37.50% 56.34%

Altered existing function calls 33.04% 26.76%

Altered existing if conditions 31.25% 32.39%

Altered existing assignment statements 25.89% 36.62%

Table 2: Variables added to if conditions. As

percentage of total if conditions modified.

Type of variable added Apache GCC

Local variable 66.67% 64.29%

Field 60.00% 57.14%

Function Parameter 30.00% 14.29%

Global variable 3.33% 21.43%

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

10. Acknowledgments

This work was supported by National Science

Foundation award CCR-0098325 to Case Western

Reserve University.

11. References

[1] The Apache Software Foundation. Apache HTTP Server.

http://httpd.apache.org (accessed January 2003).

[2] T. Berlage and A. Genau. A Framework for Shared

Applications with Replicated Architectures. Proceedings

of the 6th annual ACM symposium on user interface software

and technology. December 1993.

[3] V. Berzins. "Software Merge: Semantics of Combining

Changes to Programs." ACM Trans. Programming Languages

and Systems, 16(6):1875-1903, 1994

[4] D. Binkley. Using semantic differencing to reduce the cost

of regression testing. 1992 International Conference on

Software Maintenance (Orlando, FL, November 1992), 41-52.

[5] D. Binkley, S. Horwitz, T. Reps. "Program Integration for

Languages with Procedure Calls" ACM Transactions on

Software Engineering and Methodology, 4(1): 3-35, 1995

[6] S. Chawathe and H. Garcia-Molina. Meaningful change

detection in structured data. 1997 ACM SIGMOD International

Conference on Management of Data (Tucson, AZ, 1997), 26-37.

[7] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday,

D. S. Moebus, B. K. Ray, and M.-Y. Wong. Orthogonal defect

classification: a concept for in-process measurement. IEEE

Transactions on Software Engineering 18, 11 (November 1992),

943-956.

[8] Cvshome.org. Concurrent Versions System.

http://www.cvshome.org.

[9] W. Dickinson, D. Leon, and A. Podgurski. Pursuing

failure: the distribution of program failures in a profile space.

10th European Software Engineering Conference and 9th ACM

SIGSOFT Symposium on the Foundations of Software

Engineering (Vienna, September 2001), 246-255.

[10] Free Software Foundation. GNU Compiler Collection.

http://www.gnu.org (accessed January 2003).

[11] Gnu.org. diffutils.

http://www.gnu.org/software/diffutils/diffutils.html.

[12] T. Graves and A. Mockus. Inferring Change Effort from

Configuration Management Databases. Proceedings of the

International Symposium on Software Metrics. 1998.

[13] R. Holt, A. Shur, S. E. Sim, and A. Winter. GXL: graph

exchange language. http://www.gupro.de/GXL/.

[14] S. Horwitz. Indentifying semantic and textual differences

between two versions of a program. ACM SIGPLAN ’90

Conference on Programming Language Design and

Implementation (White Plains, NY, June 1990), 234-245.

[15] D. Jackson, D.A. Ladd. "Semantic Diff: A tool for

summarizing the effects of modifications." Proc. Int'l Conf.

Software Maintenance, 1994.

[16] P. N. Klein. Computing edit distance between unordered

rooted trees. 6th European Symposium on Algorithms (Venice,

August 1998), Lecture Notes in Computer Science 1461,

Springer Verlag, 91-102.

[17] J. Krinke. Identifying similar code with program

dependence graphs. 8th Working Conference on Reverse

Engineering (Stuttgart, Germany, October 2001), 201-209.

[18] D. Leon, A. Podgurski., and L. J. White. Multivariate

visualization in observation-based testing. 22nd International

Conference on Software Engineering (Limerick, Ireland, June

2000), 116-125.

[19] T. Mens. "A Survey on Software Merging.", IEEE Trans.

Software Engineering, 28(5), May 2002.

[20] S. Raghavan. Finding differences in program code through

abstract semantic graph comparison. M.S. project report,

available at http://softlab4.cwru.edu/dex/index.html.

[21] R. Rohana. Analysis of common programmer error via

semantic differencing. M.S. project report, available at

http://softlab4.cwru.edu/dex/index.html.

[22] Software Architecture Group (SWAG) (2002). CPPX.

University of Waterloo, http://swag.uwaterloo.ca/swagkit

(accessed January, 2003).

[23] Software Architecture Group (SWAG) (2001). Original

CPPX and Documentation. University of Waterloo,

http://swag.uwaterloo.ca/~cppx (accessed August, 2002).

[24] F. I. Vokolos and P. G. Frankl. Pythia: a regression test

selection tool based on textual differencing. 3rd International

Conference on Reliability, Quality, and Safety of Software

Intensive Systems (May 1997).

[25] Z. Wang, K. Pierce, and S. McFarling. BMAT: a binary

matching tool for stale profile propagation. Journal of

Instruction-Level Parallelism 2 (May 2000).

[26] B. Westfechtel. "Structure-Oriented Merging of Revisions

of Software Documents." Proc. Third Int'l conf. Software

Configuration Management, 1991

[27] W. Yang. Identifying syntactic differences between two

programs. Software Practice and Experience 21, 7 (July 1991),

739-755.

[28] K. Zhang and D. Shasha. Approximate tree pattern

matching. In: Pattern Matching Algorithms, edited by A.

Apostolico and Z. Galil, Oxford University Press, 1997.

[29] K. Zhang, R. Statman, and D. Shasha. On the editing

distance between unordered, labeled trees. Information

Processing Letters 42 (1992), 133-139.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

