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Abstract

This paper describes an automated tool called Dex 

(Difference extractor) for analyzing syntactic and 

semantic changes in large C-language code bases. It is 

applied to patches obtained from a source code 

repository, each of which comprises the code changes 

made to accomplish a particular task.  Dex produces 

summary statistics characterizing these changes for all of 

the patches that are analyzed.  Dex applies a graph 

differencing algorithm to abstract semantic graphs 

(ASGs) representing each version.  The differences are 

then analyzed to identify higher-level program changes.  

We describe the design of Dex, its potential applications, 

and the results of applying it to analyze bug fixes from the 

Apache and GCC projects.  The results include detailed 

information about the nature and frequency of missing 

condition defects in these projects. 

1. Introduction

The history of changes made to the code base of a 

software system or application embodies a wealth of 

information about deficiencies in the software that were 

discovered and addressed during its lifecycle.  This sort 

of information is invaluable for assessing software 

engineering techniques that are intended to prevent, 

reveal, or correct such deficiencies.  For example, many 

software testing techniques are based on assumptions 

about the nature and frequency of software defects.  

These assumptions can be checked by studying bug fixes 

applied in actual software projects. Moreover, doing so 

leverages work already done by developers.  

Nevertheless, such studies are seldom conducted, 

presumably because of the time and effort required. 

The biggest obstacle to conducting rigorous empirical 

studies of the nature of software changes is the amount of 

manual labor required to analyze them, which is often 

substantial.  Another problem is that developers’ own 

descriptions of changes and the reasons for them are 

typically informal and vary in specificity from developer 

to developer.  These problems can be addressed by 

providing automated support for analyzing the code 

changes recorded in source code repositories.  Most large 

projects maintain such a repository with the aid of a 

version control system such as CVS [8].  It is typically 

the most complete history of changes to a project’s code 

base that is available for study.  Such repositories are 

often so large that manually analyzing all of the code 

changes recorded in them would be prohibitively 

expensive.  Analysis of the changes recorded in source 

code repositories is aided by the use of text differencing

tools such as Gnu diff [11].  However, because such tools 

do not understand program syntax and semantics, they 

can provide only limited help [4][14][27]. 

This paper describes an automated tool called Dex

(Difference extractor) for analyzing syntactic and 

semantic changes in large C-language code bases.  Dex is 

meant to be useful both to software developers who wish 

to understand the nature of software changes made in 

their projects and to software engineering researchers

studying the nature of typical code changes.  It is applied 

to patches extracted from a source code repository, where 

a patch consists of all the code changes made to 

accomplish a particular task such as fixing a bug.1 Dex

produces summary statistics characterizing these changes 

for all of the patches that are analyzed.  Note that a single 

patch may affect multiple source files.  Dex compares the 

original and modified version of each of these files to 

determine their differences and aggregates the results.  To 

enable syntactic differences and certain semantic 

                                                          
1 It is up to the user of Dex to gather the source files and patches to be 

analyzed.  That is, Dex does not interface directly with a version control 

system. 
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differences to be determined, Dex uses CPPX [22][23] to 

create an abstract semantic graph (ASG) representation 

of each version (see Section 3) and then applies a graph

differencing algorithm to the resulting pair of ASGs.  This 

algorithm produces an edit script that describes how the 

ASG for the original version of the file can be converted 

into the ASG for the modified version by matching, 

inserting, deleting, updating, or moving nodes.  This edit 

script is then analyzed to obtain a profile of the 

differences between the two files. 

Dex currently collects 398 different statistics (counts) 

about each patch that is analyzed.  These statistics are 

then aggregated over all patches to produce summary 

statistics, such as the percentage of patches that exhibit a 

particular type of change.  It is fairly easy to modify Dex

to collect other statistics that are defined in terms of 

changes to a program’s ASG. We evaluated its accuracy, 

performance, and usefulness by using it to analyze bug 

fixes from two large open-source software development 

projects: the Apache HTTP server and the GCC compiler 

suite.  In these experiments Dex showed good accuracy 

and acceptable performance.  In addition, the statistics it 

produced revealed some facts about the nature of bug 

fixes in GCC and Apache projects that have important 

implications for how this software should be validated.  

To our knowledge, these are the first detailed statistics to 

be presented in the literature that characterize missing 

condition defects in major software products. 

2. Applications of Dex

Dex provides a practical means to study the nature of 

code changes in large software projects, to justify or 

evaluate proposed software engineering techniques, and 

possibly to improve them.  Perhaps the most obvious 

application of Dex is to automate the process of software 

defect classification [7] and to make it more precise, 

objective, and repeatable.  Our original reason for 

creating Dex was to analyze bug fixes in large code bases 

in order to determine the kinds of execution profiling that 

should be used in conjunction with observation-based 

testing [9][18].2  We are particularly interested in 

revealing missing condition defects, which involve 

omitted conditional code and are notoriously difficult to 

expose.  Hence, many of the statistics Dex currently 

generates address such defects.  As shown in Section 7, 

Dex provided valuable information about the nature and 

frequency of missing condition defects in the Apache and 

GCC projects.  Dex may also prove useful in other kinds 

of software testing.  A number of regression testing

                                                          
2 Observation-based testing involves applying statistical and data mining 

techniques to profiles of software tests or captured operational 

executions in order to identify “suspicious” executions to be audited 

manually. 

techniques employ textual, binary, or dependence-based 

differencing algorithms to enable test cases to be selected 

or prioritized based on whether they exercise changed 

code [4][24].  Dex could be used in these applications to 

obtain a more precise characterization of program 

changes.  We believe that with appropriate modifications, 

Dex can provide information that is useful for evaluating 

a variety of other software engineering techniques related 

to software maintenance.  

3. Abstract semantic graphs 

An abstract semantic graph (ASG) is an abstract 

syntax tree (AST) with extra edges indicating certain 

semantic information, namely type information.  We call 

these extra edges non-tree edges.  They connect literals 

and declarations to their types and variable references to 

their variable declarations.  Figures 1 and 2 show two 

ASTs; a sample of non-tree edges have been added to the 

AST in Figure 1.  The CPPX tool [22] uses a modified 

version of GCC to generate ASGs from C source code.  

The modified GCC runs the C-preprocessor on the source 

code, parses the result, performs some semantic analysis, 

and generates an optimized internal tree representation.  

The internal representation is then translated into a Datrix

ASG in GXL format [13]. The representation is a 

computationally equivalent program, but is not a direct 

translation of the original source code.  This process also 

strips layout, spacing and comments, resolves macros to 

their implementation, strips unnecessary operators, 

converts boolean expressions to conjunctive normal form, 

folds literals, and expands expressions that have implicit 

meaning.  

4. Architecture

Figure 3 depicts the architecture of Dex and the data 

flow between its components.  As indicated in the figure, 

CPPX is applied to pairs of source code files (original and 

modified) comprising a patch, to produce files containing 

corresponding abstract semantic graphs in GXL format.  

The latter are input to the DifferenceAnalyzer, which is 

Dex’s driver module.  The DifferenceAnalyzer parses user 

input parameters and initiates analysis of each pair of 

GXL files.  The GXLParser parses the files and creates 

internal representations of the ASGs they describe.  It 

passes the two ASGs to the GraphComparator for 

comparison.  The GraphComparator uses the 

CostCalculator to determine edit distances between nodes 

and produces an edit script called a NodeMatching that 

classifies nodes as being matched, inserted, deleted, 

updated, and/or moved. 
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The DifferenceItemizer analyzes the edit script to 

gather data about the differences between the two ASGs, 

creating an itemization or profile that is returned to the 

DifferenceAnalyzer together with metadata.  The 

DifferenceAnalyzer maintains a MetaDataSet to store 

information from each pair of files that might be relevant 

to processing other pairs of files.  For example, metadata 

is stored that describes function calls and function 

declarations within each pair of files.  This is necessary 

because a file can include a function call that refers to a 

function defined in a different file.  Once all pairs of files 

in a patch have been analyzed, the DifferenceAnalyzer

passes the resulting profiles and final MetaDataSet to the 

Aggregator, which combines the profiles, creating a 

single profile containing key-value pairs, and appends the 

metadata.  The Aggregator outputs a properties file 

describing the changes in the patch. 

At present, Dex consists of 14,181 lines of Java code, 

of which 6,822 lines implement the differencing 

algorithm, 4,380 lines implement itemization, and 2,979 

lines implement classes used in both of these functions.  

Currently Dex handles GXL files representing C source 

code, but it is possible to extend it to handle other 

languages. 

5. Differencing algorithm 

In this section, we describe Dex’s complex graph 

matching algorithm in detail, for the benefit of readers 

interested in understanding, adapting, or improving it.  

(Readers who are interested mainly in applications of Dex

may wish to skip this section.)  To determine the 

differences between two abstract semantic graphs, we 

created a heuristic algorithm that is specialized for ASGs 

with Datrix semantics.  The algorithm is based on 

comparing two ordered, rooted trees3, extracted from the 

ASGs.  We call these abstract semantic trees (ASTs).

They are similar in structure to the more common abstract 

syntax trees, but have additional semantic information 

embedded in them, e.g. type information.  ASTs are 

obtained by retaining tree edges from the original ASG, 

                                                          
3  In an ordered, rooted tree, the children of each node are ordered. 

Var Ref: y Var Ref: x Literal: 0 Literal: 2 Var Ref: z Literal: 2 

Function:

myFunc

blockParameter: x 

Variable: z if

Operator:

Assignment

Operator:

Assignment

Operator:

Equals

Parameter: y

void myFunc(int x, int y) {

    int z; 

    if(x == 0) y = 2; 

    else z = 2; 

}

Var Ref: yVar Ref: x Literal: 0 Literal: 3 

Var Ref: z Literal: 2

Function:

myFunc

blockParameter: x 

Variable: z if

Operator:

Assignment

Operator:

Assignment

Operator:

Equals

Parameter: y

void myFunc(int x, int y) {

    int z; 

    if(x == 0) y = 3; 

    z = 2; 

    x = 1; 

}

Var Ref: x Literal: 1

Operator:

AssignmentMoved 

Inserted

Updated 

Figure 1: Simple C function and corresponding AST. Some sample non-tree edges shown.

Figure 2: Modified version of function in Figure 1 and corresponding AST.  Annotations 
indicate edit operations according to Dex.

Condition Then Else

Condition Then

Sample

non-tree

edges
Type: Integer
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by adding node attributes to represent the information 

given by non-tree edges, and by doing some additional 

cleanup of the graph.  Our algorithm relies on iteratively 

matching parts of the ASTs and recalculating matching 

costs based on the whole ASGs, until all the nodes are 

matched.  Note that this is different from the more 

commonly studied tree differencing problem [16][28][29] 

where costs are computed a priori. Our technique allows 

us to, for example, match variable references to a variable 

whose name changed, once the variable declaration is 

matched. 

When our algorithm is applied to two ASTs T1 and T2,

it produces an edit script describing how T1 can be 

transformed into T2 in a “natural” way.  Because of the 

heuristic nature of the algorithm, this script is not 

guaranteed to have minimal length.  It consists of a 

sequence of match, insert, and delete operations applied 

to particular nodes of the two trees.  Each operation has 

an associated cost (see Section 5.2.1).  Match operations, 

which map a node of T1 to a node of T2, are of four types.  

An update is a match between nodes that are not 

identical, e.g., nodes representing a literal whose value 

has changed.  A simple match is a match between two 

nodes n1 and n2 such that the parents of n1 and n2 also 

match and the sibling ranks of n1 and n2 are the same.  A 

move that changes parent is a match between nodes 

whose parents are not matched to each other.  A move

that changes order is a match between two nodes with 

matching parents but different sibling ranks.  Other 

algorithms for computing edit distances between ordered 

trees [16][28] do not include a move operation.  We felt 

this operation was necessary for analyzing code changes, 

because programmers sometimes move a statement or set 

of statements from one place to another.  Since moves are 

not frequent, however, preference should be given to 

matches that do not result in a move.  Adding a move

operation complicates the differencing algorithm 

significantly, because it admits a much larger number of 

possible matches. 

A node in an AST has a type, such as literal, name

reference (variable name), for-loop, logical operator or

relational operator.  A node in T1 will match a node in T2

only if the two nodes have the same type, which 

simplifies cost calculations.  

A top-level pseudocode description of the differencing 

algorithm is shown in Figure 4.  On every iteration, the 

algorithm attempts to match everything that can be 

matched from the roots of ASTs T1 and T2 down toward 

their leaves, and then it attempts to match everything that 

can be matched from the leaves of the ASTs upward.  

Nodes in T1 that do not match any node in T2 are 

considered to be deleted; nodes in T2 that do not match 

any node in T1 are considered to be inserted.  Between 

stages of the algorithm, the costs are recalculated, since 

matching nodes in the two trees with one another can 

change the cost of matching other nodes.  In the 

remainder of this section, we present an overview of the 

principal aspects of the differencing algorithm.  Further 

details can be found in [20]. 

5.1. Top-down matching algorithm 

The purpose of the top-down matching is to quickly 

establish a rough correspondence between T1 and T2, to 

reduce the number of pairwise node comparisons that 

must be done.  In the case studies described in Section 7, 

the number of nodes in typical ASTs ranged between 

1 MATCHNODES

2 FINDMATCHESFROMROOT()
3 CREATENEWCOSTMATRICES()
4 WHILE (NUMBER OF REMAINING NODES > 0)
5  FINDEXACTMATCHES()
6 RECALCULATEIFNEEDED()
7 FINDINSERTSANDDELETES()
8  RECALCULATEIFNEEDED()
9   FINDUPDATES();
10  RECALCULATEIFNEEDED()
11  IF(NOCHANGESSINCEPREVIOUSPASS)
12   BREAKNONZEROCOSTTIES()
13  RECALCULATEIFNEEDED()
14 POSTPROCESS()
15 RETURN NODEMATCHING

1 RECALCULATEIFNEEDED

2 IF(MATCHINGCHANGED)
3  FINDMATCHESFROMROOT()
4  CREATENEWCOSTMATRICES()

Figure 4: Top-level pseudocode. Figure 3: Data flow diagram for Dex
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20,000 and 60,000,4 whereas the number of nodes 

corresponding to changed code was only between 20 and 

200 nodes.  The top-down matching algorithm succeeded 

in matching 94% of all nodes on average, greatly 

reducing the overall running time of the differencing 

algorithm. For example, when comparing Figures 1 and 

2,  top-down matching will match all the nodes except for 

the assignment operator nodes and their subtrees. 

The top-down matching algorithm does not consider 

the costs of edit operations.  Starting at the roots of T1 and 

T2, this recursive algorithm finds potential matches 

between nodes one level at a time.   On each recursive 

call, the children of two nodes n1 T1 and n2 T2 that 

are known to match are compared.  A child of n1 is 

considered to match a child of n2 if there are paths of 

length four beginning with those children whose 

corresponding nodes have identical types and attributes.  

Children that match uniquely are added to a set of such 

nodes.  Sometimes there are multiple children of n1 that 

match a child of n2 and/or multiple children of n2 that 

match a child of n1.  In this case, a tie-breaking heuristic

is employed, which considers the results of previous 

bottom-up matching.  The algorithm checks if a child of 

n1 has a descendant that matches a descendant of a child 

of n2.  If such children exist and are unique, they are 

considered uniquely matched. Otherwise the algorithm 

tries to break the tie by matching paths of length four.  If 

this does not succeed, the tied nodes are left for later 

processing. 

5.2. Bottom-up matching 

Finding matches from the bottom up involves finding 

subtrees in T1 identical to subtrees in T2.  For each node 

type , we use a dynamic programming algorithm to 

compute a cost matrix indexed by pairs of nodes of type 

, which indicates the costs of transforming T1 into T2 in 

different ways.  The entry for n1 T1 and n2 T2

contains the minimum cost of an edit sequence that 

matches n1 and n2.  The cost matrix also indicates the cost 

of inserting or deleting particular nodes.  Entries of zero 

indicate exact matches of nodes and their entire subtrees.   

5.2.1. Cost calculation. The rules for computing costs, 

which were refined by experimentation with a set of 

example AST pairs, are as follows: 

� The total cost of matching two nodes of the same 

type is the sum of three terms: (1) a cost of 3 times the 

number of differences in their attributes and non-tree 

edges, (2) the added cost of optimally matching their 

children, and (3) a cost of 2 if the match is a move 

                                                          
4 Many of these nodes correspond to code from library header files 

(#include files). 

operation that changes parent. 

� The cost of optimally matching two nodes with 

different numbers of children includes the cost of 

inserting or deleting children and their subtrees. 

� In computing the optimal cost of matching the 

children of n1 T1 and n2 T2, the costs of matching n1

with each child of n2 and matching n2 with each child of 

n1 are considered. 

� The cost of matching two nodes of different types is 

20.

� The insert/delete cost is 2 per node. 

Computing the cost of optimally matching the children 

of two nodes involves finding an optimal matching in a 

weighted bipartite graph.  Note that our bottom-up 

matching algorithm allows the children of a node to be 

reordered, but at present it does not associate costs with 

such reordering. 

Another consideration is the treatment of nodes that 

are strongly associated with their parent, as are many 

leaves and blocks.  In an AST, leaves often correspond to 

literals and variable names, rather than to statements.  

Comparing a literal or variable to every other literal or 

variable, respectively, is unnecessary work and would 

produce spurious moves.  Therefore, a leaf is compared 

only to the children of whatever its parent is compared to, 

unless the leaf’s parent is a scope, in which case the leaf 

represents a statement.  Similarly, a block associated with 

a function, conditional statement, or loop should be 

matched in conjunction with its parent.  Such nodes are 

left out of the cost matrix. 

5.2.2. Finding Exact Matches. When attempting to find 

exact matches between nodes of T1 and T2 (line 5 of 

Figure 4), the bottom-up matching algorithm looks for 

entries of zero in the cost matrix, which indicate not only 

that two nodes match exactly but also that their entire 

subtrees do.  For a given node n1 T1, if the algorithm 

finds exactly one matching node n2 T2, it checks to be 

sure that n2 matches exactly one node in T1.  If so, it adds 

these nodes and their subtrees to the matching.  

Otherwise, ties are broken by considering previous 

matches involving parents and siblings, and by 

considering depth from the root (see Section 5.2.5). 

5.2.3. Finding Inserts and Deletes. A node n of type  in 

T1 or T2 is marked as deleted or inserted, respectively, 

when there are no potential matches between n and nodes 

in the other tree.  The bottom-up matching algorithm is 

conservative in deciding that there are no potential 

matches with n.  This occurs only when either (1) there 

are no nodes of type  in the other tree or (2) for each 

node m of type  in the other tree for which the cost of 

matching n with m is minimal, both of the following 

conditions hold: (a) there is a unique node k n in n’s
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tree for which the cost of matching k with m is minimal 

and (b) this cost is smaller than the cost of matching n

with m (that is, n is not an optimal match for m). When 

comparing Figures 1 and 2, this portion of the algorithm 

matches the inserted subtree. 

5.2.4. Finding Updates. Updates are pairs of nodes that 

match but have non-zero cost.  For example, if the only 

change in a patch is to rename a variable in its declaration 

and all its uses, the variable declaration node will match 

but will be considered an update, because the name 

attribute is different, while the variable uses will be exact 

matches, as the referenced declaration nodes match.  

From a high level point of view, the algorithm looks for 

pairs of nodes of the same type which have not been 

matched but have matching parents.  Alternatively, it 

looks for pairs of nodes with a cost which is a minimum 

in both its row and its column.  It then updates these costs 

in the cost matrix to be zero, so that they will be matched 

as exact matches during the next iteration.  In Figures 1 

and 2 the updated assignment statement will be found 

during this stage.  No tiebreaking occurs during this 

stage.  Note that line 12 of Figure 4 will break ties for 

nodes of nonzero cost, but this will only be done if no 

other progress has been made during this iteration. 

5.2.5. Tiebreaking. Tiebreaking is complicated by the 

fact that arbitrary sections of each graph might have 

already been marked as inserted or deleted.  We have 

developed heuristics that try to minimize the number of 

moves.  For example, consider the case where a program 

is modified by copying a piece of code and pasting it to 

multiple places. In this case, a node n1 in T1 matches to 

multiple nodes in T2. Our heuristics break the tie based on 

context, by first giving preference to nodes whose parent 

has been matched to n1's parent, after skipping inserted or 

deleted nodes. If there are multiple such nodes, as is the 

case when code is duplicated in the same block, ties are 

broken based on siblings. In the case that none of the 

parents match, multiple heuristics are tried, which 

consider the parents' node type, siblings, depth from root, 

or to recursively break the tie among the parents.  As with 

all heuristics, there are always situations that it does not 

handle properly. In the case studies described in Section 

7, the incorrect matches which occurred were due to 

tiebreaking errors. 

5.3. Postprocessing

Since the differencing algorithm is heuristic in nature, 

it may match, insert, or delete nodes prematurely, in the 

sense that subsequent operations may alter costs in ways 

that invalidate the earlier ones.  To address this, the 

algorithm ends with a postprocessing phase that uses 

additional heuristics to find and rectify such mistakes 

(line 14 of Figure 4).  They are often indicated by 

numerous changes to a small part of an AST. 

5.4. Time and space complexity 

The worst-case complexity of the differencing 

algorithm is O(n4) and its space complexity O(n2), where 

n is the total number of nodes in the ASGs that are 

analyzed.  The ASTs are created in linear time.  Finding 

matches from the root makes four passes over all the 

nodes, as matches are verified to a depth of four.  For 

each pass, the time required to compare each set of 

children is O(nk2), where k is the largest number of 

identical children per node.  Cost calculation requires 

time and space on the order of the number of compared 

nodes.  This number is equal to the total number of 

entries in all cost matrices, which is O(n2) in the worst 

case.  Finding matches, insertions, deletions, or updates 

entails the following operations for each node r in one 

AST: (1) finding the minimum-cost entries in r’s row of 

the cost matrix for r’s node type and (2) checking 

whether those entries are the smallest in their columns.  

This requires O(n3) comparison operations in total.  With 

each pass, the number of nodes that haven’t been 

matched, inserted, or deleted must decrease by at least 

one, until there are none left.  Therefore, the loop in 

Figure 4 is iterated at most n times and hence the total 

running time for the loop is at worst O(n4).

Postprocessing makes an undetermined number of passes 

through all the nodes, but it will be at most mn where m is 

some constant, making postprocessing occur in O(n2)

time.  This algorithm will take at worst O(n4).  The largest 

amount of space is taken by the cost matrices and the 

graphs, which will be at worst O(n2).

6. Itemizing differences 

The DifferenceItemizer and Aggregator can be thought of 

as implementing an automated survey of the patches 

applied to a code base.  In this survey, a set of questions 

about the individual changes comprising each patch is 

answered.  Currently, the DifferenceItemizer and 

Aggregator record statistics about certain code changes 

that we judged to be useful for understanding the nature 

of bug fixes, although these statistics are also relevant to 

adaptive or perfective maintenance.  Separate statistics 

are kept for changes involving different types of 

constructs.  Changes involving conditional statements are 

analyzed in particular detail, due to our interest in missing 

condition defects (see Sections 2 and 7).  The 

DifferenceItemizer analyzes changes in the context of an 

entire patch and, in several cases, in the context of the 

program constructs in which they occur.  For example, 
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separate (sub)profiles are kept for changes made to 

branch conditions, function calls, and assignment 

statements.  Each program construct is represented by a 

subtree of an AST.  For our purposes, a new construct is 

one whose root has been marked as an insert.  An existing

construct is one that has been marked as a match to a 

node in the original graph, which includes exact match,

an update, or a move.  A construct is considered to be 

altered if it or any node in its subtree is marked as an 

insert, delete, update, or move.

The questions answered by the DifferenceItemizer

range from simple to complex.  Examples of the former 

include counts of how many existing function bodies 

were altered, how many new functions were inserted, 

how many function signatures changed, and how many 

function calls, assignment statements, conditional 

statements, loop statements and others statements were 

added, removed and modified.  Examples of more 

complex questions include how many if conditions were 

altered so as to add a use of a variable that was already in 

scope and how many of these changes occurred for each 

kind of scope (function parameter, local variable, global 

variable). Notice that a textual difference does not 

provide enough information to answer this last question, 

which requires access to the semantic information 

contained in the ASG.  Dex currently collects 398 

statistics, and it is not difficult to modify it to collect 

different ones if needed.  Further details about itemization 

of differences and a complete list of the statistics 

currently gathered can be found in [21]. 

7. Case studies 

To evaluate the accuracy, performance, and usefulness 

of Dex, we used it to analyze bug fixes from two large 

open-source software development projects, the Apache

HTTP server and the GCC compiler suite.  For these case 

studies, we retrieved all the pertinent changes from the 

projects’ mailing lists and CVS repositories, and then 

wrote scripts to automatically feed these to Dex. The

Apache HTTP Server [1] is an open-source server 

developed for use with operating systems such as UNIX

and Windows NT.  For this study we selected seven 

months of changes made to version 2.0, spanning April 

2002 through November 2002.  Only those patches that 

included the (case insensitive) terms "bug", "fix", "fixed", 

or "fixes" were considered.  We examined the logs for 

these patches by hand to remove those that were clearly 

not bug fixes.  The resulting set contains 112 patches 

affecting 141 source files. GCC (Gnu Compiler 

Collection) [10] is an open-source suite of compilers for 

UNIX-compatible operating systems.  For this study, we 

chose to examine the changes made to the GCC C-

compiler between releases 3.2 and 3.2.1. According 

GCC’s change log, most of these changes were bug fixes. 

Those that were not were ignored, leaving 71 patches, 

which affected 95 source files.

7.1. Accuracy

Because Dex employs a heuristic differencing 

algorithm, its output is unlikely to be perfectly accurate.  

To evaluate the accuracy of Dex’s output, we selected at 

random 34 patches from the 71 for GCC and 39 patches 

from the 112 for Apache, and we checked Dex’s output 

for these patches manually.5  We found that Dex

produced output with some incorrect counts for 3 Apache

patches and 6 GCC patches.  There was exactly one 

incorrect count for each of the 3 Apache patches. For the 

6 GCC patches, the number of incorrect counts ranged 

from 2 to 7, with an average of 3.5.  Of the 398 counts 

gathered by Dex, 378 were always correct, 14 were 

incorrect in 1.4% of all patches, 3 were incorrect in 2.7% 

of the patches, 2 were incorrect in 4.1% of the patches, 

and one was incorrect in 5.5% of the patches.  The 

average amount by which Dex was incorrect was 1.1. 

7.2. Performance

In this study, Dex was run under the Windows 2000 

Server operating system on a 1.8 GHz Pentium IV Xeon 

processor with 1 GB of RAM.  Figure 5 shows the 

running time of the differencing algorithm, which 

dominates Dex’s overall running time, on the Apache and 

GCC files, as a function of the total number of nodes in 

the two ASGs that are compared.  With the Apache files, 

the running time grows almost linearly until the total 

number of nodes reaches about 40,000.  With the GCC

files, the running time grows almost linearly until the 

total number of nodes reaches about 100,000.  For both 

projects the running time of the differencing algorithm 

spikes for some of the largest ASGs; we are unsure of the 

cause of this phenomenon.  For the Apache files, both the 

mean and median numbers of nodes per pair of files are 

about 30,000, and the corresponding running times are 

about 60 seconds.  The GCC files give rise to much larger 

graphs: the mean number of nodes is about 75,000, and 

the median is about 64,000.  Consequently, average 

running time of the differencing algorithm for the GCC

files is about 5 minutes.  Note that 67% of the GCC

ASGs contain over 50,000 nodes, in comparison to only 

13% of the Apache ASGs.  We note that the performance 

Dex’s differencing algorithm can probably be improved 

substantially with tuning. 

                                                          
5 This process took several person days. 
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7.3. Analysis of results 

Table 1 shows the most common type of changes for 

Apache and GCC and their frequencies.  The six most 

common changes are the same for both projects, but in 

different order, which is somewhat surprising given the 

differences in problem domain and coding style.  On both 

projects, the frequencies for the next most common types 

of changes drop sharply.  The frequencies for changes 

that alter control flow by inserting a conditional statement 

(if, switch, or ? operator) or by changing an existing 

if condition are of special interest to us, because such 

changes indicate attempted fixes of missing condition 

defects.  Dex collects additional statistics about these 

changes, which permit a more detailed analysis.  A large 

percentage of changes to if conditions added a new 

variable (62.32% for Apache, 47.50% for GCC).  Over 

25% of these changes added variables that were not even 

in scope beforehand (30.23% for Apache and 26.32% for 

GCC).  For those if conditions that add only variables 

already in scope, Table 2 shows the frequency of the 

different types of variables inserted.  There are large 

differences between the projects, but in both it was most 

common to add uses of local variables or of fields of 

variables already in scope.  Similar results hold with 

respect to variables used in the branch conditions of 

inserted conditional statements (see [21] for details).  To 

our knowledge, these are the first detailed statistics to be 

presented in the literature that characterize missing 

condition defects in major software products.  Statistics 

characterizing other types of Apache and GCC bug fixes 

are addressed in [21]. 

The aforementioned statistics have important 

implications for how revisions of Apache and GCC

should be validated.  They indicate that missing condition 

defects are a major problem in these projects.  Such 

defects present a difficult challenge for software testers.  

They are triggered only where certain relations involving 

program variables hold at particular locations in the code, 

yet it is often the case that the relations and the locations 

where they must hold are not specified in any project 

documents, presumably because they involve overlooked 

cases. Dex provides valuable clues about these relations 

and locations: most of the relevant variables are already 

in scope, though a significant number are not; many of 

the relations can be expressed by modifying expressions 

already present in the code; when a variable is missing 

from such an expression, it is usually a local variable or a 

field.  In future work, we intend to modify Dex to further 

pin down the nature and location of typical missing 

condition defects, so that validation techniques can be 

designed specifically to reveal them. 

8. Related work 

Horwitz proposed a technique for identifying semantic 

and textual differences between program versions that is 

based on partitioning program components into sets of 

components with equivalent behaviors [14].  The 

partitioning algorithm represents programs using 

program representation graphs, which combine aspects 

of program dependence graphs and static single 

assignment forms but do not contain the kind of semantic 

information in ASGs (e.g., type information).  The 

algorithm applies to programs in a limited language 

without procedures or functions.  Binkley used a similar 

approach to define an algorithm for eliminating 

unnecessary regression tests and for reducing the size of 

the program that must be tested, although his algorithm 

applies to a language with procedures [4].  Jackson and 

Ladd proposed documenting the semantic difference 

between two versions of a procedure by comparing the 

dependence relations between input and outputs before 

and after the change [15].  Berzkins shows how the 

semantics of a program can be modeled by partial 

functions, and sets up Boolean and Browerian algebras to 

define what is meant by adding and removing 

functionality in different version of a program [3].  He 

then uses this model to study the problem of merging two 

sets of changes. 

Krinke presents a technique for detecting duplicate 

code in a program based on detecting pairs subgraphs 

with identical length-k paths in a fine-grained program 

dependence graph [17],. A fine-grained PDG has nodes 

similar to those on an AST, and edges corresponding to 

those in the AST plus control and data dependence edges. 

Analyzing this graph allows the algorithm to find similar 

subgraphs based on data dependences, even if the control 
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dependences have changed. The end result is a many-to-

many matching of subgraphs of size at most k, and not all 

parts of the graph are matched. This is useful for finding 

duplicated code, and Krinke shows that this produces few 

false positives and has high accuracy. 

Yang described an algorithm for finding syntactic 

differences for use with version control software between 

two programs that works by analyzing their parse trees

[27]. Unlike our algorithm, Yang’s parse trees do not 

contain the semantic information present in ASTs and his 

algorithm places restrictions on admissible matchings that 

our algorithm does not: (1) two nodes may only match if 

their parents match and (2) the order of sibling nodes 

must be preserved.  Wang et al describe a binary 

matching tool called BMAT [25]. This tool works on 

program binaries, by matching basic blocks from the 

original binary to basic blocks in the new one. Matching 

is done based on similarity of basic blocks and limited 

control flow information.  Software differencing can also 

be aided with support from the editing tool.  Berlage and 

Genau propose representing differences by the sequence 

of commands executed by the user to make the change, 

which are automatically recorded by the application [2]. 

They also study how to merge two command sequences.  

A well-studied application of software differencing is 

software merging, where two sets of changes to a 

program have to be merged into a single final version. 

One of the first algorithms to provide guarantees on the 

behavior of the merged program is given by Binkley et al

in [5].  Mens surveys current results on software merging, 

including an overview of several differencing algorithms 

currently used for software merging [19], most of which 

are presented in this section.  Westfechtel presents an 

approach for merging of revisions where the editor is 

aware of the AST of the document and automatically 

assigns tags to new and modified nodes, making it trivial 

to find the differences between versions [26].  

Zhang and Shasha review older work on tree 

differencing and present a fast algorithm for solving the 

edit-distance problem on ordered trees, with updates, 

insertions, and deletions [28].  These classical algorithms 

require all costs to be known beforehand, and cannot 

handle changing costs for parts of the trees based on 

whether other parts match.  Chawathe and Garcia-Molina 

presented an algorithm to find changes in structured data 

modeled by unordered trees, which also includes move,

copy and glue operations [6].  Their algorithm is a 

heuristic, iterative update mechanism like ours, but only 

accommodates tree edges.  Note that the edit-distance 

problem between unordered trees is, in general, NP-

complete [29].  

Changes from a source control repository can be 

analyzed without using software differencing. Graves and 

Graves and Mockus investigated the possibility of 

determining effort spent on different changes by 

analyzing size and type of each change, together with 

reported total monthly effort for each developer from an 

accounting database [12]. Using this technique they 

looked for modules that were becoming harder to 

maintain, and also compared the amount of effort 

necessary for bug fixes versus new features. 

9. Conclusion

Dex provides an automated means to collect detailed 

information about the nature of code changes in large 

software projects, including syntactic changes and certain 

semantic ones.  The case studies reported in Section 7 

demonstrate that Dex can provide information that is 

valuable for evaluating the applicability of certain 

software testing techniques to a project.  In these studies, 

Dex showed good accuracy and acceptable performance, 

although its matching algorithm would benefit from 

further tuning.  We believe that with appropriate 

modifications, Dex can provide information that is useful 

for evaluating a variety of software engineering 

techniques related to software maintenance.    An 

interesting topic for future work is how Dex can be 

adapted to detect higher-level code changes, such as ones 

that crosscut multiple modules or that involve 

dependences between non-contiguous program elements.  

Such extensions to Dex are likely to require the 

integration of other semantic differencing techniques such 

as ones based on program dependence analysis (see 

Section 8).  

Table 1: Frequency of the six most common 
types of changes in both GCC and Apache, as 

percentage of patches 

Type of change Apache GCC 

Altered existing function bodies 94.64% 90.14% 

Inserted conditional statements 

 into existing functions
37.50% 43.66% 

Inserted function calls 37.50% 56.34% 

Altered existing function calls 33.04% 26.76% 

Altered existing if conditions 31.25% 32.39% 

Altered existing assignment statements 25.89% 36.62% 

Table 2: Variables added to if conditions. As 

percentage of total if conditions modified. 

Type of variable added Apache GCC 

Local variable 66.67% 64.29% 

Field 60.00% 57.14% 

Function Parameter 30.00% 14.29% 

Global variable 3.33% 21.43% 
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