
Evolution in Software and Related Areas 
M M Lehman 

Department of Computing 
Imperial College 

180 Queen's Gate, London SW7 2BZ 
tel. +44-20-7594 8214, fax +44-20-7594 8215 

mml@doc. ic .ac .uk  

J F Ramil  
Computing Dept., Faculty of Maths and Computing 

The Open University 
Milton Keynes MK7 6AA, U.K. 

tel. +44 - 1908 - 65 4088, fax +44 - 1908 - 65 2140 

j . f . rami l@open.ac.uk 

ABSTRACT 
After briefly discussing the meaning of  the term evolution in the 
context o f  software, its technology, the software process and 
related domains, the paper describes some of  the facets and 
implications of  the evolution phenomenon as identified during 
many years of  active interest in the topic, most recently during the 
FEAST (Feedback, Evolution And Software Technology) 
projects. 

Keywords 
Empirical Studies, Software Process, Feedback, Process 
Modelling, Process Improvement, Software Engineering, SPE 
Program Classification, Theory. 

1. INTRODUCTION 
The term evolution describes a phenomenon encountered in many 
different domains. Classes of  entities such as natural species, 
societies, cities, artefacts, concepts, theories, ideas, for example, 
are said to evolve in time, each in its own context. In all these, 
and many other, instances the term refers to continued progressive 
change in the properties or characteristics o f  some material or 
abstract entity or o f  a set o f  entities. This process of  change in one 
or more of the class attributes leads to the emergence of  new 
properties or to improvement, in some sense. In general, the 
change will be such as to adapt the elements of  the class so that 
they maintain or improve their fitness to a changing environment. 
The change may make them more useful or meaningful or 
otherwise increase their value in some sense. Alternatively or at 
the same time, evolution of  the class may remove properties no 
longer appropriate. Changes are generally incremental and small 
relative to the entity as a whole but exceptions may occur. 

In the same way that the properties of  individual or classes of  
entities displaying evolutionary behaviour vary widely so do 
those of  evolution proeesses. To distinguish between instances of  
the latter one may start by classifying them according to one or 
other of  their characteristics. A study of  common factors and 
differences between classes teaches one more about each. It also 
provides clues to the relationship between evolutionary and other 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without flee provided that copies 
are not made or distributed lbr profit oi" commercial advantage and that 
copies bear this notice and the thll citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission andAw a fee. 
IWPSE 2001 Vienna Austria 
Copyright ACM 2002 1-58113-508 -4/02/006...$5.00 

properties of  each class and between classes and may suggest how 
individual evolutionary patterns and trends may be predicted, 
directed and controlled. 

The present paper is limited to a discussion of  software evolution 
per  se. One may be able to increase understanding of  the 
phenomenon by studying evolution in other domains, biological 
systems (e.g., [wei70; SEEC02]) or scientific theories for 
example. Comparing and contrasting the behaviours, and other 
evidence that supports interpretation of  that behaviour, may tempt 
one to suggest common underlying mechanisms and drivers 
across various domains. The present paper argues, however, that 
one must proceed with caution. Fundamental mechanisms such as 
feedback appear to drive evolution in many domains, but there are 
also differences to be recognised, even across the limited number 
of  software related domains, termed areas, discussed in this 
paper. 

2. RESEARCH VIEWS OF THE 
EVOLUTION CONCEPT 
The term evolution may, generally, be interpreted and studied 
from several distinct points o f  view. In the software context, for 
example, the more widespread approach sees the important 
evolution issues, those most worthy of  study, as those that focus 
on the how of  software evolution. It explores the methods and 
means whereby a software system may be implemented from ab 
initio conception to operational realisation and evolved to adapt 
and extend it to be more satisfactory in a changing operational 
environment. The view focuses on mechanisms and tools whereby 
progressive change and growth may be achieved in a systematic 
and controlled manner. Within this view, a more restricted 
approach limits use of  the term evolution to software change. 
Defect fixing, functional extension and restructuring for example, 
are explicitly excluded (e.g., IWPSE 2001, [FFSE 01]). 

An alternative approach, less frequently invoked but equally 
important, view is concerned with the what and the why of  
evolution. It addresses issues of  the nature of  the evolution 
phenomenon, its drivers and its impact. The importance of  this 
view, the main focus of  this paper, becomes apparent with 
recognition of  the fact that, as discussed below, the software 
evolution process is, and must be treated as, a multi-agent, multi- 
level, multi-loop feedback system [leh94]. Consideration of  the 
what and the why view has so far been limited (e.g., Lehman et 
al, 1969 - 2001, [cho81; kem99; raj00; ant01]). It is based on a 
conviction that more insight into, and better understanding of, the 
evolution phenomenon must lead to improved methods for 
planning, managing and implementing it. It can, for example, help 
identify areas in which research effort is most likely to yield 
significant benefit. 



The co-existence of  these views, and possibly others, indicates 
that there is no single established view of evolution in the context 
of  software [ben00]. The present paper is intended to expose some 
of  the many wide-ranging implications to be considered in 
addressing evolution related issues. In so doing, the paper may 
contribute to the development of  a unified view based on common 
understanding. This is surely required if progress in this research 
area is to be accelerated and is to achieve results that have real 
impact on practice [mit01 ]. 

3. PROGRAM EVOLUTION AND ITS 
DYNAMICS 
It is, by now, generally accepted, e.g., [pf198a,b; ben00] that, as 
formally stated in Lehman's first law of  software evolution 
[leh74] software must be continually adapted, enhanced and 
extended if  it is to remain satisfactory in use. Concern about the 
cost and impact of  this universal experience was first publicly 
voiced and discussed at the Garmisch Conference in 1968 
[nau68]. At that time it was expressed in terms of  the continuing 
need for software maintenance. At about the same time one of  the 
present authors (mml) studied the programming process within 
IBM [leh69] though his report did not become generally available 
till much later [leh85]. Inter alia, the report examined and 
modelled the continuing change process being applied to IBM's 
OS/3601 operating system. It derived preliminary and very simple 
models of  that system's evolution from measures of  software 
release characteristics and proposed use of  these models, or more 
refined versions, as tools to support planning and management of  
sequences of  software releases [be172; leh80]. Following 
identification of  the software process as a feedback system, a 
phenomenon termed Program Growth Dynamics, later renamed 
Program Evolution Dynamics, was identified and its study 
initiated [leh74]. The study produced valuable insight into the 
nature and properties of  software and the software process, based 
on models of  the release process for OS/360 and other software 
systems [leh80,85] and tools for release management [leh80]. 

Lehman and Belady's work on program growth dynamics and 
software evolution had considered program evolution dynamics as 
an intrinsic characteristic o f  large programs. A widespread view 
was, and remains, that a program is large if it contained more 
than some arbitrary number, perhaps, for example, 100K lines of  
deliverable source code (KLOC). Lehman was critical of  this 
view on the grounds of  its arbitrariness. Instead he proposed a 
definition that classified a program as large if  "... it was 
designed, or had been developed or maintained in a management 
structure involving at least two groups..." [leh79], and therefore 
involves at least two levels o f  management. That fact alone could, 
it was asserted, account, directly or indirectly, for many of  the 
observed behavioural phenomena. 

Even with this definition, however, concerns remained about the 
suitability of  large (or any other descriptor o f  "physical" 
attributes of  a software system) as the primary characteristic o f  
the evolutionary character. This led to a classification scheme that 
did not involve the concept o f  size per se. Instead, it identified 

In general, references in this paper to 0S/360 refer to both that 
system and to its successor 0S/370, having been renamed as 
part o f  the introduction of  the 370 hardware. 

programs of  types S, P and E respectively [leh80,82]. The 
defining properties of  these types are discussed below. It is the E- 
type, and its intrinsic need to undergo evolution that is of  
particular relevance. 

3.1 SPE Program Classification 
The SPE program classification scheme has been discussed many 
times, most recently in [leh02]. The paragraphs below follow this 
recent description briefly addressing each type in turn. 

S-type programs are defined here as those addressing a problem 
with a computational solution in an abstract and closed, for 
example mathematical, domain. It follows that the sole criteria for 
accepting satisfactory completion of  a contract for the 
development of  such a program is that the completed product 
satisfies a specification reflecting the behavioural properties 
expected from program execution [1eh80,82,85]. This presupposes 
existence o f  an appropriate formal specification, accepted by the 
prospective users as completely defining the problem to be solved 
or the need to be fulfilled. Such a specification becomes a 
contract between a supplier and the representative of  such users. 
Whether the results o f  execution are useful in some sense, 
whether they provide a solution to the specified problem, will be 
of  concern to both users and producers. However, once the 
specification has been contractually accepted and the product has 
been shown to satisfy it, by definition the contract has been 
fulfilled. Thus, if results do not live up to expectations or need to 
be adjusted, that is, if their properties need to be redefined, 
rectification o f  the situation requires a new, revised, specification 
to be drawn up and a new program to be developed. Depending 
on the details of  changes required, such a new version may be 
developed from scratch or obtained by modification o f  that 
rejected. However achieved, it is a new program. 

These views of  S-type programs imply that the specification 
expresses all the properties that the program is required to possess 
to be deemed satisfactory or acceptable and that it is correct in the 
full mathematical sense relative to the specification. With the 
exception of  situations, such as when decidability issues arise, 
e.g., [apt86], demonstration of  correctness, by means of  a proof 
for example [hoa69,71], is not a matter of  principle but o f  
mathematical skill and the availability of  appropriate tools and 
resources. 

The designation S was chosen to indicate the decisive role that the 
~pec~cation plays in determining required product properties. 
Pfleeger [pf198a,b] assumed an alternative interpretation, 
suggesting that S stands for static, a property which, as mentioned 
above and further clarified below, distinguishes it from the 
intrinsically evolutionary type E. 

The E-type were originally defined as ". . .programs that 
mechanise a human or societal activity..." [leh80]. This 
description was subsequently extended to include all programs 
that ". . .operate or address a problem or activity in the real 
world. . . ' .  They are intrinsically evolutionary, must be evolved as 
long as they remain in active use if they are to remain satisfactory 
to stakeholders, hence the designation E. The need and demand 
for continued change, correction, adaptation, enhancement and 
extension cannot be avoided if  such software is to remain 
operationally satisfactory. Section 5 and 6 below elaborate on this 
and related assertions. 

2 



To make the classification as inclusive as possible a type P was 
also included in the original schema [leh80]. This type covers 
programs intended to provide a solution to a problem that can be 
formally stated even though approximation and consideration of  
the real world issues are essential for its solution. Subsequently, it 
was suggested that the type could, in general, be treated as one or 
other of  the other two. But there are classes of  problems, chess 
players, for example, that do not satisfactorily fit into the other 
classes. Thus, for completeness the type P must be retained. 
When P-type programs are used in the real world, however, they 
acquire such E- type properties as, for example, the intrinsic need 
for evolution as discussed in this paper. They also acquire 
inherent uncertainty in the acceptability of  the results o f  their 
execution [leh89,90,02]. Hence they are not considered separately 
in the present paper. 

3.2 E-type Evolut ion  as a Feedback  Driven 
P h e n o m e n o n  
Data on the evolution of  a variety of  systems, of  differing sizes, 
from different application areas, developed in significantly 
different organisations and with distinct user populations has been 
collected over the years (Lehman et al 1969-2001). The 
accumulated observations and data can, in general be interpreted 
as being consistent with the hypothesis that software evolution is 
a recognisable phenomenon [leh80] in which feedback plays an 
important role. The wider implications of  these observations were, 
however, only recently recognised [leh94]. Figure 1 is the earliest 
example of  supporting evidence. It plots the growth over releases 
of  OS/360. The plot shows an essentially linear trend to release 
rsn 19 but with a superimposed ripple. Similar ripples have been 
observed in many of  the other systems whose studies followed in 
the seventies, eighties and more recently, in the FEAST projects 
[www01]. While remarkably similar in the general trends they 
display, the growth patterns of  the various systems studied differ 
in some of their detail. Of  immediate interest is the fact that, 
unlike OS/360 where the long-term growth rate over releases was 
positive and linear until instability set in after rsn 20, for five of  
the six FEAST systems this rate, although also positive, was 
predominantly declining. For four of  the latter, however, growth 
recovery points were clearly visible. This is further discussed in 
section 6. 

The cause of  the OS/360 instability is believed to have been due 
to excessive positive feedback as evidenced by the growth of  rsn 
19 to rsn 20 by an increment significantly greater than that of  any 
of  its predecessors. The data plotted in figure I provides, 
therefore, two pieces Of evidence, the ripple effect and an 
unprecedented growth increment followed by instability, 
supporting the 1971 hypothesis [be172], that the software 
evolution process is a feedback system. That paper observed that 
". . .from a long-range point of  view the rate of  system growth is 
self-regulatory, despite the fact that many different causes control 
the selection of work implemented: in each release, with varying 
budgets, increasing number of  users desiring new functions or 
reporting faults, varying management attitudes towards system 
enhancement, changing release intervals and improving 
methodology". As interest in the software process and process 

improvement spread it became apparent to one of  the present 
authors that the feedback observation had direct practical 
implications. This conclusion was encapsulated in the FEAST 
(Feedback, Evolution And Software Technology) hypothesis 
[leh94] which, in one of  its formulations states that, apart from 
those based on less mature processes 3, software evolution 
processes are multi-agent, multi-level, multi-loop feedback 
systems. They must be seen and treated as such i f  sustained 
process improvement is to be achieved. Some of  the implications 
of  this hypothesis are discussed in publications generated by the 
FEAST projects. As its role and impact became more evident (for 
example as an abstraction of  the mechanisms underlying many of  
the observed characteristics o f  the E-type evolution process such 
as the first seven laws of  software evolution), the feedback 
observation was enshrined as an eighth law [www01]. 

7 -  Size 

relative 
6 to RSN 1 

5 

4 

3 

2 

1 

0 

OS/360-370  

Size in Modules  over Re leases  • 

and L inear  Growth Trend 
O o o . . - °  

o.o "°O • 

° °  
° . ° -  • 

• o O O •  • ° °  

o " - ° - • 
J 6  . ° 

L ~ f , •  ° b  

o ° 

RSN 

6 11 16 21 26 

Figure 1. The growth of OS/360 over releases as a function of 
release sequence number (rsn) 

4. A R E A S  OF SOFTWARE RELA TED 
EVOLUTION - S u m m a r y  
The discussion in section 3 has concentrated primarily on the 
phenomenon of  program evolution. However, evolution in the 
wider software related domain it is not confined to sequences of  
programs and artefacts o f  the programming process such as 
specifications, designs, and documentation. Other entities 
involved in software development and maintenance, such as 
programming paradigms, languages, object definitions, usage 
domains and practices, applications and the very processes of  
software evolution themselves also evolve. These various 
evolution processes affect, interact and impact one another. To 
truly master software evolution one must understand and master 
the evolutionary properties of  all these entities individually and 
collectively. Ideally and to the extent that this can be done, their 
evolution must be jointly planned, and controlled. In the first 
instance, however, one must focus on individual aspects. 
Consideration of  the consequences of  interactions between them 
can then follow, so are mentioned here only in passing. 

Classification of  areas of  evolution in software and software 
related domains, including software technology, can be based on 

2 ltalicised here to expose the control inputs that are all at least 
partly dependent on feedback mechanisms. 

3 For a discussion of  the process maturity concept and its 
practical assessment see, for example [pau93; zah97]. 

3 



various alternative approaches. The list that follows represents 
just one such schema: 

I. The lowest level at which evolution is a factor is in the 
implementation of  programs and software systems from 
initial statement of  an application concept to the final, 
released, installed and operational code and supporting 
documentation. The implementation of  a set o f  changes 
and/or enhancements to an existing system is a sub-area. 
The entire area and its processes, often referred to as 
development relies heavily on information and instruction 
feedback based on both formal and informal mechanisms. At 
the start of  an E-type system development, for example, 
knowledge and understanding of  the details of  the 
application to be supported or the problem to be solved as 
well as approaches and methods of  their solution are often 
undefined, even arbitrary [tur81]. The relative benefits o f  
alternatives can often not be established except through trial 
and error and even the results o f  these are unlikely to be 
comprehensive or conclusive. The development process is a 
learning process in several dimensions. These include both 
the matter that is being addressed and the manner in which 
this is done. Such experiences based feedback involving 
evaluation of  past results leads to an evolutionary process. 
Development and change activities typify the constituents o f  
area I in the present schema. 

11. At the next level up, consider a sequence of  versions, 
releases or upgrades of  a program or software system. 
These incorporate changes that rectify or remove defects, 
make provision for alternative operational environments 
and/or implement desired improvements or extensions to 
system functionality, performance, quality and so on. They 
are made available to users by means of  what is generally 
termed a release process (e.g., [bas96]). 

Basically all these changes are regarded by stakeholders as 
improvements to the program in one sense or another. 
Otherwise they would not be undertaken. As already 
observed, this process is widely referred to as program 
maintenance. Many people over the years have, however, 
recognised that that term is inappropriate, even misleading, 
in the software context. After all, as used in other areas, 
maintenance describes an activity seeking, in general, to 
rectify wear and tear or other deterioration that has 
developed in, say, an artefact. The purpose is to return it as 
near as possible to its original initial, pristine state. But 
software as such is not subject to wear and tear. It does not 
deteriorate per  se. The deterioration that users sense arises 
from, for example, changes in the purpose for which the 
software was acquired, the changing properties of  the 
operational domain, advancing technology or the emergence 
of  competitive products. Such deterioration will often be a 
consequence of  assumptions, that have become invalid as a 
result o f  external changes but are, nevertheless still 
implicitly or explicitly reflected in the software. In this 
context, therefore, the term maintenance refers more 
appropriately to maintenance of  the validity o f  the 
assumption set reflected in the software and its 
documentation, as well as its satisfactory behaviour as 
judged by the stakeholders, users for example. In short, 
software is evolved to maintain the validity of  its embedded 

!11. 

IV. 

assumption set, its behaviour under execution and its 
compatibility with the world as it now is. 

The preceding discussion has distinguished between areas 1 
and If. The first covers the development of  an entire system 
ab initio (or of  a change to an operational version of  a 
system) whereas the second addresses adaptation and 
enhancement of  a developed system over a sequence of  
releases. Changes and additions constituting the release also 
require specification, design and implementation. Thus area 
II involves area I activity and evolution. 

E-type software supports E-type applications and the latter 
must also evolve. Applications span the range from pure 
computation to co-operative computer supported humans- 
organisations-machines activity. Introduction into use of  
successive software versions by the user community 
inevitably changes the activity supported. It also changes the 
operational domain. Furthermore, it often opens up new 
opportunities for performance and functional enhancement, 
efficiency and cost reduction. New standards of  satisfactory 
operation are recognised and changes to the system are 
initiated to achieve them. Installation and operation of  an E- 
type system, drives an unending process of  system and 
application evolution. 

As an application evolves so, inevitably, do the processes 
and domains within which it operates or is pursued. 
Installation and operation of  a new or improved system will 
also impact other processes and domains with which the 
application, its processes and its operational domain 
interacts or is associated. Hence one must to consider, or 
may be forced into adopting, evolutionary software 
changes. Evolution of  an element of  a system ripples out 
and spreads throughout its wider context and encompassing 
domains. 

Evolution of  the processes and domains referred to in the 
previous paragraph may be regarded as sub-areas of  area III 
or as areas in their own right. The former approach is 
adopted in this initial analysis. 

The process of  software evolution refers, in general, to the 
aggregate of  all activities that implement one or other of  the 
above levels o f  evolution. It is variously estimated that 
between 60 and 80 percent o f  the resource applied to evolve 
a software system over its lifetime is incurred after first 
release [pgs96], in area II evolution and may reach 95 
percent or more in defence applications. Hence, there are 
sound economic and logistic reasons to improve the process 
to achieve lower costs, improved quality, faster response to 
user needs for change and so on. Societal dependence on 
computers and on the software that gives them their 
functional and computational power is increasing at ever 
increasing rates. Process improvement to reduce human 
exposure to the consequences o f  high software costs, 
computer malfunction and delays in adaptation to changing 
circumstances demands improvement of  the means whereby 
evolution is achieved. And the improvement achieved must 
produce improvements in quality, cost, and implementation- 
time according to the needs of  each application area and 
application domain. The process evolves, driven by 

4 



V. 

experience and a changing real world, including evolving 
external processes, technological advances and so on. 

Achieving full understanding and mastery of  the software 
evolution process, a complex multi-loop feedback system, 
remains a distant goal. Process modelling, using a variety of  
approaches, is an essential tool for study, control and 
improvement of  the process, e.g., [pot84]. The models 
facilitate reasoning about it, the exploration of  alternatives 
and change impact assessment, for example. The process 
evolves. So must models of  it. 

5. AREA I: SOFTWARE AB INITIO 
IMPLEMENTATION 4 
Ab initio implementation of  a program or changes to an existing 
program requires execution of  a series of  discrete, iterated, and 
often overlapping steps by interacting individuals and teams, 
using a variety of, in general computer based, tools. Their joint 
action over a period of  weeks, months or years produces the 
desired program or a new version or release of  an existing 
program. The many steps or stages in such development differ 
widely. In probably the first published model o f  the software 
process, tlJe Waterfall model [roy70] and its subsequent 
refinements, e.g., [boe76,88], the various steps are identified by 
terms, in current terminology, such as requirements elicitation 
and analysis, specification, high level design, detailed design, 
coding, unit test, integration, aystem test, documentation and so 
on. Execution of  these steps is not purely sequential. Execution of  
any step, for example, may reveal an error in one or more earlier 
steps or may suggest an improvement to the detailed design or 
underlying assumptions associated with them. The process may 
also be described as one of successive transformation [leh84]. It is 
driven by human analytic and ereative power as influenced and 
modified by developing insight and understanding. Feedback 
from later steps leads to iteration over earlier steps. Changes in 
the external world that must be reflected in the system, also serve 
as drivers. 

Successive steps are likely to operate at many different 
conceptual and linguistic levels of  abstraction and require 
different transformational techniques. The aggregated effect is, 
effectively, a process of  successive refinement [wir71] that 
transforms the original application concept into its operational 
implementation, the software system. It is in this sense that the 
use of  the term development is legitimate. A high level view of  
what is going on suggests, however, that the process must also be 
recognised as evolutionary since the transformational steps are 
elements in a successive-transformation paradigm [leh84] that 
satisfies the definition of  evolution. They add or modify 
functional and computational detail in a reification process as 
described in the LST (Lehman, Stenning, Turski) paradigm 
(figure 2). That view may be appear too high a level of  
abstraction, too ~'emote from the complexity of  the industrial 
software process to be relevant in the present context. It is, 
however, briefly discussed here because it provides insight into 
the nature of  the software development process, helps illustrate 
fundamental issues that emerge during software ab initio 

4 Area I also encompasses he implementation o f  a set of  changes 
or enhancements to an existing system. 

implementation and also to exemplify one practical significance 
of  the SPE classification (section 3. I). 

5.1 LST Paradigm 
The LST paradigm identifies each step in the implementation 
process as the transformation of  a specification into a model of  
that specification (figure 2). Alternatively, it may be described as 
the transformation of  a design into an implementation. The 
transformation step is not finalised until its output has been 
verified as being correct in the strict mathematical sense where 
correctness is a precise relationship between input (i.e., the 
specification) and output (i.e., the implementation). For S-type 
applications, this transformation process will, if faithfully 
followed, eventually lead to a satisfactory program, since to be 
deemed satisfactory and acceptable, by definition and subject to 
the provision below the specification must express all the 
properties that the program is required to possess. For E-type 
applications, on the other hand, there can, inherently, be no 
guarantee that the transformation process will yield a satisfactory 
program. That is so, even if  a formal specification together with 
means for demonstrating the correctness relationship is available. 
At best, means such as testing under appropriate conditions, for 
example, can be used to increase confidence that the process 
output will prove satisfactory when executed in the real world. 
Such alternative means of  validation can, however, not be 
absolute. To paraphrase Dijkstra [dij72], testing can only 
demonstrate the presence of  defects, never their absence. 

It has long been recognised that any statement about the absolute 
correctness of  an E-type program is meaningless in the context o f  
E-type applications. Why? E-type specification and program are 
necessarily finite, but mirror applications and domains having an 
unbounded number of  attributes [teh89,90,02]. Moreover, some of  
the real world attributes upon which successful execution may 
depend are subject to unpredictable change. But neither the 
specification nor the program can reflect such changes without 
(considerable) delay and then only with a risk that the program 
change introduced is incomplete or in error. For each instance of  
execution, however, the program will be judged as satisfactory or 
otherwise in terms of  the domain as it is during execution. 

Intrinsically, E-type programs address applications for which the 
specification cannot at each moment in time, reflect fully and 
unambiguously all the properties that the program must display to 
remain satisfactory. Hence, even though parts, or even the whole, 
o f  an E-type program may be shown to satisfy a formal 
specification, use of  the term correctness in the E-type application 
domain is meaningless. Problem are due to changes in the 
application or the operational domain and to unavoidable delays 
in adapting the program and/or procedures and documentation to 
match those changes, not to faults in the program. 

Nevertheless, the use of  formalisms for, for example, partial 
specification of  E-type applications may provide benefits [lam00]. 
In association with other techniques they may, for example, 
provide means for isolating, characterising and minimising 
inherent uncertainties or inconsistencies, and facilitate means to 
address the inescapable need to evolve the system and its parts in 
a systematic and controlled fashion as, when and in the time 
frame required. 

5 



, Apphcatlon, ~" l~il ~ I . ~' 

/ Concept ~ ~ 

. ~ <<~_~  
g ~  

Executable 
Program 

Figure 2. LST Program Implementation Paradigm 

Lamsweerde also highlights the need to accompany a formal 
specification with a precise, informal definition of  its 
interpretation in the domain of  interest. The systematic evolution 
of  these informal objects is a worthwhile activity in the context o f  
E-type evolution. We refer to this again briefly later in this 
section when discussing the role of  assumptions. 

As briefly stated above, the LST paradigm, requires 
demonstration that the model output o f  each step satisfies its 
specification. Each model also requires validation - termed 
beauty  contest  in the LST paper. This serves the purpose of  
confirming (or otherwise) that, to the stage of  refinement reached, 
the current model is l ikely to lead to a product that will satisfy the 
purpose for which it is being developed. Failure to validate 
implies a weakness, indicating that the final product may be 
unsatisfactory in the context o f  the intended purpose and domain. 
The problem may have arisen from changes in the purpose or the 
domain of  the intended application, from oversights in generating 
the specification or from introduction by the transformation 
process of  properties that are considered unacceptable in terms of  
the intended purpose though they are neither excluded by the 
specification nor incompatible with it. Whatever the source of  
failure, the source of  the unacceptable properties must be 
identified and rectified by changing one or more of  the 
transformation procedures, their inputs or the specification. If  the 
latter is at fault it must be modified or, for S-type programs, 
replaced by a new one. If, however, both verification and 
validation are successful, or perhaps more appropriately, not 
unsuccessful, the new model becomes the specification of  the next 
transformational refinement step. 

5.2 S-type Software 
By definition, S-type software is, contractually, acceptable if it 
has been shown to satisfy its specification. Its properties will 
reflect the specification in its entirety and verification is sufficient 
to determine its contractual acceptability. This implies that the 
completed specification is believed to be complete as far as the 
intended purpose of  the program is concerned; that the problem to 
be addressed is fully understood and unchanging. Thereafter, it is 
primarily the knowledge, understanding and experience of  the 
implementers that drives the implementation process. Learning 
during the course of  that process is largely restricted to 
determination of  methods of  solution, or of  identification and 
selection of  the best  method, in the context o f  constraints applying 
in the solution domain. Feedback in S-type program 
implementation is restricted. It may well be present at a low levels 

o f  development such as requirements design, coding or 
documentation. It plays a secondary role and is unlikely to 
dominate the implementation process. 

Though verification is sufficient for S-type programs from a 
contractual point o f  view, business considerations require its 
validation since it determines the likely acceptability of  the final 
product. Technically it shifts the responsibility for product 
acceptance to the client since, contractually, its definition was 
terminated by satisfactory completion of  the verification, that is 
by acceptance of  the specification by the client. If the latter 
proves deficient, refnement  is required, the development process 
is abandoned and a new  one based on a new specification is 
initiated. In practice, that new process may well take advantage of  
the earlier one. Nevertheless, conceptually the development from 
an initial concept and the derived specification, consists o f  a 
series of  discontinuous open loop processes rather than a 
feedback-driven continuous evolutionary process. For S-type 
programs too evolution occurs but over a sequence or generat ions  
of  instances not over the lifecycle of  a single, isolated program as 
for type E. 

5.3 E-type Software 
In the case of  E-type systems the problem to be solved relates to 
the real world. Thus an application (or change to an application) 
to be developed and the domain (or change of  domain) within 
which it is to be solved are not, in general, clearly and uniquely 
defined. There wil l  always be fuzzy aspects. If they are 
recognised they may be firmed up as knowledge and deeper 
understanding of  the problem or application, o f  the operational 
domain and of  acceptable solutions is acquired. This normally 
occurs during development as managers, developers and, 
possibly, clients take arbitrary decisions. In this situation, 
feedback plays a crucial  role. 

Parts o f  the multi-dimensional domain boundary of  an E-type 
system will be well defined by, for example, prior practice or 
related experience. Its operational range will, therefore, be 
determined. Other parts o f  the boundary are adopted on the basis 
o f  compromise or recognised constraints. Still others will be 
uncertain, undecidable, possibly introducing inconsistencies. This 
situation may be explicitly acknowledged or remain unrecognised 
until exposed by chance or during system operation. The 
application domains have unclear, fuzzy, possibly fluctuating, 
boundaries  that must be continually reviewed. 

6 



In relation to evolution, any initial fuzziness in development 
involves at least two separate and distinct aspects. The first relates 
to the intrinsic unbounded nature of any application and its 
operational domain. Initially the latter is neither precisely defined 
nor bounded in extent and in detail. Such uncertainty is removed 
by a bounding process that determines the domain over which the 
application is to be valid, used and supported, or to which it is to 
be adapted to provide a satisfactory solution in some defined time 
frame at acceptable cost. However, once the system is in 
Operation, a need or desire to extend the area of validity to regions 
of the domain or to detail previously excluded will inevitably 
arise. If left alone, the latter, in particular, will become irritants 
and performance inhibitors. Equally, feeding back the need for 
modification or domain extension to the implementers and 
requiring them to satisfy newly emerging needs, changing 
constraints or changed environmental circumstances will exert 
pressure for system evolution. 

The second concern relates to the boundaries of the system to be 
implemente d . As anyone with experience in systems analysis, 
specification and design knows, the list of properties and function 
that could be included in a system is potentially unbounded. It is 
always in qxcess of what can be accommodated within the 
resources and time allocated for system implementation. Thus, 
from the point of view of potential coverage, the boundaries of 
the final system are arbitrary. But, unlike those of the domain, 
once developed and installed they become solid, determined, at 
any moment in time, by the installed hardware and software. A 
user requiring a facility not included within this boundary will, in 
the first instance, use stand-alone software to provide the required 
facility. It may be possible to couple such software tightly to the 
system for greater convenience in co-operative execution. But, 
however the additional function is invoked and the results of 
execution passed to the main system, additional execution 
overhead, time delays, performance and reliability penalties and 
sources of error are incurred. The omissions become onerous, a 
source of performance inhibitors and user dissatisfaction. The 
inevitable result is a request for system extension. The history of 
automatic computation is rich with examples of function first 
developed and exploited as stand alone application software, 
migrating inwards to become, at least conceptually, part of an 
operating or run time system and ultimately integrated into some 
larger application system. In some instances the migration 
continues until the function is implemented in hardware (chips) as 
exemplified by language and graphics support. The evolving 
computing system may be seen as an expanding universe with an 
inward drift of function from the domain to the core of the 
system. The process is driven by feedback about the strengths, 
weaknesses, effectiveness and potential of the system as 
recognised during use of the system or its outputs. 

E-type programs and systems are the entities of ultimate concern 
of software technology. So is the process of system evolution over 
versions, releases and upgrades that maintain system applicability 
and viability, its value in a changing world. Their development 
and adaptation cannot be covered by an exhaustive and complete 
theory and partly to human involvement in the applications. It is 
equally due to the partial arbitrariness of procedures in business, 
manufacturing, government, the service sector and so on. Finally, 
it also relates to actual or potential imprecision of the operational 
domain boundaries [tur81]. Properties such as these make 

implementation and use of the systems a learning experience. The 
system is intrinsically evolutionary. 

Any program is a bounded, discrete and static reflection of an 
unbounded, effectively continuous and dynamic application 
domain. The boundaries and other attributes of the latter are 
intrinsically fuzzy but must be fixed before, during and after 
development, primarily by operational, economic, time, and 
technology considerations and constraints and the striving for 
growth of human individuals and organisations. Some boundaries 
are determined explicitly in processes such as requirements 
analysis and specification, others involve explicit or implicit 
assumptions adopted and embedded in the system during the 
evolution process. Fixing the detailed properties, such as those of 
human/system interfaces or interactions between people and the 
operational system will include trial and error. Fine design detail 
cannot be based on one-off observation, requirements elicitation, 
intuition, conjecture or statistics alone. It arises from continuing 
human experience, judgement and decision by development staff 
and users. Development changes perception and understanding of 
the application itself, of facilities that may be offered, of how 
incompatibilities may be resolved, what requirements should be 
satisfied by the solution, possible solutions and so on. In 
combination such considerations drive the process onwards, by 
experience and learning based feedback, to its final goal, an 
operational system that is satisfactory by criteria considered 
appropriate during development and on its completion and 
acceptance. Subsequent evolution over versions or releases is, 
however, inevitable for maintenance of that satisfaction. 

5.4 Component-based Architectures 
The LST paradigm described above and the distinction between 
the nature of the evolution process in the context of S- and E- 
types systems may appear abstract and without practical 
implications. That is certainly not so. Moreover, an increasing 
trend to the use of component-based architectures, reuse and 
COTS will make their significance more widely appreciated. 
Why? Because these approaches are conceptually based on 
elements, that must, implicitly and in isolation, at least, have been 
assumed to be fully specified, that is to be of type S. In practice, 
however, to maintain stakeholder satisfaction and adaptability to 
evolving needs and a changing environment such components 
require' the malleability and evolutionary characteristics of E- 
type systems. They too must be subject to evolution [leh00c]. 

6. AREA II: SOFTWARE SYSTEM 
EVOLUTION 
The relationship of E-type software to the real world may be 
described as a model-like reflection. In the accepted mathematical 
meaning of the term model, both the application in its real world 
operational domain and the program implementation are models 
of a common specification obtained by an abstraction process 
from a vision and understanding of the application. The program 
is the end result of a reification process. Program and application 
may, and will normally, possess other properties compatible with 
the specification. The term model-like reflection is used to convey 
the fact that in addition to reflecting all properties identified by its 
specification, a program must remain compatible with the real 
world application in its operational domain. Thus, software 
maintenance may be defined as maintenance of reflective validity 
between a program and the various domains within which it is 

7 



developed and used. Continuing maintenance reconciles the 
system with its application, operational domains and stakeholders 
views all continually changing. The area II evolution process over 
a sequence of version seeks to achieve and maintain reflective 
equilibrium [1ac96] between them. It culminates in a release 
process making the evolving system available to users. 

As already indicated, evolution is intrinsic to E-type software, 
systems and applications. Given the appropriate economic, social 
and technical conditions, they co-evolve over a succession of 
versions, upgrades or releases that is an adaptation, improvement 
(in some sense) and/or extension of them. It represents one step in 
an ongoing, complex, evolution process. The sequence of releases 
transforms the system away from one satisfying the original 
concept to one that successively supports changing circumstances, 
needs and opportunities in a changing world. If conditions to 
support such evolution do not exist, then the program will 
gradually lapse into uselessness as a widening gap develops 
between the real world as mirrored by the program and the real 
world as it now is (First Law of Software Evolution, 
[leh74,78,80,97]). 

As mentioned above and desciibed in a number of papers since 
then, the study of software system evolution emerged from a 
wider software process study [leh69,85]. Inter alia, the original 
study examined empirical data on the growth of the IBM OS/360 
operating system. It concluded that system evolution, as measured 
for example by growth in size over successive releases, displayed 
a remarkable degree o f  regularity. This was unlikely to have been 
the consequences o f  planning and decisions by process 
participants or actively sought by them but was more likely to be 
the consequence of the dynamic forces [for61] to be associated 
with the feedback nature of the software process. The empirical 
data that first suggested this conclusion is exemplified by figure I 
above. This plots system size measured in number of modules - a 
surrogate for the functional power of the system - against release 
sequence number (rsn). This relatively stable growth trend was 
ended by a period of instability that preceded break up of the 
system into separate systems, VS/1 and VS/2. 

When plotted over releases, the long term growth trend of OS/360 
up to rsn 20, as displayed in figure 1, was close to linear. The 
superimposed ripple suggests self-stabilisation around that trend. 
It is described as self-stabilisation because no indication could be 
found that management sought linear growth, that, in fact, growth 
considerations played any conscious part in defining individual 
release content. The latter was a consequence of the aggregation 
of individual management considerations and decisions; based on 
many inputs from many sources and co-ordinated, to a greater or 
lesser extent, by release management. The stabilisation suggested 
by the ripple must reflect the consequence of the organisational 
integration of all these inputs in and via a complex, multi-loop 
feedback structure mediated by managers, policies, established 
and ad hoc practices and other mechanisms. 

The stabilisation phenomenon triggered the first realisation that 
feedback might be playing a role in determining the pattern of 
growth in functional power of an evolving system, and other 
attributes, of system evolution. As discussed above, this 
conclusion was reinforced by the observation of OS/360 post rsn 
20 instability [belT2]. 

6.1 Recent Empirical Studies 
Follow-on studies in the 70s and 80s (e.g., [leh85]) identified 
further evidence of a degree of commonalty in evolutionary 
behaviour across systems that led eventually to eight Laws o f  
Software Evolution encapsulating these behavioural invariants 
[1eh74,78,80,97; www01]. Following formulation of the FEAST 
hypothesis [leh94], the FEAST/I and/2 studies, further explored 
the evolution phenomenon. Figure 3 provides one example of the 
similarity between the observation of OS/360 (figure 1) growth 
and observations some 30 years later of the growth of one of the 
systems studied in FEAST. That study, in fact, analysed growth 
data from six systems - a financial transaction system, two real 
time systems, an information system, an operating system kernel, 
and a defence system. The study identified qualitative and 
quantitative similarities and the interested reader is referred to the 
relevant literature for details [www01]. It was concluded, directly 
or indirectly, that the FEAST data was generally consistent with 
refined versions of seven of the eight laws of software evolution. 
They did suggest some, relatively minor, modification of earlier 
overall results but, overall, strengthen confidence in the 
universality of the phenomenon of E-type software evolution, at 
least under the paradigms and within the evolution environments 
represented by the systems studied. 

An example of such similarities is provided by the fact that five of 
the six FEAST systems display a positive, but predominantly 
declining, long term growth rate over releases. For these systems 
the growth .trends were closely replicated by several growth 
models [tur96; leh97,01c], one of them termed the inverse square 
model. This takes the form SH = Si +E/Si 2 where Si is the 
predicted size of the release with sequence number "i" measured 
in appropriate units and E is a model parameter as determined 
from data on the growth history of the system [tur96]. Moreover, 
in four of these five systems a mid-life break-point (rsn 9-10 in 
figure 3), with different degrees of prominence in each of the four 
cases, can be observed in the long term growth trends. This 
suggested that changes, in, for example, the evolving system, the 
evolution process and/or the environment led to growth rate 
recovery. The presence of segments provides behaviourat support 
for the view that evolutionary stages must be understood [ben00; 
raj00], but raises interesting questions such as the extent to which 
the occurrence of such break-points can be interpreted in a 
manner consistent with the other observations (e.g., the laws). 
These matters will be clarified if the proposal to develop a 
software evolution theory is realised [leh00b,01b]. The sixth 
system - (a defence system) was excluded from the area II 
analysis because it related to an ab initio development over a 
sequence of company internal releases. That is, the project was 
primarily concerned with area I activity though some features of 
area II activity also present [wer98]. 

8 



Size A Large Real-Time System 
relative Size in Modules over Releases 
to RSN 1 and Inverse Square Trends 

. . ,0. ,0 " 1  
.O . 0  - 4 "  

. -  - °  ° 

. , . ° . • . , • _  O . .  

° ° °  ° 

RSN 

5 9 13 17 

Figure 3. Growth trend of one of the systems studied in the 
FEAST projects (dots) with Inverse Square Models fitted to 

two individual segments (dashes). 

The observed positive but declining growth rate trends in the 
FEAST systems is consistent with a hypothesis that declining 
growth rate may be attributed, at least in part, to growing 
complexity of the evolving system and application as change is 
applied upon change. Such complexity growth can, of course, be 
compensated for by complexity control, also termed anti- 
regressive activity [leh74] based, for example, on re-engineering, 
system restructuring, refactoring [fow99], and so on. Of course, 
such compensation involves a cost in resources and a trade-off 
between immediate short-term gains and long-term evolution 
sustainability. System dynamics models [for61, ven99] of the 
process reproducing this phenomenon suggest that maintenance of 
a close to linear growth is achievable at the price of allocating an 
adequate level of resource to anti-regressive activity [kah01]. 

6.2 The Role of Feedback in Area II 
The hypothesis that feedback plays an important role in the 
release based area II evolution processes are, in part at least, 
driven and controlled [leh85,91,94] is consistent with both 
interpretation of the observed data sets and anecdotal 
observations. Feedback mechanisms are, still, the most likely 
underlying unifying factor for the observed commonalties. 
Drivers of that feedback may also play a direct role. Such drivers 
include, but are not limited to, defect reports from the field, 
domain changes due to installation, operation and use of the 
system, changing user needs, recognition of new opportunities, 
advances in technology, even the economic climate. However, 
detailed quantitative testing of this hypothesis (and of its 
negation) by, for example, control theoretic or system 
identification methods, e.g., [lju87], presents many challenges. 

The above feedback mechanisms reflect experience that changes 
user perception, their understanding, desires and ambitions and 
hence underlying application and system concepts, assumptions 
and abstractions. And these combine to produce pressure for 
software change, pressure that in most cases is exerted in and on 
the process by one or other of a variety of feedback channels and 
controls that demand action on the part of the supplier. Nor is the 
source of feedback confined to developers and the user 
community who exploit the accumulated insight. Many contribute 
to the change process. But in all cases information feedback is a 
major driver, with the nature of the path and mechanism, the 

degree of authority of decision makers for example, determining 
its impact. 

The information propagates along paths involving human 
interpretation and significant delays. The people involved have a 
direct impact on the information, that is on feedback 
characteristics. Process internal feedback paths are relatively short 
and involve experts in the application, the development process 
and the target system. Their feedback is based on expert 
interpretation. In control theoretic terms it can be interpreted as a 
low level of amplification and delay but with possibly significant 
levels of noise and distortion. It is the outer external user, long 
delay and influential (i.e., high amplification) feedback pressures, 
the business-based loops that are believed to be primarily 
responsible for the characteristics of release dynamics. 

6.3 Further Work in Area II 
Some of the issues mentioned clearly suggest issues for further 
research. When clarified, they will help advance understanding of 
area II evolution. Other themes of further research relate to the 
role and impact of evolution environments comprising 
applications areas, their operational domains, the industrial 
implementation and marketing domains, economic conditions and 
so on. The FEAST projects, being confined to just five distinct 
combinations of these various, and other, factors, did not permit 
the identification of specific dependencies or relationships. We 
mention just one example. None of the FEAST systems were 
instances of open source development. Others, however, have 
investigated, evolution of instances of such domain. They have 
reported [gdf00; suc01] that the evolutionary trends of the open 
source systems studied (e.g., Linux) differ in detail from those of 
the commercial systems studied in FEAST. They also display 
positive growth but with instances of increasing growth rate. 
Explanations of this fundamental difference have been advanced. 
The proliferation of functional duplicates (clones) in open source, 
together with the participation of an unrestricted pool of 
developers, for example, may explain the anomaly. The 
difference, however, may also be pointing towards possible 
differences in evolutionary behaviour across domains (open 
source, commercial), suggested in [pir88; suc01]. When studying 
the impact of specific development environment, for example, one 
might reasonably expect some impact from business-based loops 
(see further discussioi3 of this issue below). These, of course, must 
be expected to differ significantly over domain. Further study is 
clearly required. Studies of the role of the impact of different 
technologies on long term evolution over releases offers similar 
opportunities for further investigation. A study of similarities and 
differences between across domains may provide additional 
insight and understanding of possible opportunities for 
improvement in software product quality and reliability (however 
defined), increased evolution productivity and rates of evolution, 
for easing the cost and ease of long-term evolution and the 
periodic introduction into operation of new versions of an 
evolving systems. 

Last, but not least, one of the challenges in making the assessment 
of similarities across systems arises from the informality of the 
current statement of the laws of software evolution. This makes it 
difficult to make explicit and unambiguous links between 
observed behavioural patterns and the laws. Investigation of 
systematic ways of formalising the links between observations 
and summary statements is an interesting research topic. It is 

9 



hoped that investigations into a formal theory of area II software 
evolution will address these and related issues. Plans are 
described in a companion paper in this volume [leh01b]. 

6.4 Evolutionary Development 
Even though areas I and II reflect two distinct levels of software 
evolution, attention should also be drawn to specific development 
approaches that cut across those areas. As one instance that 
highlights these, consider the Evolutionary Development 
approach [gil81,88]. This develops and fields an ab initio or new 
evolutionary development in a sequence of releases each 
involving one or more new components or chunks of 
functionality. The parts are developed, integrated, installed and 
introduced into use in a predetermined order. Users become 
progressively exposed to a system of increasing functionality and 
power. The system evolves by leaps and bounds. With this divide 
and conquer approach the complexity of the task undertaken in 
any release interval is greatly reduced. Hence the degree and 
complexity of validation and of rework is greatly reduced. On the 
other hand, it does increase the amount of design partitioning and 
planning activity that allocates change elements between 
successive releases. The amount of regression testing and 
revalidation, for example, will also increase significantly. 

Application of the approach depends on being able to architect 
and decompose the system so that constituent parts may be 
interconnected, part by part, to yield viable sequences of  evolution 
processes with systems of increasing functionality and power. As 
a result, constituent parts of the total desired evolutionary change 
are exposed to system internal interactions and real usage much 
sooner, systematically and more progressively than would be the 
case if real world operation were to await the system's total 
completion. Learning and user feedback is taken into account 
long before development is completed. Since introduction of the 
system into real world usage invariably reveals faults not 
previously detected, early user exposure in smaller chunks is 
likely to greatly simplify fault removal. 

Evolutionary development has, we believe, been industrially 
applied in practice but we are not aware of any empirical 
assessment of its effectiveness in relation to more conventional 
development approaches. The method is based on recognition of 
the fact that a major problem in real-world system development is 
that of uncertainty and risk associated with fixing the required 
system properties. A related issue is the lack of a theoretical 
framework to guide selection of system properties during 
requirements analysis, specification and design. Up to the arrival 
of component based architectures, the common and widespread 
industrial paradigm for release based evolution was one or other 
derivative of the waterfall model s . This involves many arbitrary 
decisions as progress is made in system development. These are 
not fully validated or rejected until the system has been fielded 
and is in regular use. If systematically and thoughtfully applied, 
Evolutionary Development may help overcome the resultant 
problems. If the process is adequately planned and faithfully 
implemented the approach should yield clear net benefits. 

s We do not here discuss the relationship of these to Boehm's 
spiral model [hoe88]. 

7. AREA Ill: EVOLUTION OF THE 
APPLICATION IN ITS DOMAIN 
Continued evolution is not confined to the software or even to a 
wider application system within which the software may be 
embedded. It is inherent in the very nature of computer 
application. The activity that software supports and the problems 
it solves, also evolve. Such evolution is, in part, driven by human 
aspiration for improvement and growth. But more subtle forces 
are also at play. Installation and use of the system changes both 
the activity being supported and the domain within which it is 
pursued. When installed and operational, the output of the process 
that developed the software ab initio, or evolved an existing 
system, changes the attributes of the application and the domain 
that defined the process in the first place. In association with the 
application and the operational domain as defined and bounded, 
the development process, as outlined in the discussion of area I, 
clearly constitutes a feedback loop as illustrated in figure 4. 
Depending on the manner in and degree to which changes impact 
use of the system and on loop characteristics such as the 
amplification/attenuation and delays, the overall feedback at this 
level can be negative or positive resulting in stable growth or 
instability. 

• .  _ , ~ .  ~ . - ~ "  ~ ~ x • Exogenous 
" [" 1 I~.I'" change 

l/ Application / "~ 
',, ,  II. c°ncept I : ,~, 

, Application domain (~1 Bounding I 
[ Program ~ . _ _ _ ~  OP erati°nal ] J ,~, 

T " - - " "  "pr°gram'-" ---"] Deve'°p--t I s t e p  2 
Development ~ 

s,e , ] [ Oovelo m. I 
step 3 

] Devel°pment 14-- t s t e p  i - 1 Development ~ s t e p  4 

Figure 4. Evolution of the Application in its Domain as an 
Iterative Feedback System. Internal Process Loops not s h o w n  
In many instances, however, the phenomenon of application 
evolution is more complex than indicated in the preceding 
paragraph. In particular, it may not be self-contained but a part of 
the phenomenon and process of co-evolution. As government, 
business and other organisations make ever greater use of 
computers for administration, internal and external 
communication, marketing, security, technical activity and so on, 
the various applications become inextricably interdependent, 
exchanging and sharing data, invoking services from one another, 
making demands on common budgets. The inescapable trend is 
towards the integration of all internal services, with the goal, for 
example, of minimising the need for human involvement in 
information handling and communication to avoid delays and 
errors and to increase security. And such integration is seen as 
needing to gradually extend to clients systems, their customers, 
suppliers and other external organisations. 

10 



With this scenario, the rate at which an organisation can grow and 
be adapted to changing conditions, new opportunities, competitive 
challenges and advancing technology increasingly depends on the 
rate at which it can evolve the software systems that support its 
activities. More generally, in the world of today and, even more 
so, tomorrow, organisations, whatever their activity or sphere of 
operation, the domains within which they operate, the activities 
they pursue, the technologies they employ and the computer 
software which links, co-ordinates and ties all together will be 
inter-dependant. All must co-evolve, each one advancing only at a 
rate that can be accommodated by the others. And those rates 
depend not only on the various entities involved but also on the 
processes pursued and the extent to which these can be improved. 
Software is at the very heart of co-evolution, the means whereby 
it is achieved. Change to any constituent element of the global 
system will almost inevitably imply software change. 

8. AREA IV: SOFTWARE PROCESS 
EVOLUTION 
Over the past decade, computers and the software that gives them 
their functional capability, have penetrated ever more deeply into 
the very fabric of society, individually and collectively. The 
world at large has become more and more dependent on the 
timely availability of satisfactorily operating software at a cost 
that is commensurate with the value that the software yields when 
executed. But, as discussed above, as the world changes, even S- 
type software must be adapted and extended to yield satisfactory 
results at each moment in time. Errors or delays in this continuing 
process are likely to yield significant cost penalties due to 
incorrect or unacceptable behaviour. They can constrain, even 
throttle, organisations limited by out of date capabilities, legacy 
software. This has resulted in major investment in developing and 
applying software process improvement [e.g. zah97] paradigms 
such as CMM [pau93], SPICE [ele98], Bootstrap [kuv93] and 
ISO 9000 with its derivatives. These have and are being explored 
and applied the world over. 

It is certain is that the software process as variously practised 
today is far from perfect, expensive, the source of delay in many 
computer dependent projects and of the major defects and 
deficiencies so often displayed by allegedly completed software 
products. Moreover, as new software technologies, Object 
Orientation, Component Based Architecture, UML or Java, for 
example, emerge they call for and suggest new approaches to 
software implementation and evolution. The net result is that 
software implementation and evolution processes also evolve. The 
fact that the new technologies are different in principle to earlier 
practice and that no comprehensive scientific base or framework 
exists for software technology means that process evolution 
efforts must rely on intuition, experience; emerging insight, 
inventiveness and feedback. 

8.1 Process Improvement: Two Approaches 
Two approaches to process improvement can be identified, the 
theory based and the empirical. The former, essentially addressing 
the how approach mentioned in section 2, is exemplified by the 
work of WG 2.3 [gri73]. This group has been meeting, initially 
informally, and since 1971 formally as an IFIP working group, to 
discuss its members' work and views on various aspects of 
programming methodology. The approach is bottom up, looking 

at how individuals might approach program development for 
problem solution. The groups' many positive contributions, owe 
much to earlier work by members of the group. Such work 
included Dijkstra's much quoted observation that "GOTOs are 
considered dangerous" [dij68], the concepts and procedures of 
structured programming [dij72] and the concepts of program 
correctness proving [dij68; hoa69,71]. The programming 
approaches developed and discussed by the group have provided 
basic concepts of modern programming methods as applying, in 
particular, to S-type programs. As such, they are crucial to the 
development of improved programming processes. They provide 
the basis for individual programmer practice [hum97] and, for 
example, for the development of defect free code. In general, 
however, the group recognises that the methods and techniques 
they advocate cannot readily be directly applied to the large E- 
type systems that are the principle concern of evolution studies. 
By definition, S-type programs do not evolve. As already 
observed, when they no longer satisfy their intended purpose a 
new program must be developed to replace them. 

Thus, in general, the above approach has not been able to conquer 
the issue of largeness, however defined, though it has made 
fundamental and important contributions. It has also identified 
another basic problem in software evolution, the consequences 
and mastery of concurrent evolution at different semantic levels. 
Turski affirms that "...the problem of adapting existing software 
to evolving specifications remains largely unsolved, perhaps is 
algorithmically insoluble in full generality..." [tur00]. The 
feedback-system characteristics of the process support this 
conclusion. 

The empirical approach, exemplified by the work of the FEAST 
group [leh94; www01] and of Kemerer [kern99], follows the 
scientific method by starting its consideration, based on the what 
and why approach introduced in section 2. This begins with 
observation, measurement, interpretation and hypothesis 
formation. In FEAST this was based on data recording the 
evolution of industrially developed and evolved software systems. 
The development of black box [e.g., leh97,01c] and white box 
(system dynamics) [e.g., wer98, kah01] observations-based 
models based on these hypotheses and observations permitted 
reasoning about the findings and has provided foundations for the 
gradual development of an empirically based theory. It is not 
possible to discuss the findings of these studies further here and 
the interested reader is referred to the referenced literature. It is, 
however, worthy of note that the eight laws of Software Evolution 
are a direct outcome, over a period of some 30 years, of such 
empirical observation and interpretation. The accumulated 
observations, insight and derived understanding and have already 
led to practical rules for software release planning, management 
and control [leh01a]. The time is now ripe for development of a 
formal Theory of Software Evolution [leh00a,01 b]. 

8.2 In vitro and in vivo Process Evolution 
Any instance of the process is transient, ephemeral. Once 
executed it is gone forever. It will normally have been pre- 
planned in outline with details adopted as progress is made. 
However unanticipated circumstances and unexpected conditions, 
specification changes, performance problems, budget changes, for 
example, are the norm and lead to process adjustments, 
adaptations and changes on thefly. Such unplanned changes, are 
error prone and therefore, in principle, undesirable though 

11 



frequently triggered by observation of  the results or consequences 
of  past activity or by perception of  what lies ahead. These may 
lead to a change to the planned upcoming process activity or a 
need to backtrack or iterate. In any event there is a complex 
mixture of  feedback and feed forward based on individual and 
collective interpretation, intellectual judgement and decision by 
humans that will determine how to proceed. Whenever people are 
involved some degree of  freedom exists; otherwise their activity 
could be mechanised. That freedom relates to what is done, what 
is not done and how the former is done. Hence the process can 
sensibly only be pre-planned and defined to a limited extend and 
to some arbitrary level o f  detail. It can be enforced only at a 
comparatively coarse level o f  granularity. Enforcement of  a 
process may be specified at a high level of  detail in specific 
circumstances (e.g., life critical, such as medical or aerospace 
software), but this can, itself lead, for example, to defect 
injection, inadequate treatment o f  unforeseen circumstances, high 
cost or serious time delays while authorisation to deviate is 
obtained. In commercial environments, subject to strong resource, 
time-to-market and other constrains expectation that the process 
will be carried out as planned may be naive in the extreme. The 
process will inevitably evolve, not only through pre-planning, in 
vitro, but also dynamically, in vivo. 

9. AREA V: PROCESS MODEL 
EVOLUTION 
Software processes are the aggregate of  all constituent activities 
and the relationships between them. This comprises all the 
constituents, that are required to transform a computer application 
concept into a satisfactory operational system. Improvement of  
the process is achieved by improvement of  its parts and the 
effectiveness, reliability and speed of  interactions. The 
constituents themselves are comprised of  both operational and 
managerial activity. Though at a sufficient high level the process 
steps can be seen as instances o f  a successive transformation 
paradigm (section 5.1), detailed enactment o f  a software process 
requires a wide variety of  interacting entities and their activities. 
Many of  these are outside the core transformational steps but are 
nevertheless needed to address the fuzziness of  the application 
concept, to enable the orderly interaction of  many stakeholders, 
and to ensure that the process outcome is achieved within the 
relevant economic, schedule and quality constraints. Real world 
processes are very complex. Understanding how they act and 
interact requires models that permit assessments that can 
subsequently be validated by observation and measurement of  
real world events. 

9.1 Process Models and Process Improvement 
Process models in general, and process programs [ost87,97] in 
particular, have been a major focus of  software technology 
research for some time. Interest in the former went public with the 
first International Process Workshop [pot84]. It was, however, 
Osterweil's keynote address at ICSE 9 [ost87] that triggered 
widespread interest in process programming as a modelling 
technique, though serious questions about the approach were also 
raised [leh87] (section 10). At about the same time, system 
dynamics and other types of  behavioural process models were 
used as a tool to achieve improved software project management 
[abd91] in the context o f  ab initio software development (area I 

evolution). Precursor models exploring the process as a dynamic 
system may also be found in several earlier papers [leh85]. 

Process models, of  whatever kind, facilitate understanding of  
processes and communication about them. They are indeed 
essential as vehicles for communication and reasoning, a role 
greatly enhanced if they are formal. More specifically, they 
provide means for systematic and disciplined examination, 
evaluation, comparison and improvement of  processes and, using 
process enactment and simulation, preliminary measurement, 
exploration, and evaluation of  proposed changes [tu189]. But to 
remain of  value the models must be adapted and evolved as the 
concepts, methods and processes they reflect advance and as the 
applications and software at which they are directed become ever 
more complex, ever larger and ever more integrated. Inevitably, 
all process models evolve. If any model is to serve a useful 
purpose it must reflect the process as the latter evolves. The 
inevitability of  process evolution has already been discussed 
(section 8). 

As mentioned in section 1, such process evolution will in most 
cases proceed slowly in incremental steps. Incremental changes 
that are local to the immediate process, introduction of  a new step 
for example, may not, however, suffice to yield visible benefit. 
The ultimate measure of  improvement is the impact as observed 
from outside the process, at the global level [leh94]. Typically, 
improvement goals include reduction of  overall cost and of  the 
elapsed time required to transform initial concep t s  into an 
operational system, time to analyse and remove a defect and 
release the correction to users and reduction in the total number of  
legitimate defect reports or the average rate of  their submission 
once the system is in use. In this regard, behavioural process 
models that address these concerns can be useful (e.g. [wer98, 
kah01]. Process improvement can be developed and evaluated on 
all process models. The realisation and fine tuning can only be 
achieved, and ultimately utilised as a decision making tools, on 
calibrated global process models which, because of  the feedback 
nature of  the process, must reflect its dynamics. 

9.2 Feedback Role in Process Model Evolution 
Evolution of  a process and its model must be linked. What is the 
nature of  that linkage? Where impetus for change comes from a 
need to adapt a process to specific conditions or circumstances, 
model evolution is a consequence of  process evolution or o f  
creative or intuitive insights into possible improvements. Initial 
evaluation may often be obtained by implementing, exploring, 
and comparing alternative changes in the model, by enactment or 
otherwise, before incorporating the selected change in the 
process. In any event changes made to the process, whether 
premeditated or on the fly (something that should rarely, if  ever, 
be done) must be reflected in a change to the model if  the latter is 
to retain its validity and value. Where the pressure for evolution 
comes from recognition of  a need for improvement, the process 
model can play a seminal role being used to design and evaluate 
the change before implementation. However exploited, the 
information that drives improvement is garnered from observation 
and previous experience. 

Model evolution is also feedback driven. The flow will be from 
within the organisation, from other software developers and from 
process experts and practitioners [leh91]. Disciplined, and 
directed effort in process improvement is typified by the work of  

12 



the Software Engineering Institute at Carnegie Mellon University 
[hum89]. A possible shortcoming is that their work does not 
explicitly focus on process models, feedback direction and control 
or the process dynamics. But those, in essence, are among the 
issues addressed and exploited. 

10. AN ILLUSTRATION OF CONTRASTS 
BETWEEN EVOLUTION AREAS 
While recognising the interactions between them, the above 
discussion of  various levels at which software evolution 
phenomena occur has not suggested that there are similarities in 
the phenomena themselves. The reverse is, in fact, the case. 
Software process evolution, for example, clearly differs 
significantly from that o f  software itself. This is shown by the fact 
that the relationships between a software process and its models 
differ fundamentally from those between E-type software and the 
problem or application processes of  which the software is a 
model-like reflection. 

Two issues termed here the computation process~software 
contrast and the software process~process model contrast 
respectively are of  particular interest, if  only for historical 
reasons. Wherein lies the difference between these two? When 
software development processes and the models that describe 
them are considered, the focus of  concern is the process even 
though the source of  evolutionary change may have originated in 
a study of  a model, a process program [ost87, 97] for example. 
Moreover, a proposed change and its consequences may be 
explored by use of  a model and be evaluated by its enactment. 
Nevertheless, and even where a model-driven support 
environment is used to directly guide the process [tay89], the 
focus of  concern remains with the process in execution. The latter 
is the consequences of  humans interpreting specifications, 
processing directives, choosing directions, taking decisions, 
following methods, and applying tools. The proof of  the pudding 
lies in the eating. The process model is a broad-brush tool to 
permit reasoning about the process but the consequences of  
executing the process depends on specific actions of  individuals. 
The process models are incomplete; at best a high level guide to 
the process. As for other human activities [har02], plans and 
process models do not provide a precise and complete 
representation of  the process to be, or actually, followed. If they 
are intended to be so, and this is enforced, the model becomes a 
straightjacket and bottleneck, a source of  constraint in a domain 
where the unexpected and unanticipated is a daily occurrence. 
This must be contrasted with executable software. Once accepted 
this is accepted as providing a precise, detailed and complete 
representation of  the actuality required or desired. Software 
completely and absolutely defines a process of  computation 
subject, at most, to intervention by an operator or the use in 
premeditated fashion of  input parameters. Such intervention will 
often not have been carefully or fully evaluated on the basis of  a 
total overview of  the situation. Thus it represents not only a slow 
down of  the computational process but is also a possible source of  
error. Intervention of  this sort will become ever more rare as 
computer systems become more ubiquitous and integrated, more 
the master than the slave. 

In so far as the software is concerned, the languages in the various 
steps of development are all formal. Each definition will be 
absolute in the context o f  that language. Process models, on the 

other hand, are a partial reflection of  a process of software 
development. It is the product of  that process that is o f  concern. 
Changes to the model are incidental. They describe changes, 
proposed or implemented; concepts to be translated into reality by 
people. They are evaluated in terms of  their impact on the process 
in execution. A process change may be conceived and 
incorporated in a model. The acid test comes with execution of an 
instance of the process. Determination of  success or failure, 
improvement or deterioration of  the process is judged on the basis 
o f  process dependant attributes of  the product, its cost or quality 
for example. 

The ultimate concern with E-type software is with the application 
process, and the consequences of  program execution in the real 
world [leh91]. One is concerned with the development or 
evolution of  software systems to be used by a changing 
population of  (largely anonymous) people with different degrees 
of  understanding, skill and experience. The concern will, in 
general, be with user community behaviour. Only in exceptional 
instances can code make provision for individual misuse, and that 
only if such misuse was be anticipated. An essential ingredient of  
successful software design is insulation of  the system from user 
behaviour. Relative to the process/process model relationship, for 
software, therefore, the direction of  interaction is reversed. 
Computer applications evolve, inter alia, in response to changes 
to the software and exogenous changes in the domain. This even 
though such changes may have been inspired by observation of  
real world processes, as influenced or controlled by execution of  
that software. Software changes tend to drive application changes 
or at least co-evolve with them. 

There are also other significant differences. For example, process 
quality, productivity and cost concerns relate to the process, not 
its model. For software the reverse is the case. Quality, 
productivity, and cost concerns as visualised by the software 
engineer do not to relate primarily to the application but to the 
software as a model-like reflection of  the application in its 
domain. Concern about the above factors does arise in connection 
with the application, but these must, in the first place, be 
addressed by application experts. Deficiencies will, in general, be 
overcome by changes to system requirements and specification, to 
be subsequently reflected future versions of  the software. 

Consider, finally, the time relationship between model changes 
and process changes and the nature of  the feedback loops that 
convey the interactions. For the process the key word is 
immediacy whereas for software there is, in general, significant 
relative delay in feedback. One could go on listing the 
differences. The analysis as given suffices to indicate that the 
thesis that "software processes are software too" cannot not be 
taken too literally. 

More generally, the analysis suggests that fundamental 
differences occur amongst the various co-existing co-evolving 
software-related domains, contributing to the difficulty of  
attempting to manage and control evolution phenomena. 
Understanding of  similarities, but also differences, appears to be 
crucial. The degree to which commonalties exist between the 
evolution of  such entities as those listed in the opening paragraph 
of  this paper is even more obscure, with the only immediately 
recognisable commonality the fact that, in one way or another, 
feedback plays a role in most, if not all o f  them. These are matters 
which are beginning to be discussed (e.g., [SEEC02]). 

13 



11. F I N A L  R E M A R K S  
The brief discussion of Gilb's evolutionary development in 
section 6.4 has indicated that the scheme proposed is not as 
precise as one might have hoped for. There are other examples In 
bringing one more in these concluding remarks a more general 
point can be made. 

Rapid Prototyping [luq89] also combines views from areas I and 
II of evolution. This suggests that there might be advantages in 
addressing them and indeed, the other areas described in this 
paper, simultaneously. In particular it must be recognised that the 
low level evolution of area I is, in fact, applied to implement the 
evolution of the individual entities in the other areas. Thus while 
compartmentalisation has very clear benefits as an aid to 
understanding it remains arbitrary. It is certain that in industrial 
situations, for example, parallel evolution will occur 
simultaneously in several of the areas described. All must be 
individually and collectively considered and managed to ensure 
maximum benefit. 

The objective of this discussion has been to expose the wider and 
crucial role of evolution and feedback in a number of domains 
related to software. Only recently has serious thought been given 
to this topic and firm conclusions must await future intensive 
directed study. The analysis presented here must be accepted as 
preliminary and exploratory. Its principal conclusions stem from 
the conjecture that evolution in the whole of software technology 
is, at least in part, feedback-driven. The characteristics of 
individual phenomena are partly functions of the properties of the 
feedback loops, with process evolution displaying fundamentally 
differences to other instances of evolution in software related 
domains. There is still much to be learned in this area. The nature, 
impact and control of evolution in software must become a major 
focus of future research and development. 

12. A C K N O W L E D G M E N T S  
Many thanks are due to the FEAST collaborators and to our 
colleagues in academia for many discussions. All have helped to 
generate, prune and sharpen over the years the ideas exposed 
here. We are grateful to the UK EPSRC for funding that has 
supported work on this topic for more than five years. 

13. R E F E R E N C E S  6 
[abd91] T . K .  AbdeI-Hamid and S. E. Madnick, Software 

Project Dynamics An Integrated Approach, 
Prentice-Hall, Englewood Cliffs, NJ, 1991, 264 pps. 

[ant01] A. Ant6n and C. Potts, Functional Paleontology: 
System Evolution as the User Sees It, ICSE 23, 
Toronto, 12-19 May, 2001, pp. 421 - 430 

[apt86] K . R .  Apt and D. Kozen, Limits for Automatic 
Program Verification of Finite-State Concurrent 
Systems, Inform. Proc. Letters, v. 22, n. 6, 1986 

[bas96] V.R. Basili et al, Understanding and Predicting the 
Process of Software Maintenance Releases, ICSE 18, 
Berlin, March 25-29, 1996 

[bel72] L.A. Belady and M. M. Lehman, An Introduction to 
Program Growth Dynamics, in W. Freiburger, editor, 

6 An '* '  indicates that the paper has been reprinted as a chapter in 
[leh85]. 

[benO0] 

[boe76] 

[boe88] 

[cho81] 

[SEEC02] 

[dij68a] 

[dij68b] 

[dij72a] 

[dij72b] 

[ele98] 

[gfi78] 

[FFSEOI] 

[for61 ] 

[fow99] 

[gil81] 

[gi188] 

[gdf00] 

[har02] 

[hoa69] 

[hoa71 ] 

[hum89] 

Statistical Computer Performance Evaluation, 
Academic Press, New York, 1972, pp. 503-511 
K. H. Bennett and V. T. Rajlich (2000), Software 
Maintenance and Evolution: a Roadmap, in A. 
Finkelstein (ed.), The Future of Software 
Engineering, ICSE 2000, June 4-11, 2000, Limerick, 
Ireland, ACM Order Nr. 592000-1, pp 75 - 87 
B. W. Boehm, Software Engineering, IEEE Trans. on 
Comp. vol. C-25, n. 12, pp. 1226 - 1241 
id., A Spiral Model of Software Development and 
Enhancement, Computer, v. 21, May 1988, pp. 61-72 
C. K. S. Chong Hok Yuen (1981), Phenomenology of 
Program Maintenance and Evolution, PhD thesis, 
Department of Computing, Imperial College 
Symposium on Software Evolution and Evolutionary 
Computation, U. of Hertfordshire, U.K, 7-8 Feb 2002, 
forthcoming 
E. W. Dijkstra, A Constructive Approach to the 
Problem of Program Correctness, BIT 8, 3, 1968, pp. 
174- 186 
id., GOTO Statement Considered Harmful, Letter to 
the Editor, CACM, v. l l , n .  11, 1968, pp. 147- 148 
id., Notes on Structured Programming, in Dahl, 
Dijkstra and Hoare, Structured Programming, Acad. 
Pr. 1972, pp. 1 - 82 
id., The Humble Programmer, ACM Turing Award 
Lecture, CACM, v. 15, n.10, Oct. 1972, pp. 859 - 866 
K. El Eman et al, SPICE: The Theory and Practice of 
Software Process Improvement and Capability 
Determination, IEEE CS Press, 1998 
D. Gries, Programming Methodology~A Collection 
of Articles by Members of IFIP WG2.3, Springer V., 
NY, 1978, p. 437 
Intl. Session on Formal Foundations of Software 
Evolution. 13 March 2001, Lisbon, Portugal 
http://prog.vub.ac.be/poolresearch/FFSE/FFSE- 
Workshop.html 
J. W. Forrester, Industrial Dynamics, MIT Press, 
Cambridge, Mass., 1961 
M. Fowler, Refactoring: Improving the Design of 
Code, Addison-Wesley, New York 
T. Gilb, Evolutionary Development, ACM Softw. 
Eng. Notes, April, 1981 
id., Principles of Software Engineering Management, 
Addison-Wesley, Wokingham England, 1988 
M. W. Godfrey and Q. Tu, Evolution in Open Source 
Softwai'e: A Case Study, Proc. Intl. Conf. on Software 
Maintenance, ICSM 2000, 11-14 Oct., San Jose, CA, 
pp. 131-142 

M. Hartswood et al, "Cunning Plans": Some Notes 
on Plans, Procedures and CSCW, RQ Newsletter, 
issue 25, Jan. 2002, http://www.resg.org.uk <as of Jan 
2002> 
C. A. R. Hoare, An Axiomatic Basis for Computer 
Programming, CACM, v. 12, n.10, Oct., 1969, pp. 
576 - 583 
id., Proofofa Program FIND, CACM, v. 14, n. 1, 
Jan., 1971 
W. S. Humphrey, Managing the Software Process, 
Addison-Wesley, Reading, Mass., 1989 

1 4  



[hum97] 

[lac96] 

[kahOl] 

[kem99] 

[kuv94] 

[leh69] 

[leh74] 

[leh78] 

[leh79] 

[leh80] 

[leh84a] 

[leh84b] 

[leh84c] 

[leh85] 

[leh87] 

[leh91 ] 

[leh94] 

id., Introduction to the Personal Software 
Process(SM), Addison-Wesley, Reading, Mass., 1997 
A. R. Lacey, A Dictionary of Philosophy, 3 rd Ed., [leh96] 
Routledge, London, 1996, 386 pps 
G. Kahen et al, System Dynamics Modelling of 
Software Evolution Processes for Policy [leh97] 
Investigation: Approach and Example, J. of Sys. and 
Softw., v. 59, 2001, pp. 271-281 
C. F. Kemerer and S. Slaughter, An Empirical 
Approach to Studying Software Evolution, IEEE 
Trans. on Softw. Eng., vol. 25, n. 4, July/August 
1999, pp. 493 - 509 
P. Kuvaja et al, Software Process Assessment and [leh00a] 
Improvement-The Bootstrap Approach, Blackwell, 
1994 
*M. M. Lehman, The Programming Process, IBM 
Research Report RC2722M, IBM Research Center, [leh00b] 
Yorktown Heights, New York, Sept. 
*id., Programs, Cities, Students--Limits to Growth, 
Imp. Col. 1974, Inaug. Lect. Series, Vol.9, 
1970-1974, pp. 211 - 229; also in Gries, 1978 
*id., Laws of Program Evolution-Rules and Tools for [leh00c] 
Programming Management, Proc. lnfotech State of 
the Art Conference, Why Software Projects Fail, 
April 9-11, 1978, pp. 1VI- 1V25 
id., The Environment of Design Methodology, 
Keynote Address, In Proc. Symp. on Formal Design [leh01a] 
Methodology, Cox TA (ed.). Cambridge, UK, 9-12 
Apr. 1979, pp. 17-38, pub. by STL Ltd, Harlow, 
Essex, UK, 1980. 
*id., Program Life Cycles and Laws of Software [leh01b] 
Evolution, Proc. IEEE Spec. lss. on Softw. Eng., Sept. 
1980, pp. 1060-1076 [leh01 c] 

id., Program Evolution, Symposium on Empirical 
Foundations of Computer and Information Sciences, 
Georgia Institute of Technology, in J. of Information 
Proc. and Management, v. 19, n. 1, 19, 38, 1984 [leh02] 
id., A Further Model of Coherent Programming 
Process, Proc. Softw. Process Workshop, Egham, 
Surrey, 6 - 8 Feb. 1984, IEEE Cat. no.  84 CH 2044- [lju87] 
6, pp. 27-35 
M. M. Lehman, Stenning V and Turski W . M . ,  [luq89] 
Another Look at Software Design Methodology, ACM 
SigSofft Softw. Eng. Notes, v. 9, n. 2, pp. 38 - 53, [mar02] 
April 1984 
M. M. Lehman and L. A. Belady, Program [mit01] 
Evolution--Processes of Software Change, Academic [nau69] 
Press, London, 1985 
M. M. Lehman, Process Models, Process Programs, 
Programming Support, Invited Response to a 
Keynote Address by L. Osterweil, Proc. 9th ICSE, 
Monterey, CA., March 30-April 2, 1987, pp. 14-16 
id., Software Engineering, the Software Process and [ost87] 
Their Support, lEE Software Engineering J., Spec. 
Iss. on Softw. Environments and Factories, 6(5), Sept. 
1991, pp. 243 - 258, 
id., Feedback in the Software Evolution Process , [ost97] 
Keynote Address, CSR Eleventh Annual Workshop 
on Software Evolution: Models and Metrics, Dublin, 
7-9 Sept. 1994, Workshop Proc., Information and 
Software Technology, sp. is. on Software 

Maintenance, v. 38, n. 11, 1996, Elsevier, 1996, pp. 
681-686 
id.. Laws of  Software Evolution Revisited, pos. pap., 
EWSPT96, Oct. 1996, LNCS 1149, Springer Verlag, 
1997, pp. 108-124 

M. M. Lehman et al, Metrics and Laws of Software 
Evolution - The Nineties View, Proc. Fourth Int. 
Symp. on Software Metrics, Metrics 97, 
Albuquerque, New Mexico, 5-7 Nov. 1997, pp 20-32. 
Also in K El Eman and N H Madhavji (eds.), 
Elements of Software Process Assessment and 
Improvement, IEEE CS Press, 1999, pp. 343-368 
M. M. Lehman, An Approach to a Theory of Software 
Evolution, EPSRC Proposal, Case for Support Part 2, 
Dept. of Comp. ICSTM, Dec. 2000, rev. version 
Sept.2001 
M. M. Lehman and J. F. Ramil, Towards a Theory of 
Software Evolution - And its Practical Impact, inv. 
talk, Proc. ISPSE 2000, Kanazawa, Japan, Nov 1-2, in 
Katayama T et al (eds.), IEEE Comp. Soc. Press, Los 
Alamitos, CA, pp. 2 - 11 

id., Software Evolution in the Age of Component 
Based Software Engineering, IEE Proc. Softw., sp. 
Iss. on Component Based Software Engineering, v. 
147, n. 6, Dec. 2000, pp. 249 - 255, earlier version as 
Tech. Rep. 98/8, Imp. Col., London, Jun. 1998 
id., Rules and Tools of  Software Evolution Planning, 
Management and Control, Annals of Softw. Eng., 
Spec. Iss. on Softw. Managmt., v. 11., 2001, pp. 15- 
44 

id., An Approach to a Theory of Software Evolution, 
IWPSE 2000, this volume 
M. M. Lehman, J. F. Ramil and U. Sandier, An 
Approach to Modelling long-term Growth Trends in 
Software Systems, ICSM 2001, 6-10 Nov., Florence, 
Italy, pp. 219 - 228 
M. M. Lehman and J. F. Ramil, Software Uncertainty, 
Soft-Ware 2002, 1 st Intl. Conf. on Computing in an 
Imperfect World, Belfast, North Ireland, 8-10 April 
L. Ljung, System Identification - Theory for the User, 
Prentice Hall, Englewood Cliffs, NJ 1987 
Luqi, Software Evolution through Rapid Prototyping, 
IEEE Computer, v. 22, n. 5, May 1989, pp. 13 - 25 
J. Marciniak (ed.), Encyclopaedia of Software 
Engineering, 2 "d. Edition, Wiley, 2002 
R. T. Mittermeir, IWPSE 2001, this volume 
P. Naur and B. Randell (eds.), Software Engineering, 
Report on a Conf. Sponsored by the NATO Sc. 
Comm., Garmisch, Germany, 7-11 Oct. 1968, 
Brussels, So. Aff. Div., NATO, 1969, 231 pps, 
http://www.c s.ncl.ac.uk/people/brian.randell/ 
home.formal/NATO/ 

L. Osterweil, Software Processes Are Software Too, 
Proc. of the 9th Int. Conf. on Softw. Eng., Monterey, 
CA, March 30-April 2, 1987, IEEE Comp. Soc. Pub. 
767, pp. 2-13 
id., Software Processes Are Software Too - Revisited." 
An Invited Talk on the Most Influential Paper of lCSE 
9, Proc. ICSE 19, Boston, May 17-23, 1997, pp. 540- 
548 

15 



[pau93] 

[pgs96] 

[pir88] 

[pf198a] 

[pf198b] 

[pot84] 

[raj00] 

[roy70] 

[suc01] 

[tay89] 

[tu189] 

[tur81 ] 

[tur87] 

M. C. Paulk, et al, Capability Maturity Model, ver. [tur96] 
1.1, IEEE Software, v. 10, n. 4, 1993, pp. 18 - 27 
T. M. Pigoski, Practical Software Maintenance, 
Wiley, 1996, pp. 384 [tur00] 
S. S. Pirzada, A Statistical Examination of  the 
Evolution of  the UNIX System, PhD Thesis, Imperial 
College, London, 1988 
S. L. Pfleeger, Software Engineering - Theory and 
Practice, Prentice Hall, 1998 
S. L. Pfleeger, The Nature of  System Change, IEEE [lam00] 
Software, 15, 3, May-June, pp. 87 - 90, 1998 

C. Ports, ed., Proceedings of the Software Process 
Workshop, Egham, Surrey, Feb., 1984 

[ven99] 
V. T. Rajlich and K. H. Bennett, A Staged Model for 
the Software Life Cycle, Computer, Jul., pp. 66 - 71 

[wei70] 
W. W. Royce, Managing the Development of Large 
Software Systems, IEEE Wescon, Aug. 1970, pp. 1-9 

G. Succi, J. Paulson and A. Eberlein, Preliminary [wer98] 
Results .from an Empirical Study on the Growth of 
Open Source and Commercial Software Products, 
EDSER-3 Wkshop, co-located with ICSE 2001, May 
14-15, Toronto 

R. N. Taylor et al, Foundations for the Arcadia [wir71] 
Environment Architecture, SIGPLAN Notices v. 24, 
n. 2; Softw. Eng. Syrup. on Practical Software 
Development Environments, spec. iss. Proc. ACM [www01] 
SIGSOF7/SIGPLAN 
C. Tully, Representing and Enacting the Software [zah97] 
Process, Proc. 4th Int. Worksh. on the Softw. Proc., 
Jan. 1989, ACM S1GSOFT Softw. Eng. Notes, June 
1989 
W. M. Turski, Specification as a Theory with Models [zur67] 
in the Computer Worm and in the Real World, 
lnfotech State of  the Art Report v. 9, n. 6, 1981, pp 
363 - 377 

W. M. Turski and T. S. E. Maibaum. The 
Specification of Computer Programs, Addison- 
Wesley, Wokingham 

id., A Reference Model for the Smooth Growth of 
Software Systems, IEEE Trans. SE, v. 22, n. 8, pp. 
599 - 600 

id., An Essay on Software Engineering at the Turn of 
the Century, in Y. Maibaum (ed.): Fundamental 
Approaches to Software Engineering, Proceedings of  
the Third International Conference FASE 2000. 
March/April 2000. LNCS 1783, Springer-Verlag, 
Berlin, pp. 1 - 20 

A. van Lamsweerde, Formal Specification: a 
Roadmap, in A. Finkelstein (ed.), The Future of  
Software Engineering, 22 "d ICSE, Limerick, Ireland, 
2000, ACM Order N. 592000-1, pp. 149-159 
Vensim 1999, VENSIM 4 (c) Reference Manual, 
Ventana System Inc., Harvard, MA 

*G. M. Weinberg (1970), Natural Selection as 
Applied to Computers and Programs, General 
Systems, v. 15 

P. Wemick and M. M. Lehman (1998), Software 
Process White Box Modelling for FEAST~l, ProSim 
'98 Workshop, Silver Falls, OR, 23 Jun. 1998. As a 
rev. version in J. o f  Sys. and Softw., vol. 46, nos. 2/3, 
15 Apr. 1999 

N. Wirth, Program Development by Stepwise 
Refinement, CACM v. t4, n. 4, April, pp. 221-222 
FEAST projects web site, Dept. of  Computing, Imp. 
College, see http://www.doc.ic.ac.uk/~mml/feast 

S. Zahran, Software Process Improvement - Practical 
Guidelines for Business Success, SEI Series in 
Software Engineering, Addison-Wesley, Harlow, 
England, 1997 

F. W. Zurcher and B. Randell, Iterative Multi-Level 
Modelling - A Methodology for Computer System 
Design, IBM Res. Div. Rep. RC-1938, Nov. 1967. 
Also in Proc. 1FIP Congress 1968, Edinburgh, Aug 5 
- 10, 1968, p p D - 1 3 8 -  142 

This paper represents a broadening and revision of an article to appear in the Encyclopedia of Software Engineering, 2nd edition, edited by J Marc iniak. 

1 6  


