
An Approach to a Theory of Software Evolution
M M L e h m a n

Dept. of Computing
Imperial College

180 Queen's Gate, London SW7 2BZ
tel. +44 - 20 - 7594 8214, fax +44 - 20 - 794 8215

mml@doc.ic.ac.uk

J F Rami l
Computing Dept., Faculty of Maths and Computing

The Open University
Milton Keynes MK7 6AA, U.K.

tel. +44 - 1908 - 65 4088, fax +44 - 1908 - 65 2140

j . f . r a m i l @ o p e n . a c . u k

ABSTRACT
This paper outlines plans for the proposed development of a
theory of software evolution. Apart from its intrinsic value, such a
theory will advance understanding of the attributes of the software
evolution phenomenon, its drivers and its practical impact on the
software process and its products. If achieved, such a theory will
provide means to identify and justify best practice in a world
increasingly dependent on computers, where continuous software
process improvement is of major, universal concern.

Keywords
Best practice, empirical generalisations, FEAST, laws of software
evolution, management guidelines, process improvement,
software engineering.

1. INTRODUCTION
The software evolution phenomenon [leh01 b] was first identified
as such in the early 70s [be172,1eh69]. It represents an intrinsic
need for continuing maintenance and development of software
used in real world applications or to solve problems in a real world
domain. Until recently, however, it did not arouse general
interest. Events such as the sequence of IWPSE workshops [e.g.
this volume] demonstrate that this has now changed. Growing
awareness of the evolution phenomenon is due, amongst other
factors, to the pervasiveness of computers, their growing use in
industry, commerce, and government, increasing exploitation of
the Internet and so on. All lead to growing societal dependence on
software; artefacts that must remain satisfactory as the real world
and, hence, the operational domain within which they are used,
change.

As users become ever more integrated, sophisticated and
dependent on satisfactory system operation, the need for speedy,
reliable, cost-effective evolution of their software has become
ever more intense. Competition, advancing technology, new
opportunities, ambition and so on are driving continued software
system evolution through progressive enhancement, upgrading or
even replacement. Software change is an everyday experience for
all serious computer users. Moreover, growing organisational

Pernlission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro11! or commercial advantage and that
copies bear this notice and the thll citation on the first page. To copy
otherv,,ise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWPSE 2001 Vienna Austtria
Copyright ACM 2002 1-58113-508 -4/02/006...$5.00

dependence on software has resulted in widespread recognition of
a need for continuing and effective business and software co-
evolution [e.g. sebpc,soce2000].

In considering software evolution, the present authors and other
groups [e.g., pf198,kem99,ben00,feast2000], have been primarily
concerned with the properties of the phenomenon, the what and
why of evolution [leh00a]. The goal has been to achieve
understanding by identifying the attributes and practical impact of
evolution on the software process and its products together with
underlying drivers. Since the nature of the phenomenon as
experienced in industry and by users was to be determined,
examination of the evolution of a number of different industrially
developed and supported systems was a first priority. These
studies have~ and are still, providing results that throw light on the
nature and attributes of software evolution [e.g., feastwww].
These include elements that lead to empirical generalisations
[car66] which, in turn, provide significant inputs for development
of a theory of the phenomenon. This position paper outlines plans
for the development of such a theory [leh00d]. Together,
understanding the properties of the software evolution
phenomenon and encapsulation of that understanding in a theory
provide a base and framework for further improvement. The
former is increasingly recognised as essential for further
systematic control and improvement of the process [e.g., ben00].

In contrast to the what and the why view of evolution, the more
general focus of software evolution studies is on the how of
evolution [e.g., this volume]. The concern has been, and still is, to
find effective abstractions, formalisms, procedures, methods and
tools, for example, for performing and improving the evolution
process so as to increase productivity, reliability, dependability,
adaptability and predictability, to improve quality, to decrease
development time and so on. Understandably, this has led to
widespread interest in process improvement as evidenced, for
example, by the SEt CMM model [pau93] and a recent EPSRC
initiative [sebpc].

The two views of evolution, the how and the what/why, are
complementary [leh00a]. Both are required. Together, and in
association with the envisaged theory, they increase the potential
for well founded improvement and for assessment of the practical
value it can deliver.

2. PRECURSOR INVESTIGATIONS
One of the earliest investigations of software evolution was
triggered by a study of the IBM programming process [leh69]. It
has been actively pursued ever since. Thirty years of observation

7 0

and interpretation has produced results that include eight laws of
software evolution [e.g., 1eh74,85,97], the SPE program
classification [leh85], a principle of software uncertainty
[leh89,90,02], the FEAST hypothesis [feast94/5,1eh94] and, more
recently, the findings of the FEAST projects
[leh96,98,feastwww]. In particular, fommlation of the eighth,
feedback-system, law, its extension to the FEAST hypothesis and
observation of feedback-like behaviour in several, otherwise very
different, systems suggests feedback as a basis for relationships
between the laws. They and other contributions [e.g., wirTl,
gilSl,kem99,kit99,ben00], provide significant understanding of
the software evolution process, of the nature and impact of
feedback at both management and technical levels and of the
practical implications of these observations and models.

3. APPROACH TO THEORY FORMATION
As its major input, the proposed development will exploit a body
of codified knowledge considered sufficient to permit disciplined
exploration and refinement of candidate theories. Observations
gathered during many years' of measurement and interpretation of
industrial software processes provide the primary inputs to theory
formation. They include qualitative and quantitative observations
of behaviour. Some may even reflect behavioural invariants.
Others will be restricted to a subset of systems appearing,
therefore, to reflect common domain characteristics and so also
lead, perhaps, to a lower level of empirical generalisations or
observational laws [car66]. The accumulated observations,
knowledge and understanding appear to be sufficient to start
assembling and organisation into a theory. As this evolves, other
observations become explainable in terms of it. Observations
predicted from that theory should reflect fundamental insights and
behavioural invariants, consistent behaviour across organisations
and systems in the real worlds of computer application, software
development and evolution. The figure below illustrates the basis
of this two-level procedure.

Theoretical (~ [Level
Delennination

of Rules, Guidelines

Observational f Level
Figure 1 - Theory Development I

Various implementations of the two-level approach to theory
formation exist. One example is provided by the Carnapian
approach [car66], inspired by the terminology and reasoning of
the experimental sciences. Another, inspired by abstract theories
such as Geometry, is here termed Euclidean. These approaches
are complementary and believed to have the potential to yield, not
only a theory of evolution, but also evolution management rules,
tools and guidelines. In principle, both approaches (and others?)
could be pursued in parallel if the proposed project [leh00d] is
launched. Consideration of others, their evaluation and the
balance amongst them must be one of the initial tasks of any such
project.

i Prof. Tom Maibaum. Private communication.

Once existing observations and empirical generalisations have
been structured, theory formation starts. Procedures, such as the
ones described in [shr90] should be of aid here. Moreover, the
conclusion that the software process is a feedback system
suggests that theory formation may be informed by control
theory. Formation of candidate theories, identification of which
theory best explains the empirical observations and what its
attributes are, will provide clues to the key characteristics of the
evolution process. Clearly, some phenomena will initially have to
be ignored and approximations made to reality as in Physics or
Engineering where, for example, friction is sometimes ignored.

Whichever approach is adopted, results obtained will yield
predictions to be validated against existing and new observations.
Successful validation will strengthen confidence in the emerging
theory, may extend its domain of relevance. Assessment of its
explanatory and predictive power will guide the search for
refinement and investigation of second order phenomena.

4. INPUTS TO THEORY FORMATION
Given the current state of the study of software evolution, it is, in
the first instance, natural to form empirical generalisations from
elements such as observations, models and interpretations of
existing evolution data [e.g. feastwww]. As this is assembled it
can provide openings for extension by reasoning along lines
illustrated in the text below. Formation of the formal theory can
follow:

The domain of the proposed theory and of the fragment
introduced here relates to E-type software evolution. Such
software includes "all programs that, when executed in a
s~oecified real world domain (the execution domain), solve a
problem (or set o f problems) defined in and part o f that
domain". Both domain and programs are models of (an
explicit or implicit) specification that is itself an abstraction
of the real world domain of interest that includes the
problem to be solved. By definition, the specification
reflects all properties of the execution domain required for
acceptable solutions of the problem. That domain and the
program will have additional properties not addressed by the
specification. By specific mention or by omission, such
properties are declared to be of no concern in relation to an
acceptable solution. Incompatibility between such additional
properties, one or more from each domain is, therefore, of
no concern, as long as the real world does not change.
Change is, however, inevitable sooner later. A property of
either the domain or program previously accepted as of no
concern may then block achievement of an acceptable
solution. Worse still, what was previously regarded as an
acceptable solution may no longer be acceptable. Thus, as
the real world changes, one or more domain properties may
become incompatible with the specification rendering the
abstraction invalid. This inference leads into another, "/f, as
a result o f changes in the real world execution domain, a
specification is no longer a valid abstraction o f that domain,
the E-type program that models the specification may be
unacceptable". It follows that "the behaviour o f E-type
programs when executed is inherently uncertain, cannot be
guaranteed to be acceptable"; a restatement of the principle
o f software uncertainty [leh89,90,02].

71

5. PROPOSED DEVELOPMENT
A brief example included as part of the ISPSE 2000 keynote
lecture [leh00b] illustrated a possible transition between levels.
Even though some of the statements have since then been revised,
this contribution can still provide an example of what can be
achieved and a flavour of what is intended. For the sake of
brevity, the revised set of definitions, observations and inferences
(theorem precursors) is not included here. It is available in the
charts of IWPSE 2001 and of more recent presentations
[feastwww]. Even the refined version constitutes an initial
formulation requiring refinement. It is expected that this will be
achieved through expansion of the scope of the theory and, for
example, its formalisation.

Some brief comments on the intellectual process that led to the
ISPSE 2000 example follow. The starting point was input such as
the one provided in the text at the end of section 4. Based on it,
sets of intuitive definitions and observations were identified.
Individual observations should be eventually linked to empirical
generalisations or, if they appear to hold on their own -as, for
example, when based in common experience- proposed as axioms
or theorems in the formal theory. Another element in the ISPSE
outline is represented by inferences, derived from observations
and their interpretations. The informal set, as such, suggests the
basis for a proof of the software uncertainty principle
[1eh89,90,02] and suggests a number of practical management
guidelines.

As shown in figure l, the theory formation process requires
iteration. This involves formalisation, refinement and validation
of candidate sets of definitions, observations and inferences,
leading to identification of a first one and eventually a succession
of satisfactory and useful sets.

6. POTENTIAL BENEFITS
The need and the contribution that such a theory of software
evolution could make to the advancement of software technology
has been recognised over the years [e.g., nat69,ben00]. Such a
development is now being seriously considered and planned. It is,
however, not being proposed simply because of the intellectual
interest and challenge it presents. Rather it is recognised that such
a development, if successful is likely to provide a rationale for
some elements of best practice and, in doing so, help justify any
additional cost of its deployment.

Determination of best practice, its transfer to industry and
achieving widespread and willing acceptance requires one to
overcome inbred scepticism. Managers and practitioners must be
convinced of its legitimacy and efficacy. To date little, if any,
effort has been invested in the formation of process theory to
demonstrate such legitimacy, despite several expressions of need
for such a theory [e.g., ben00]. It should support best practice by
providing a unifying framework that encapsulates empirical
generalisations and behavioural environments together with an
explanation of why they occur. Moreover, a theory should act as a
catalyst for further empirical work by providing, for example, a
source of hypotheses for empirical testing.

A theory can also have direct and immediate practical application
and value. Current interest in software architectures [sha96], the
search for reuse, pressures for moves to component and COTS
based systems [leh00c], all reflect the fact that increasing human

dependence on computers requires that software must,
simultaneously, be made cheaper, more reliable, of higher quality
and more evolvable. An explanatory theory that identifies sources
of evolutionary pressures, the controls and constraints that
stabilise the resultant evolutionary behaviour and the attributes of
that behaviour, significantly advance the ability to architect and
design systems for faster, more reliable and timely evolution.

From the point of view of process improvement, as widely
understood and pursued, an explanatory theory provides a
coherent framework, facilitating reasoning about the process and
permitting derivation of qualitative and quantitative management
and implementation guidelines. For example, theory already
proposed [leh00b] demonstrates that an increasing number of
elements of the assumption set embedded in all real world
software will inevitably become invalid as time elapses. It follows
that the capture, recording and regular review of the set, whether
explicitly stated or implied by omission, must become an integral
part of all software development and maintenance, that is of
software evolution. Such is not established practice even in such
as sensitive areas as safety or business critical software.

The above provides just one simple example of good practice
emerging from theory-based reasoning. Many more such rules
and guidelines for software evolution planning and management
have been derived from FEAST observations and earlier work
[feastwww,list]. They are discussed at greater length in a paper
that outlines observations and reasoning that leads to specific
practical recommendations [leh01a]. Confidence in them, their
acceptability, integration, extendibility and tool support would be
greatly enhanced if they were shown to be part of a coherent,
explanatory theory. The latter would make a contribution to
software process improvement, providing a conceptually sound
rationale for best practice.

7. RELATED WORK
The need for a theory of the software process as such has been
discussed in the writings of one of the authors (mml) for some
time. There are also scattered refererices elsewhere to the absence
of a theoretical basis and framework for software engineering and
to the role that such a theory could play. For example, in a recent
overview of the field Bennett and Rajlich state "... A major
challenge for the research community is to develop a good
theoretical understanding and underpinning for maintenance and
evolution, which scales to industrial applications ..." [ben00].
However, other than thoughts recently outlined [leh00b], we are
not aware of any existing work on theory level [car66] theory
formation in the sense proposed here, whether in the wider arena
of software engineering or of constituents such as software
process, evolution and maintenance. Elements at the observational
level can be found in system dynamics [e.g. feastwww] and other
process models. Ontology and taxonomy work have been pursued
[e.g. kit99] and may provide inputs to the proposed study.
Mathematical theory relating to formal representation, formal
methods and programming languages does exist and may prove
important in supporting the proposed study. But such theory is
qualitatively different to that being proposed here. Despite
differences due to human involvement in software evolution, as
an observational descriptor, the theory envisaged is more akin to
the theories of the physical sciences [e.g., car66, tha92].

72

8. FINAL REMARKS
The research hypothesis presented in this paper is that the
evolution process may be described by a formal scientific theory.
Furthermore, the presence and strength of feedback in driving and
steering system evolution suggests that control theoretic concepts
should find application in this theory. That such a theory can be
achieved in practice remains to be determined. It is considered
that the FEAST and other studies provide sufficient conceptual
foundations, empirical data and generalisations to start
exploration of both hypotheses. Issues and challenges that arise,
the selection of appropriate applicable formalisms and the
application of the approaches to theory formation have been
briefly explored in this position paper. A first attempt to exploit
aspects of the theory to provide a source and justification for
rules, guidelines and tools [leh01a] for software evolution, has
been suggested [leh00b]. The application of formal methods and
of the many representations and logics in computer science [e.g.,
tur87,hae98,01] is also very relevant here. The proposed study
will require access to the necessary knowledge and understanding
of and experience in these approaches. The proposal is clearly a
task for an interdisciplinary team and the involvement of others
interested in taking up this approach is welcome. The
development of satisfactory definitions and formalisation are
amongst the first challenges that face the project.

Theories are not developed over night but evolve over many years
with contributions from many quarters. The duration and staffing
of a project [leh00d] must permit those involved to assimilate the
existing body of knowledge, master the skills required and then,
systematically and progressively, evolve the theory at its various
levels, following the process illustrated by the figure 1 or an
alternative process. A project following this route will deliver
intermediate outcomes such as hypotheses to be tested, empirical
generalisations, implications and, hence, the axioms and theorems
of candidate(s) formal theory. The individual results will be
interesting and significant in their own right but do not in
themselves constitute "a theory". The research must continue over
a reasonably long period of time and at a sufficient level of
activity, so that one achieves a critical mass that can reasonably
be termed a theory. That is, a coherent and comprehensive set of
relations, theorems and practical implications for testing in
industry and for further exploration, validation or rejection,
binding together and extension. More detailed objectives and
intermediate outcomes can be identified with figure 1 prox, iding a
framework for their identification. Practical outcomes relate to
industrial application of the theory as illustrated by the paper
"Rules and Tools of Software Evolution Planning Management
and Control" [leh01 a].

If theory formation from observations and behavioural invariants
is successful, it will make a significant contribution to software
engineering technology. It also has potential to provide
foundations and a framework for further progress in technology
improvement and to make a contribution to the development of
software architectures for effective and reliable evolvable
software. All these are crucial for a world ever more reliant on
software. Within that context it also has important implications
for general business process improvement.

9. A C K N O W L E D G E M E N T S
Our thanks are due to all who, anonymously or otherwise,
commented on the drafts of a proposal [leh00d] upon which this
contribution is based, and, in particular, to Professors Chris
Hankin, Tom Maibaum, Dewayne Perry and Wlad Turski. Their
participation in discussions and their willingness to share insights
has contributed significantly to the development of these ideas.

10. REFERENCES 2
[bel72]* Belady LA and Lehman MM, An Introduction to

Program Growth Dynamics, in Statistical Computer
Performance Evaluation, W. Freiburger (ed.),
Academic Press, NY, 1972, pp. 503-511

[ben00] Bennett KH and Rajlich VT, Software Maintenance
and Evolution: A Roadmap, in Finkelstein, A. (ed.),
The Future of Software Engineering, 22nd ICSE,
Limerick, Ireland, Jun. 2000, pp. 73-87

[car66] Carnap R, Philosophical Foundations of Physics,
Basic Books Inc. 1966

[feast94/5] Preprints of the three FEAST Workshops, Lehman
MM (ed.), Dept. of Comp., Imp. Col., 1994/5

[feast2000] Preprints of FEAST 2000 International Workshop on
Feedback and Evolution in Softw. and Business
Processes, Ramil JF (ed.), Dept. of Comp., Imp. Col.,
London, 10-12 Jul. 2000, 124 pps. Available via links
at http://www.doc.ic.ac.uk/~mml/f2000 <July 2001>

[feastwww] FEAST Projects Web Site, Dept. of Comp., Imp. Col.,
http://www.doc.ic.ac.uk/~mml/feast <as of Jan 2002>

[gil81] Glib T, Evolutionary Development, ACM Softw.
Eng. Notes, Apr. 1981

[hae98] Haeberer AM, Maibaum TSE, The very Idea of
Software Development Environments." A Conceptual
Architecture for the ARTS Environment Paradigm,
ASE'98, Redmiles D and Nuseibeh B, eds, IEEE
Comp. Sc. Press, 1998

[hae01] Haeberer AM and Maibaum TSE, Scientific Rigour,
an Answer to a Pragmatic Question." a Linguistic
Framework for Engineering, ICSE 2001, Toronto,
Canada, May 12-19, 2001

[kem99] Kemerer CF and Slaughter S, An Empirical Approach
to Studying Software Evolution, IEEE Trans. Softw.
Eng., v. 25, n. 4, Jtfl./Aug. 99, pp. 493-509

[kit99] Kitehenham B e t al, Towards an Ontology of
Software Maintenance, J. of Softw. Maint., v. 11,
1999, pp 365-389

[leh69]* Lehman MM, The Programming Process, IBM Res.
Rep. RC 2722, IBM Res. Centre, Yorktown Heights,
NY, Sept. 1969.

[leh74]* id., Programs, Cities, Students, Limits to Growth?,
Inaug, Lect., May 1974, Imperial College of Science

2 References identified with an '*' are reprinted in [leh85].

7 3

[leh85]

[leh89]

[leh90]

[leh94]

[leh96]

[leh97]

[leh98]

[leh00a]

[leh00b]

[leh00c]

[leh00d]

Technology Inaugural Lect. Series, v. 9, 1970-74, pp.
211-229. Also in Gries D., (ed.), Programming
Methodology, Springer, 1978, pp. 42-62

Lehman MM and Belady LA, Program Evolution -
Processes of Software Change, Academic Press,
London, 1985

Lehman MM, Uncertainty in Computer Application
and its Control through the Engineering of Software,
J. of Software Maintenance, Research and Practice, v.
1, 1 Sept. 1989, pp. 3-27

id., Uncertainty in Computer Application, Technical
Letter, Comm. ACM, v. 33, n. 5, pp. 584, May 1990

id., Feedback in the Software Evolution Process,
Keynote Address, Proc. CSR Eleventh Annual
Wrksh. on Softw. Ev. - Models and Metrics. Dublin,
7-9th Sep. 1994, Also in Info. and Softw. Tech., spec.
iss. on Software Maint., v. 38, n. 11, 1996, Elsevier,
1996, pp. 681-686

Lehman MM and Stenning V, FEAST~l: Case for
Support Part 2, Dept. of Comp., Imp. Col., London,
UK, Mar. 1996. Available via links at [feastwww]

Lehman MM, Laws of Software Evolution Revisited,
EWSPT96, Oct. 1996, LNCS 1149, 1997, pp. 108-
124

id., FEAST~2: Case for Support Part 2, Dept. of
Comp., Imp. Col., London, UK, Jul. 1998. Available
from [feastwww]

Lehman MM et al, Evolution as a Noun and
Evolution as a Verb, SOCE 2000 Workshop on
Software and Organisation Co-evolution, 12-t3 Jul.
2000, Imperial College, London. Available via links
at [feastwww].

Lehman MM, Approach to a Theory of Software
Process and Software Evolution, FEAST 2000 Pre-
prints, Imp. Col., London, 10-12 Jul. 2000. Available
via links at [feast2000] and with Ramil JF as:
Towards a Theory of Software Evolution - And Its
Practical Impact, invited lecture, in Katayama T et
al. (eds.) Proc. ISPSE 2000, Kanazawa, Japan, 1-2
Nov. 2000, pp. 2 - 11, IEEE CS Pr.

Lehman MM and Ramil JF, Software Evolution
Phenomenology and Component Based Software
Engineering, IEE Proc. Softw., sp. issue on
Component Based Software Engineering, v. 147, n. 6,
Dec. 2000, pp. 249 - 255, earlier version as Tech.
Rep. 98/8, Imperial College, London, Jun. 1998

Lehman MM, An Approach to a Theory of Software
Evolution: Case for Support Part 2, EPSRC project
proposal, DoC, Imp. Col., Dec. 2000, rev. Sept 2001

[leh01 a]

[leh01b]

[leh02]

[list]

[mai00]

[nato69]

[pau93]

[pf198]

[sebpc]

[sha96]

[shr90]

[soce00]

[tha92]

[tur87]

[wir71]

Lehman MM, Rules and Tools for Software Evolution
Planning and Management, FEAST 2000 Pre-prints,
Imp. Col., London, 10-12 Jul. 2000. A revised
version, with Ramil JF,in Annals of Soflw. Eng., vol.
11, special issue of Softw. Management, 2001, pp.
15-44

Lehman MM and Ramil JF, Evolution in Software
and Related Areas, in this volume

id, Software Uncertainty, Soft-Ware 2002, 1st Intl.
Conference on Computing in an Imperfect World,
Belfast, North Ireland, 8-10 April 2002, forthcoming

Publication listings available from links at
http://wwwdoc.ic.ac.uk/~mml

Maibaum TSE, Mathematical Foundations of
Software Engineering." a Roadmap, in A. Finkelstein
(ed.), The Future of Software Engineering , ICSE
2000, June 4-11 Limerick, Ireland, ACM ord. no.
592000-1, pp. 161-172

Naur P and Randell B (eds.), Software Engineering,
Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs Division, NATO,
1969, 231 pp, http://www.cs.ncl.ac.uk/people/
brian.randell/home, formal/NATO/

Paulk MC et al, Capability Maturity Model, Version
1.1, IEEE Software, v.10, n.4, 1993, pp. 18-27

Pfleeger SL, The Nature of System Change, IEEE-
Softw. v.15, n.3; May-Jun. 1998; pp. 87-90

SEBPC Systems Engineering for Business Process
Change, EPSRC Managed Research Programme,
http://www.ecs.soton.ac.uk/~ph/sebpc/<Nov. 2000>

Shaw M and Garlan D, Software Architecture:
Perspectives on an Emerging Discipline, Prentice-
Hall, 1996

Shrager J and Langley P (eds.), Computational
Models of Scientific Discovery and Theory
Formation, Morgan Kaufmann Publishers, lnc, San
Mateo, CA, 1990, 498 pps.

SOCE 2000 Workshop on Software and Organisation
Co-evolution, Imp. Col., London, 12-13 Jul. 2000

Thagard P., Conceptual Revolutions, Princeton Univ.
Press, Princeton NJ, 1992 pp. 285

Turski WM and Maibaum T, The Specification of
Computer Programs, Addison Wesley, UK, 1987,
278 pps.

Wirth N, Program Development by Step-wise
Refinement, Comm. ACM, v. 14, n. 4, Apr. 1971, pp.
221-227

7 4

