
Compiling Language Definitions: The
ASF+SDF Compiler

M. G. J. VAN DEN BRAND
CWI and Vrije Universiteit
J. HEERING
CWI
P. KLINT
CWI and University of Amsterdam
and
P. A. OLIVIER
CWI

The ASF+SDF Meta-Environment is an interactive language development environment whose
main application areas are definition and implementation of domain-specific languages, genera-
tion of program analysis and transformation tools, and production of software renovation tools. It
uses conditional rewrite rules to define the dynamic semantics and other tool-oriented aspects of
languages, so the effectiveness of the generated tools is critically dependent on the quality of the
rewrite rule implementation. The ASF+SDF rewrite rule compiler generates C code, thus taking
advantage of C’s portability and the sophisticated optimization capabilities of current C compilers
as well as avoiding potential abstract machine interface bottlenecks. It can handle large (10,000+
rule) language definitions and uses an efficient run-time storage scheme capable of handling large
(1,000,000+ node) terms. Term storage uses maximal subterm sharing (hash-consing), which turns
out to be more effective in the case of ASF+SDF than in Lisp or SML. Extensive benchmarking
has shown the time and space performance of the generated code to be as good as or better than
that of the best current rewrite rule and functional language compilers.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.3.2 [Programming Languages]: Language Classifications—Specialized
application languages; D.3.4 [Programming Languages]: Processors—Code generation;
compilers; optimization; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and
Other Rewriting Systems

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Compilation, language definition, maximal subterm sharing,
term rewriting

This research was supported in part by the Telematica Instituut under the Domain-Specific Lan-
guages project. Parts of this article emphasizing memory management issues have appeared in
preliminary form as Van den Brand et al. [1999].
Authors’ addresses: Department of Software Engineering, CWI, Kruislaan 413, 1098
SJ Amsterdam, The Netherlands; email: {Mark.van.den.Brand,Jan.Heering,Poul.Klint,Pieter.
Olivier}@cwi.nl.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.
C© 2002 ACM 0164-0925/02/0700-0334 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002, Pages 334–368.



Compiling Language Definitions: The ASF+SDF Compiler • 335

1. INTRODUCTION

ASF+SDF [Bergstra et al. 1989; van Deursen et al. 1996] is the metalanguage
of the ASF+SDF Meta-Environment [Klint 1993; van den Brand et al. 2001],
an interactive environment for the development of languages and language-
oriented tools, covering parsing, typechecking, translation, transformation, and
execution of programs.

ASF+SDF is a modular specification formalism based on the Algebraic
Specification Formalism ASF and the Syntax Definition Formalism SDF.
The latter is a BNF-like formalism for defining the lexical, context-free,
and abstract syntax of languages [Heering et al. 1989; Visser 1997], fea-
turing a close integration of lexical and context-free syntax. The imple-
mentation of SDF is beyond the scope of this article. Suffice it to say, it
supports fully general context-free parsing without a separate lexical scanning
phase.

The ASF component of ASF+SDF uses rewrite rules to describe the seman-
tics of languages. Such semantics may be static (typechecking) or dynamic. The
latter may have an interpretive or translational character, it may include pro-
gram transformations, and so on. These are all described in terms of rewrite
rules whose left- and right-hand sides are sentences in the language defined by
the SDF-part of the language definition.

Rewriting is the simplification of algebraic expressions or terms every-
body is familiar with. It is ubiquitous in (computer) algebra as well as in
algebraic semantics and algebraic specification. Rewriting is also important
in functional programming, program transformation and optimization, and
equational theorem proving. Useful theoretical surveys of rewriting can be
found in Klop [1992] and Dershowitz and Jouannaud [1990], but we as-
sume only a basic understanding of rewrite systems on the part of the
reader. In addition to regular rewrite rules, ASF+SDF features conditional
rewrite rules, associative (flat) lists, and default rules. These will be explained
below.

ASF+SDF’s current application areas are

—definition and implementation of domain-specific languages;
—generation of program analysis and transformation tools; and
—production of software renovation tools.

Table I gives details and further references. Another application area
is definition and implementation of general purpose programming lan-
guages, but we have accumulated relatively little experience in this area so
far.

Each ASF+SDF module defines the syntax and semantics of a language or
language fragment, ranging from the simple language of Boolean expressions
or expressions involving type environments to (part of) Cobol or Java. Corre-
spondingly, the semantics may range from the simple evaluation of Boolean
expressions or expressions involving type environments to the restructuring of
Cobol programs, the typechecking of Java programs, or the execution behavior
of a domain-specific or general purpose language.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



336 • van den Brand et al.

Table I. Current Application Areas of the ASF+SDF Meta-Environment

Domain-Specific Languages

—Risla [van Deursen and Klint 1998] (financial product specification)
—EURIS [Groote et al. 1995] (railroad safety)
—Action Semantics [van Deursen 1994] (programming language semantics)
—Manifold [Rutten and Thiébaux 1992], ToolBus [Bergstra and Klint 1998] (coordination lan-

guages)
—ALMA-0 [Apt et al. 1998] (backtracking and search)
—Languages of the ASF+SDF Meta-Environment itself [van den Brand et al. 2001]:

—SDF (syntax definition)
—Box (prettyprinting specification)
—ASF+SDF (language definition—this article)

Program Analysis

—Typechecking of Pascal [van Deursen et al. 1996, Chapter 2]
—Typechecking and execution of CLaX [Tip and Dinesh 2001]
—µCRL [Hillebrand 1996] (proof checking and simulation toolkit)
—Dahl [Moonen 1997] (dataflow analysis framework)
—Type inference, object identification, and documentation generation for Cobol [van Deursen

and Moonen 2000]

Program Transformation

—Interactive program transformation for Clean [van den Brand et al. 1995] and Prolog
[Brunekreef 1996]

—PIM [Field 1992] (compiler toolkit)
—Automatic program transformation for C++ [Dinesh et al. 2001]

Software Renovation

—Description of the multiplicity of languages and dialects encountered in software renovation
applications such as Cobol (including embedded languages like SQL and CICS) [van Deursen
et al. 1999]

—Automatic program transformation for restructuring of Cobol programs (including embedded
languages like SQL and CICS) [van den Brand et al. 2000]

—Extraction of grammars from compilers and on-line manuals [Sellink and Verhoef 2000]

The contributions of the ASF+SDF formalism and its implementation are
twofold:

—A seamless integration of syntax and semantics. The rewrite rules defining
the semantics may use both the concrete syntax of the language to be defined
as well as user-defined concrete syntax for semantic operations. Both are
covered by SDF.

—A uniform approach to the definition of data types with user-defined no-
tation and languages with operations like typechecking, execution, and
transformation.

ASF+SDF is more expressive than attribute grammars, which it includes
as the subclass of definitions that are noncircular primitive recursive schemes
(NPRSs) [Courcelle and Franchi-Zannettacci 1982]. This is the natural style for
most typecheckers and translators. Using this correspondence, van der Meulen

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 337

[1996] has transferred incremental evaluation methods originally developed
for attribute grammars to NPRS-style ASF+SDF definitions.

We describe the current ASF+SDF compiler and compare its performance
with that of other rewrite system and functional language compilers we were
able to run, namely, Clean [Plasmeijer and van Eekelen 1994; Smetsers et al.
1991], Elan [Kirchner and Moreau 2001], Haskell [Peyton Jones et al. 1993;
Peyton Jones 1996], Maude [Clavel et al. 1999], Opal [Didrich et al. 1994], and
SML [Appel 1992].

The effectiveness of the tools generated by the ASF+SDF Meta-Environment
is critically dependent on the quality of the rewriting implementation. The
original interpretive implementation left room for improvement. Its author,
inspired by earlier rewrite compilation work of Kaplan [1987], sketched a more
efficient compilational scheme [Dik 1989] that ultimately served as a basis for
the compiler described in this article.

The real-world character of ASF+SDF applications has important conse-
quences for the compiler:

—It must be able to handle ASF+SDF definitions of up to 50,000 lines. Dis-
regarding layout and syntax declarations (SDF-parts), this corresponds to
10,000 (conditional) rewrite rules.

—It must include optimizations for the major sources of inefficiency encoun-
tered in practice.

This article is organized as follows: a brief survey of the ASF+SDF language
(Section 2); a general compilation scheme (Section 3); major design consider-
ations for the ASF+SDF compiler (Section 4); the µASF abstract syntax rep-
resentation (Section 5); preprocessing (Section 6); code generation (Section 7);
postprocessing (Section 8); benchmarking (Section 9); conclusions and further
work (Section 10). Related work is discussed at appropriate points throughout
the text rather than in a separate section.

2. BRIEF SURVEY OF THE ASF+SDF LANGUAGE

In addition to regular rewrite rules, ASF+SDF features conditional rewrite
rules, associative (flat) lists, default rules, and simple modularization. In our
discussion of these features we will emphasize issues affecting their compilation
rather than issues of language design. For the use of ASF+SDF see van Deursen
et al. [1996].

2.1 Syntax Definitions

An ASF+SDF module can define arbitrary lexical and context-free syntax. An
example of the former is shown in Figure 1.1 It defines sort ID for identifiers us-
ing a regular expression involving character classes. It imports module Layout,
which defines lexical syntax for white space, comments, etc. (not shown). Fur-
thermore, again using a regular expression, it defines a set of variables of

1To bring out the correspondence with later phases of the compilation process, we present speci-
fications as typed in by the specification writer rather than in the typeset form produced by the
ASF+SDF Meta-Environment.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



338 • van den Brand et al.

Fig. 1. Definition of identifiers in ASF+SDF.

Fig. 2. Definition of statements in ASF+SDF.

sort ID. All definitions (including the variable declarations) are exported from
the module, meaning they are available in modules importing it.

A simple context-free syntax for statements is shown in Figure 2. It imports
modules Identifiers and Expressions (not shown). In this way, it obtains def-
initions for sorts ID and EXP. It then defines sort STAT for single statements and
STATS for lists of statements. List constructs like {STAT ";"}+ denote separa-
tor lists. In this case, a list of statements consists of one or more statements
separated by semicolons (but no semicolon at the end).

2.2 Conditional Rewrite Rules

We assume throughout that the terms being rewritten are ground terms, that
is, terms without variables. A rule is applicable to a subterm if its left-hand
side matches the subterm, and its conditions (if any) succeed after substitution
of the values found during matching. Such a subterm is called a redex for
that particular rule. The process of exhaustively rewriting a term is called
normalization. The resulting term is called a normal form (if normalization
terminates). Conditions may be positive (equalities) or negative (inequalities).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 339

Fig. 3. Definition of type constants in ASF+SDF.

Negative conditions succeed if both sides are syntactically different after
normalization. Otherwise they fail. They are not allowed to contain variables
not already occurring in the left-hand side of the rule or in a preceding positive
condition. This means both sides of a negative condition are ground terms at
the time the condition is evaluated.

Positive conditions succeed if both sides are syntactically equal after nor-
malization. Otherwise they fail. One side of a positive condition may con-
tain one or more new variables not already occurring in the left-hand side
of the rule or in a preceding positive condition. This means one side of a
positive condition need not be a ground term at the time it is evaluated,
but may contain existentially quantified variables. Their value is obtained
by matching the side they occur in with the other side after the latter has
been normalized. The side containing the variables is not normalized before
matching.

Variables occurring in the right-hand side of the rule must occur in the left-
hand side or in a positive condition, so the right-hand side is a ground term at
the time it is substituted for the redex.

As a running example we will use a definition of the “language” of type
environments (Figure 4). From the viewpoint of ASF+SDF, this is just a (small)
language definition. As explained in Section 1, ASF+SDF does not distinguish
data types with user-defined notation from language definitions with operations
like typechecking, execution, and transformation.

Module Type-environments defines a type environment (sort TENV) as a list
of pairs, where each pair (sort PAIR) consists of an identifier (sort ID) and a type
(sort TYPE). The latter is defined in module Types (Figure 3), which is imported
by Type-environments. It defines bracket notations for pairs and lists of pairs
as well as appropriate distfix notation for the operations lookup and add. A
sample sentence of the type environment language would be

add d with real to [(a:int),(b:real),(c:string)].

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



340 • van den Brand et al.

Fig. 4. Definition of a simple type environment in ASF+SDF.

The semantics of the language is defined by rewrite rules for the operations
lookup and add. Consider rule [at-2] in Figure 4 keeping the above in mind.
Its application proceeds as follows:

(1) Find a redex matching the left-hand side of the rule (if any). This yields
values for the variables Id1, Type1, Id2, Type2, and Pairs1.

(2) Evaluate the first condition. This amounts to a simple syntactic inequality
check of the two identifiers picked up in step 1. If the condition succeeds,
evaluate the second one. Otherwise, the rule does not apply.

(3) Evaluate the second condition. This is a positive condition containing the
new list variable Pairs2 in its right-hand side. The value of Pairs2 is
obtained by matching the right-hand side with the normalized left-
hand side. Since Pairs2 is a list variable, this involves list matching,

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 341

which is explained below. In this particular case, the match always
succeeds.

(4) Finally, replace the redex with the right-hand side of the rule after substi-
tuting the values of Id2 and Type2 found in step 1 and the value of Pairs2
found in Step 3.

2.3 Lists

ASF+SDF lists are associative (flat) and list matching is the same as string
matching. Unlike a term pattern, a list pattern may match a redex in more than
one way. This may lead to backtracking within the scope of the rule containing
the list pattern in the following two closely related cases:

—A rewrite rule containing a list pattern in its left-hand side might use con-
ditions to select an appropriate match from the various possibilities.

—A rewrite rule containing a list pattern with new variables in a positive con-
dition (Section 2.2) might use additional conditions to select an appropriate
match from the various possibilities.

List matching may be used to avoid the explicit traversal of structures. Rule
[l-1] in Figure 4 illustrates this. It does not traverse the type environment
explicitly, but picks an occurrence (if any) of the identifier it is looking for using
two list variables Pairs1 and Pairs2 to match its context. The actual traversal
code is generated by the compiler. In general, however, there is a price to be paid.
While term matching is linear, string matching is NP-complete [Benanav et al.
1985]. Hence, list matching is NP-complete as well. It remains an important
source of inefficiency in the execution of ASF+SDF definitions [Vinju 1999].

2.4 Default Rules

A default rule has lower priority than ordinary rules in the sense that it can be
applied to a redex only if all ordinary rules are exhausted. In Figure 4, lookup
uses default rule [default-l-2] to return nil-type if rule [l-1] fails to find
the identifier it is looking for.

2.5 Modules

ASF+SDF supports import, renaming, and parameterization. Renaming cor-
responds to replacing a syntax rule with another one and replacing the corre-
sponding textual instances. Modularization is eliminated at the preprocessing
level. An ASF+SDF function definition may be distributed over several mod-
ules. Since the compiler maps ASF+SDF functions to C functions, this hampers
separate compilation. The full specification has to be scanned for each function.

2.6 Rewriting Strategies

ASF+SDF is a strict language based on innermost rewriting (call-by-value).
This facilitates compilation to and interfacing with C and other imperative
languages. In particular, it allows ASF+SDF functions to be mapped directly
to C functions and intermediate results produced during term rewriting to be

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



342 • van den Brand et al.

�
�
�
�ASF+SDF

?
Parsing�

�
�
�µASF

?
Preprocessing (Section 6)�

�
�
�µASF+

?
Code generation (Section 7)�

�
�
�C + ATerm Library primitives

?
Postprocessing (Section 8)�

�
�
�C + ATerm Library primitives

Fig. 5. General layout of the ASF+SDF compiler.

stored in an efficient way (Section 7.1). We also encountered cases (conditionals,
for instance) where innermost rewriting proved unsatisfactory. In such cases,
rewriting of specific function arguments can be delayed by annotating them
with the delay attribute. See Bergstra and van den Brand [2000] for details.

3. GENERAL COMPILATION SCHEME

Before we discuss the major design issues, it is useful for the reader to under-
stand the general layout of the compiler as shown in Figure 5. The following
compiler phases can be distinguished:

—Parsing. Since the syntax of ASF+SDF-definitions is largely defined by
their SDF-part, parsing them is a nontrivial two-pass process, whose de-
tails are beyond the scope of this article. Suffice it to say, this phase yields an
abstract syntax representation of the input definition as usual. As indicated
in the second box from the top, the parser’s output formalism is µASF, an
abstract syntax version of ASF+SDF.

—Preprocessing. This is performed on theµASF representation, which is very
close to the source level. Typical examples are detection of variable bindings
(assignments) in conditions and introduction of elses for pairs of conditional

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 343

rewrite rules with identical left-hand sides and complementary conditions.
The output formalism of this phase is µASF+, a superset of µASF.

—Code generation. The compiler generates C extended with calls to the
ATerm library, a run-time library for term manipulation and storage. Each
µASF function is compiled to a separate C function. The right-hand side of a
rewrite rule is translated directly to function calls if necessary. Term match-
ing is compiled to a finite automaton. List matching code depends on the com-
plexity of the pattern involved. A few special list patterns that do not need
backtracking are eliminated by transforming them to equivalent term pat-
terns in the preprocessing phase, but the majority is compiled to special code.

—Postprocessing. This is performed on the C code generated in the previous
phase. A typical example is constant caching.

4. MAJOR DESIGN CONSIDERATIONS

The design of the compiler was influenced by the experience gained in previ-
ous compiler activities within the ASF+SDF project itself [Dik 1989; Fokkink
et al. 1998; Hendriks 1991; Kamperman 1996] as well as in various functional
language and Prolog compiler projects elsewhere. The surveys on functional
language compilation [Hartel et al. 1996] and on Prolog compilation [van Roy
1993] were particularly helpful.

4.1 Choice of C as Target Language

Generating C code is an efficient way to achieve portability as well as interoper-
ability with C programs. Folk wisdom has it that C code is 2–3 times slower than
native code, but this is not borne out by the “Pseudoknot” benchmark results
reported in Hartel et al [1996, Table 9], where the best functional language and
rewrite system compilers generate C code. The probable reason is that many C
compilers perform sophisticated optimizations [Muchnick 1997], although this
raises the issue of tuning the generated C code to the optimizations done by dif-
ferent C compilers. At least in our case, the fact that C is in some respects less
than ideal as a compiler target [Peyton Jones et al. 1998] does not invalidate
these favorable observations.

4.2 Choice of ASF+SDF as Implementation Language

Not unexpectedly in view of its application domain, large parts of the compiler
can be expressed very naturally in ASF+SDF, so it was decided to write the
compiler in its own source language. Since the compiler is fairly large, self-
compilation is an interesting benchmark.

4.3 Pitfalls in High-Level Transformations and Abstract Machine Interfaces—The
Bottleneck Effect

High-level transformations have to be applied with extreme care, especially if
their purpose is to simplify the compiler by reducing the number of different
constructs that have to be handled later on. For instance, by first transforming
conditional rewrite rules to unconditional ones or associative list matching to
term matching, the compiler can be simplified considerably, but at the expense

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



344 • van den Brand et al.

of a serious degradation in the performance of the generated code. Similarly,
transformations of default rules (which can be applied only when all other rules
fail) to sets of ordinary rewrite rules that catch the same cases would lead to
very inefficient code. These transformations would perhaps be appropriate in a
formal semantics of ASF+SDF, but in a compiler they cause a bottleneck whose
effect is hard to undo at a later stage.

Since it would require a high-level transformation phase of the above kind,
the compiler does not generate code for the Abstract Rewrite Machine (ARM)
[Fokkink et al. 1998], which was developed especially for use in rewrite system
compilers. In fact, any fixed abstract machine interface is a potential bottleneck
in the compilation process. The modularization advantage gained by introduc-
ing it may be offset by a serious loss in opportunities for generating efficient
code. This happens when, in the words of Franz [1994, Section 2], “the code
generator effectively needs to reconstruct at considerable expense, information
that was more easily accessible in the front-end, but lost in the transition to
the intermediate representation.”

The factors involved in the use of an abstract machine have a qualitatively
different character. The abstract machine interface facilitates construction and
verification of the compiler, but possibly at the expense of the performance of the
generated code. See also the discussion in van Roy [1993, Section 2.4] on the pros
and cons of the use of the Warren Abstract Machine (WAM) in Prolog compilers.
Although the bottleneck effect is hard to describe in quantitative terms, it has
to be taken seriously, the more so since the elegance of the abstract machine
approach is not conducive to a thorough analysis of its performance in terms of
overall compiler quality.

Of course, C also acts as an abstract machine interface, but, compared with
ARM or other abstract machines, it is much less specialized and more flexible,
acting proportionally less as a bottleneck. The compiler does not simply gen-
erate C, however, but C extended with calls to the ATerm library, a run-time
library for term manipulation and storage (Section 7.1). C cannot be changed,
but the ATerm library can be adapted to prevent it from becoming an obstacle
to further code improvement, should the need arise. We note, however, that
the fact that the ATerm library interface is made available as an API to users
outside the compiler makes it harder to adapt.

Although we feel these to be useful guidelines, they have to be applied with
care. Their validity is not absolute, but depends on many details of the ac-
tual implementation under consideration. The compiler for the lazy functional
language Clean [Plasmeijer and van Eekelen 1994; Smetsers et al. 1991], for
instance, generates native code via an abstract graph rewriting machine, con-
travening several of our guidelines. Nevertheless, our benchmarks (Section 9)
show the Clean compiler and the ASF+SDF compiler can generate code with
comparable performance.

4.4 Organization of Term Storage

ASF+SDF applications may involve rewriting of large terms (>106 nodes).
Usually, this requires constructing and matching many intermediate results
and the proper organization of term storage becomes critical to the run-time

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 345

performance of the term datatype provided by the ATerm library and, as a
consequence, to the run-time performance of the generated code as a whole.
Fortunately, intermediate results created during rewriting tend to have a lot of
overlap. This suggests use of a space saving scheme where terms are created
only when they do not yet exist. The various trade-offs involved in this choice
are discussed in Section 7.1.

5. THE µASF ABSTRACT SYNTAX REPRESENTATION

µASF is the abstract syntax representation (prefix notation only) of ASF+SDF
produced by the parsing phase (Figure 5). As such, it is never written by the
user. A semantics by example of µASF, which helped to answer the questions
that emerged while the compiler was being written, is given in Bergstra and
van den Brand [2000].

The µASF representation of the simple type environment of Figure 4 after
textual expansion of its imports is shown in Figure 6. There are some points to
be noted. The functions and constants used in the rules are declared in the sig-
nature section with their argument positions (if any) indicated by underscores.
Although ASF+SDF is a many-sorted formalism, the sorts can be dispensed
with after parsing and conversion to µASF. The predefined list constructors
list (conversion to single element list), conc (associative list concatenation),
and null (the empty list) need not be declared.

Symbols starting with a capital are variables. These need not be declared in
the signature. List variables are prefixed with a “*” if they can match the empty
list or with a “+” if they cannot. The predefined symbols used in the rules are
listed in Table II. The =, ==, and != operators have higher precedence than &
and ==>.

6. PREPROCESSING

Figure 7 is a refinement of Figure 5 showing the preprocessing steps as well as
other actions performed in later phases of the compiler. The output language
of the preprocessing phase is µASF+, which is µASF with the additional con-
structs shown in Table III. Their purpose will become clear later on when the
preprocessing (Section 6) and code generation (Section 7) are discussed. Some of
them, like nested rules and the else-construct, are similar to constructs avail-
able in functional languages and might very well be added to ASF+SDF, but
this remains to be done.

We now discuss the main preprocessing steps in more detail. As noted in
Section 4.3, they have to be chosen judiciously to prevent them from becoming
counterproductive. Each step has to preserve the innermost rewriting strategy2

as well as the backtracking behavior of list matching.

6.1 Collection of Rules per Function

An ASF+SDF function definition may be distributed over several modules
(Section 2.5). The preprocessing phase starts by traversing the top module for

2Function arguments annotated with the delay attribute (Section 2.6) have to be taken into account
as well, but will be ignored in this article for the sake of readability.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



346 • van den Brand et al.

Fig. 6. µASF version of the simple type environment of Figure 4.

Table II. The Predefined Symbols Used in µASF
Rewrite Rules

= left-to-right rewrite
== equality in positive condition
!= inequality in negative condition
& conjunction of conditions
==> implication
default: default rule flag
list conversion to single element list
conc associative list concatenation
null empty list

which code has to be generated and all modules directly and indirectly imported
by it, collecting the rewrite rules for each function declared in its signature,
that is, the rules whose left-hand side has the function as its outermost symbol.
Functions without any such rules are marked as constructors in the µASF+

intermediate representation.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 347

Fig. 7. Layout of the ASF+SDF compiler. This is a refinement of Figure 5.

6.2 Linearization of Left-Hand Sides

A rewrite rule is nonlinear if its left-hand side contains more than one occur-
rence of the same variable. Different occurrences of the same variable have
to obtain the same value during matching, so nonlinearity amounts to an
implicit equality check. Nonlinearities are eliminated by adding appropriate

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



348 • van den Brand et al.

Table III. Additional Predefined Symbols of
µASF+

:= assignment
{ } nesting of rules
else alternative
list head first element of list
list tail tail of list
list last last element of list
list prefix prefix of list
not empty list list-not-empty predicate
t, f true, false

positive conditions. Innermost rewriting guarantees that these conditions
do not cause spurious rewrite steps not done by the original nonlinear
match.

For example, rules [l-1] and [at-1] in Figure 6 are nonlinear since variable
Id occurs twice in their left-hand side. Rule [at-1] would be transformed into

[at-1’] Id == Id1

==>

add-to(Id,Type1,type-env(conc(pair(Id1,Type2),*Pairs1)))

= type-env(conc(pair(Id,Type1),*Pairs1))

with new variable Id1 not already occurring in the original rule, and similarly
for [l-1].

Linearization simplifies the matching automaton and enables further trans-
formations, especially the introduction of elses if there is a corresponding rule
with a negative condition as is often the case (see below). The condition is im-
plemented very efficiently as a pointer equality check as will be explained in
Section 7.1.

6.3 Introduction of Assignments in Conditions

As explained in Section 2.2, one side of a positive condition may contain vari-
ables that are uninstantiated at the time the condition is evaluated. A value is
assigned to them by matching the side they occur in with the other side after the
latter has been normalized. The side containing the uninstantiated variables is
not normalized before matching. To flag this case to the code generation phase,
the µASF equality is replaced by the µASF+ assignment. If necessary, the left-
and right-hand sides of the original condition are interchanged.

Rule [at-2] in Figure 6 is of this kind since its second condition contains the
new list variable *Pairs2. It would be transformed into

[at-2’] Id1 != Id2 &

type-env(*Pairs2) := add-to(Id1,Type1,type-env(*Pairs1))

==>

add-to(Id1,Type1,type-env(conc(pair(Id2,Type2),*Pairs1)))

= type-env(conc(pair(Id2,Type2),*Pairs2)).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 349

6.4 Simplification of List Patterns

To simplify the generation of list matching code, list patterns in the left-hand
side of a rule or an assignment are brought in a standard form containing, apart
from the list constructors list and conc, only variables and constants. Other
more complicated subpatterns are replaced by new variables that are evaluated
in new assignment conditions. This transformation preserves the backtracking
behavior of list matching.

Rule [at-1’], for example, will be transformed into

[at-1’’] pair(Id1,Type2) := P &

Id == Id1

==>

add-to(Id,Type1,type-env(conc(P,*Pairs1)))

= type-env(conc(pair(Id,Type1),*Pairs1))

and similarly for [at-2’] and [l-1].
List matching may cause backtracking, but list patterns containing only

a single list variable or no list variables at all never do. In such cases, list
matching can be eliminated using the µASF+ list functions in Table III. For
example, [at-1’’] is transformed into

[at-1’’’] t := non_empty_list(*Pairs) &

P := list_head(*Pairs) &

*Pairs1 := list_tail(*Pairs) &

pair(Id1,Type2) := P &

Id == Id1

==>

add-to(Id,Type1,type-env(*Pairs))

= type-env(conc(pair(Id,Type1),*Pairs1)),

where t is the Boolean value true (Table III), and similarly for [at-2’’].

6.5 Combination of Rules with Identical Conditions

Rules [at-1’’’] and [at-2’’’] resulting from the previous step have their left-
hand side and first four conditions in common (up to renaming of variables).
By factoring out the common elements after a suitable renaming of variables,
they can be combined into the single nested rule

[at-1-2] t := non_empty_list(*Pairs) &

P := list_head(*Pairs) &

*Pairs1 := list_tail(*Pairs) &

pair(Id1,Type2) := P

==>

add-to(Id,Type1,type-env(*Pairs)) =

{

Id == Id1

==>

type-env(conc(pair(Id,Type1),*Pairs1));

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



350 • van den Brand et al.

Id != Id1 &

type-env(*Pairs2) := add-to(Id,Type1,type-env(*Pairs1))

==>

type-env(conc(pair(Id1,Type2),*Pairs2))

},

where the accolades are in µASF+. The depth of nesting produced in this way
may be arbitrarily large.

6.6 Introduction of else Cases

µASF+ provides an else construct which is used to combine pairs of conditional
rewrite rules with identical left-hand sides (up to renaming of variables) and
complementary conditions. Introducing it in the result of the previous step
yields

[at-1-2’] t := non_empty_list(*Pairs) &

P := list_head(*Pairs) &

*Pairs1 := list_tail(*Pairs) &

pair(Id1,Type2) := P

==>

add-to(Id,Type1,type-env(*Pairs)) =

{

Id == Id1

==>

type-env(conc(pair(Id,Type1),*Pairs1))

else

type-env(*Pairs2) := add-to(Id,Type1,type-env(*Pairs1))

==>

type-env(conc(pair(Id1,Type2),*Pairs2))

}.

7. CODE GENERATION

7.1 The ATerm Library

7.1.1 Introduction. The compiler generates C extended with calls to the
ATerm library, a run-time library for term manipulation and storage. In this
section we discuss the ATerm library from the perspective of the compiler. For
a broader viewpoint and further applications see Van den Brand et al. [1999;
2000].

Selected ATerm library functions are listed in Table IV. Many of them corre-
spond directly to predefined symbols of µASF (Table II) and µASF+ (Table III).
Examples of actual code using them are given in Sections 7.2 and 7.3.

7.1.2 Term Storage. The decision to store terms uniquely is a major factor
in the good run-time performance of the code generated by the compiler. If
a term to be constructed during rewriting already exists, it is reused, thus

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 351

Table IV. Selected ATerm Library Functions

term equal(t1,t2) Check if terms t1 and t2 are equal
make list(t) Create list with t as single element
conc(l1,l2) Concatenate lists l1 and l2

insert(t,l) Insert term t in front of list l
null() Create empty list
list head(l) Get head of list l
list tail(l) Get tail of list l
list last(l) Get last element of list l
list prefix(l) Get prefix of list l
not empty list(l) Check if list l is empty
is single element(l) Check if list l has a single element
slice(p1, p2) Take slice of list starting at pointer p1 and

ending at p2
check sym(t,s) Check if term t has outermost symbol s
arg i(t) Get i-th argument
make nfi(s,t0,...,ti-1) Construct normal form with outermost

symbol s and arguments t0,. . .,ti-1

guaranteeing maximal sharing. This strategy exploits the redundancy typically
present in the terms built during rewriting. The sharing is transparent, so the
compiler does not have to take precautions during code generation.

Maximal sharing of terms can only be maintained if the term construction
functions make nf0, make nf1, . . . (Table IV) check whether the term to be con-
structed already exists. This implies a search through all existing terms, which
must be very fast in order not to impose an unacceptable penalty on term con-
struction. Using a hash function depending on the internal code of the function
symbol and the addresses of its arguments, make nfi can quickly search for a
function application before constructing it. Hence, apart from the space over-
head caused by the initial allocation of a hash table of sufficient size,3 the modest
(but not negligible) time overhead at term construction time is one hash table
lookup.

We get two returns on this investment:

—Reduced memory usage. The amount of space gained by sharing terms is
usually much larger than the space used by the hash table. This is useful in
itself, but it also yields a substantial reduction in (real-time) execution time.

—Fast equality check. Since terms are stored uniquely, term equal, the equal-
ity check on terms, only has to check for pointer equality rather than struc-
tural equality. The compiler generates calls to term equal in the pattern
matching and condition evaluation code. For the same reason, this storage
scheme combines very well with memoization (Section 7.4).

It turns out the increased term construction time is more than compensated for
by fast equality checking and less use of space (and hence time).

7.1.3 Shared Terms vs. Destructive Updates. Shared terms cannot be mod-
ified without causing unpredictable side effects, the more so since the ATerm

3Hash table overflow is not fatal, but causes allocation of a larger table followed by rehashing.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



352 • van den Brand et al.

library is not only used by compiler generated code but also by other compo-
nents of the ASF+SDF Meta-Environment. Destructive updates would there-
fore cause unwanted side effects throughout the system.

During rewriting by compiler-generated code, the immutability of terms
causes no efficiency problems since they are created in a nondestructive way
as a consequence of the innermost reduction strategy. Normal forms are con-
structed bottom-up and there is no need to perform destructive updates on a
term once it has been constructed. Also, during normalization the input term
itself is not modified but the normal form is constructed separately. Modifica-
tion of the input term would result in graph rewriting instead of (innermost)
term rewriting.

List operations like concatenation and slicing may become expensive, how-
ever, if they cannot simply modify one of their arguments. List concatenation,
for instance, can only be performed using ATerm library primitives by taking
the second list, successively prepending the elements of the first list to it, and
returning the new list as a result.

The idea of subterm sharing is known in the Lisp community as hash-consing
[Allen 1978]. Its success has been limited by the existence of the Lisp functions
rplaca and rplacd, which modify a list destructively. HLisp (Hash Lisp) is a Lisp
dialect supporting hash-consing at the language level [Terashima and Kanada
1990]. It has two kinds of list structures: “monocopy” lists with maximal sharing
and “multicopy” lists without maximal sharing. Before a destructive change is
made to a monocopy list, it has to be converted to a multicopy list.

ASF+SDF does not have functions like rplaca and rplacd, and the ATerm
library only supports the equivalent of HLisp monocopy lists. Although the
availability of destructive updates would make the code for some list operations
more efficient, such cases are relatively rare. This explains why the technique
of subterm sharing can be applied more successfully in ASF+SDF than in Lisp.

7.1.4 Garbage Collection. During rewriting, a large number of interme-
diate results is created, most of which will not be part of the end result and
have to be reclaimed. There are basically three realistic alternatives for this.
We will discuss their advantages and disadvantages in relation to the ATerm
library. For an in-depth discussion of garbage collection in general and these
three alternatives in particular, we refer the reader to Jones and Lins [1996].

Since ATerms do not contain cycles, reference counting is an obvious alter-
native to consider. Two problems make it unattractive, however. First and most
important, there is no portable way in C to detect when local variables are
no longer in use without help from the programmer. Second, the memory over-
head of reference counting is large. Most ATerms can be stored in a few machine
words, and it would be a waste of memory to add another word solely for the
purpose of reference counting.

The other two alternatives are mark-compact and mark-sweep garbage col-
lection. The choice of C as an implementation language is not compatible with
mark-compact garbage collection since there is no portable and at the same
time reliable way in C to find all local variables on the stack without help from
the programmer. This means pointers to ATerms on the stack cannot be made

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 353

to point to the new location of the corresponding terms after compactification.
The usual solution is to “freeze” all objects that might be referenced from the
stack, and only relocate objects that are not. Not being able to move all terms
negates many of the advantages of mark-compact garbage collection such as
decreased fragmentation and fast allocation.

The best alternative turns out to be mark-sweep garbage collection. It can
be implemented efficiently in C, both in time and space, and with little or no
support from the programmer [Boehm 1993]. We implemented this garbage
collector from scratch, with many of the underlying ideas taken directly from
Boehm’s garbage collector, but tailored to the special characteristics of ATerms
both to obtain better control over the garbage collection process as well as for
reasons of efficiency.

Starting with the former, ATerms are always referenced from a hash table,
even if they are no longer in use. Hence, the garbage collector should not scan
this table for references. We also need enough control to remove an ATerm from
the hash table when it is freed; otherwise the table would quickly fill up with
unused term references.

As for efficiency, experience shows that typically very few ATerms are ref-
erenced from static variables or from generic datastructures on the heap. By
providing a mechanism (ATprotect) to enable the user of the ATerm library to
register references to ATerms that are not local (auto) variables, we are able to
completely eliminate the expensive scan of the static data area and the heap.

We also have the advantage that almost all ATerms can be stored using only
a few words of memory. This makes it convenient to base the algorithm used
on only a small number of block sizes compared to a generic garbage collector
that cannot make any assumptions about the sizes of the memory chunks that
will be requested at run-time.

7.1.5 Discussion. Our positive experience with hash-consing in ASF+SDF
refutes the theoretical arguments against its potential usefulness in the equa-
tional programming language Epic mentioned by Fokkink et al. [1998, p. 701].
Also, while our experience seems to be at variance with observations made by
Appel and Gonçalves [1993] in the context of SML, where sharing resulted in
only slightly better execution speed and marginal space savings, both shar-
ing schemes are actually rather different. In our scheme, terms are shared
immediately at the time they are created, whereas Appel and Gonçalves de-
layed the sharing of subterms until the next garbage collection. This mini-
mizes the overhead at term construction time, but at the same time sacrifices
the benefits (space savings and a fast equality test) of sharing terms that have
not yet survived a garbage collection. The different usage patterns of terms
in SML and ASF+SDF may also contribute to these seemingly contradictory
observations.

7.2 Matching

7.2.1 Term Matching. After collecting the rules making up a function
definition (Section 6.1), the compiler transforms their left-hand sides into a
deterministic finite automaton that controls the matching of the function

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



354 • van den Brand et al.

call at run-time, an approach originally due to Hoffmann and O’Donnell
[1982]. In this way, each generated C function gets its own local matching
automaton.

The semantics of ASF+SDF does not prescribe a particular way to resolve
ambiguous matches, that is, more than a single left-hand side matching the
same innermost redex, so the compiler is free to choose a suitable disam-
biguation strategy. To obtain a deterministic matching automaton it uses the
specificity order defined in Fokkink et al. [1998, Definition 2.2.1]. Rewrite rules
with more specific left-hand sides take precedence over rules whose left-hand
sides are more general. Default rules correspond to “otherwise” cases in the
automaton.

In the generated C code the matching automata are often hard to distinguish
from the conditions of conditional rules, especially since the latter may have
been generated in the preprocessing phase by the compiler itself to linearize or
simplify left-hand sides.

The matching automata generated by the compiler are not necessarily opti-
mal. We decided to keep the compiler simple, and take the suboptimal code for
granted, especially since it usually does not make much difference. Consider
the following two rules:

f(a,b,c) = g(a),

f(X,b,d) = g(X),

where a, b, c, d are constants, and X is a variable. The compiler currently gen-
erates the following code in this case:

ATerm f(ATerm arg0, ATerm arg1, ATerm arg2) {

if term_equal(arg0,a) {

if term_equal(arg1,b) {

if term_equal(arg2,c) {

return g(a);

}

}

}

if term_equal(arg1,b) {

if term_equal(arg2,d) {

return g(arg0);

}

}

return make_nf3(fsym, arg0, arg1, arg2)

},

where fsym is a constant corresponding to the function name f. The generated
matching automaton is straightforward. It checks the arguments of each left-
hand side from left to right using the ATerm library function term equal, which
does a simple pointer equality check (Section 7.1.2). If neither left-hand side
matches, the appropriate normal form is constructed by ATerm library function
make nf3 (Table IV).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 355

Slightly better code could be obtained by dropping the left-to-right bias of
the generated automaton4 and checking arg1 rather than arg0 first:

ATerm f(ATerm arg0, ATerm arg1, ATerm arg2) {

if term_equal(arg1,b) {

if term_equal(arg0,a) {

if term_equal(arg2,c) {

return g(a);

}

}

else if term_equal(arg2,d) {

return g(arg0);

}

}

return make_nf3(fsym, arg0, arg1, arg2)

}.

7.2.2 List Matching. As was pointed out in Section 6.4, a few simple cases
of list matching that do not need backtracking are transformed to ordinary
term matching in the preprocessing phase. The other cases are translated to
nested while-loops. These handle the (limited form of) backtracking that may be
caused by condition failure (Section 2.3). Further optimization of the generated
code has turned out to be hard [Vinju 1999].

7.3 Evaluation of Conditions and Right-Hand Sides

The code generated for rule [at-1-2’] (Section 6.6) is shown in Figure 8. As in
the previous example, the various ATerm functions used in the code are listed
in Table IV. The µASF+ else of the rule corresponds to the first else in the C
code.

7.4 Memoization

To obtain faster code, the compiler can be instructed to memoize explicitly given
ASF+SDF functions. The corresponding C functions get local hash tables to
store each set of arguments5 along with the corresponding result (normal form)
once it has been computed. When called with a “known” set of arguments, the
result is obtained from the memo table rather than recomputed. See also Field
and Harrison [1988, Chapter 19].

Maximal subterm sharing (hash-consing) as used in the ATerm library (Sec-
tion 7.1.2) combines very well with memoization. Since memo tables tend to
contain many similar terms (function calls), memo table storage is effectively
reduced by sharing. Furthermore, the check whether a set of arguments is
already in the memo table is a simple equality check on the corresponding

4Nedjah et al. [1997] discussed optimization of the matching automaton under a left-to-right
constraint.
5Function arguments annotated with the delay attribute need not be in normal form when stored
in the memo table.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



356 • van den Brand et al.

ATerm add_to(ATerm arg0, ATerm arg1, ATerm arg2)

{

ATerm tmp[6];

if (check_sym(arg2, type_env_sym)) { /* arg2 = type-env(*Pairs) */

ATerm atmp20 = arg_0(arg2);

if (not_empty_list(atmp20)) { /* t := non_empty_list(*Pairs) */

tmp[0] = list_head(atmp20); /* P := list_head(*Pairs) */

tmp[1] = list_tail(atmp20); /* *Pairs1 := list_tail(*Pairs) */

if (check_sym(tmp[0], pair_sym)) { /* pair(Id1,Type2) := P */

tmp[2] = arg_0(tmp[0]); /* Id1 */

tmp[3] = arg_1(tmp[0]); /* Type2 */

if (term_equal(arg0, tmp[2])) { /* Id == Id1 */

return make_nf1(type_env_sym,

conc(make_list(make_nf2(pair_sym, arg0, arg1)),

tmp[1]));

}

else {

tmp[4] = add_to(arg0, arg1, make_nf1(type_env_sym, tmp[1]));

/* tmp[4] = add-to(Id,Type1,type-env(*Pairs1)) */

if (check_sym(tmp[4], type_env_sym)) {

/* tmp[4] = type-env(*Pairs) */

tmp[5] = arg_0(tmp[4]);

return make_nf1(type_env_sym,

conc(make_list(make_nf2(pair_sym, tmp[2], tmp[3])),

tmp[5]));

}

}

}

}

else {

return type_env(make_list(make_nf2(pair_sym, arg0, arg1)));

}

}

return make_nf3(add_to_sym, arg0, arg1, arg2);

}

Fig. 8. Code generated for rule [at-1-2’].

pointers. There is currently no hard limit on the size of a memo table, so the
issue of replacement of table entries does not (yet) arise.

Unfortunately, since its effects may be hard to predict, memoization is some-
thing of a “fine art,” not unlike adding strictness annotations to lazy functional
programs. Memoization may easily become counterproductive if the memoized
functions are not called with the same arguments sufficiently often, and finding

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 357

the right subset of functions to memoize may require considerable experimen-
tation and insight.

8. POSTPROCESSING

The quality of the generated C code is further improved by tail recursion elim-
ination and constant caching. Not all C compilers are capable of tail recursion
elimination, and no compiler known to us can do it if it has to produce code with
symbolic debugging information, so the ASF+SDF compiler takes care of this
itself. In principle, this optimization could also be done by the preprocessor if a
while-construct were added to µASF+.

Constant caching is a restricted form of memoization. Unlike the latter, it is
performed fully automatically on ground terms occurring in right-hand sides
of rules or in conditions. These may be evaluated more than once during the
evaluation of a term, but since their normal form is the same each time (no side
effects), they are recognized and transformed into constants. The first time
a constant is encountered during evaluation, the associated ground term is
normalized and the result is assigned to the constant. In this way, the constant
acts as a cache for the normal form.

There are good reasons to prefer this hybrid compile-time/run-time approach
to a compile-time only approach:

—The compiler would have to normalize the ground terms in question. Al-
though a suitable µASF interpreter that can be called by the compiler exists,
such normalizations potentially require the full definition to be available.

—The resulting normal forms may be quite big, causing an enormous increase
in code size.

9. BENCHMARKING

Table V lists some of the semantic features of the languages used in the bench-
marking of the ASF+SDF compiler. Modularization aspects are not included.
As can be seen in the second column, not all languages are of the same type.
Like ASF+SDF, Elan and Maude are first-order rewriting languages, whereas
Clean, Haskell, Opal, and SML are general-purpose, higher-order, functional
languages. At least to some extent, this difference in orientation and purpose
complicates selection of suitable benchmark programs and interpretation of the
results obtained.

Keeping this in mind, we devised benchmark programs with a highly syn-
thetic character to evaluate specific implementation aspects, such as the ef-
fect of subterm sharing, graph rewriting, strict versus lazy evaluation, and the
like. They do not provide an overall comparison of the various systems. In se-
lecting benchmarks suitable for ASF+SDF, we inevitably cover only a small
part of the feature space of Clean, Haskell, Opal, and SML. The “Pseudoknot”
benchmark [Hartel et al. 1996] would have provided broader coverage, but its
emphasis on numerical (floating point) computation makes it unsuitable for
ASF+SDF, which is aimed at the definition of languages and language-based
tool generation.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



358 • van den Brand et al.

Table V. Languages Used in the Benchmarking of the ASF+SDF Compiler

Type of language and
Language semantic characteristics Compiled to

ASF+SDF Language definition formalism C
• First-order
• Strict
• Conditional (both pos and neg)
• Default rules
• A-rewriting (lists)

Clean Functional language Native code via
[Plasmeijer and van Eekelen 1994] • Higher-order ABC abstract
[Smetsers et al. 1991] • Lazy graph rewriting

• Strictness annotations machine
• Polymorphic typing

Elan Rewriting logic language C
[Kirchner and Moreau 2001] • First-order

• Strategy specification
• AC-rewriting

Haskell Functional language C
[Peyton Jones et al. 1993] • Higher-order
[Peyton Jones 1996] • Lazy

• Strictness annotations
• Polymorphic typing

Maude Rewriting logic language Interpreted
[Clavel et al. 1999] • First-order Core Maude

• Reflection
• AC-rewriting

Opal Algebraic programming language C
[Didrich et al. 1994] • Higher-order

• Strict
• Parametric typing

SML Functional language Native code
[Appel 1992] • Higher-order

• Strict
• Polymorphic typing

Section 9.1 gives the results of our synthetic benchmarks for the languages
listed in Table V. These figures are supplemented with results for some large
ASF+SDF definitions in actual use, both with and without maximal subterm
sharing in Section 9.2. Using profile information, the effects of maximal sharing
are discussed in more detail in Section 9.3.

9.1 Three Synthetic Benchmarks

All three benchmarks deal with the symbolic manipulation of natural number
expressions, where the natural numbers involved are in successor representa-
tion (unary representation).

The benchmarks are based on the normalization of expressions 2n mod 17,
with 17 ≤ n ≤ 23. They are small programs that give rise to computations on
very big terms. The fact that there are much more efficient ways to compute
these expressions is of no concern here, except that this makes it easy to validate
the results. The sources are available in Olivier [2002].

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 359

Fig. 9. Execution times for the evalsym benchmark.

Measurements for ASF+SDF were obtained both with and without maximal
subterm sharing. For this purpose, the possibility to switch subterm sharing
off, which is not a standard compiler option, was added. Some systems failed
to compute results for the full range 17 ≤ n ≤ 23. In those cases, the corre-
sponding graph ended prematurely. Measurements were performed on a Mobile
Pentium II (266 Mhz) with 128 MB of memory running Linux.

9.1.1 The evalsym Benchmark. The first benchmark is called evalsym and
uses an algorithm that is CPU intensive, but does not use a lot of memory.
The results are shown in Figure 9. The differences between ASF+SDF, Elan,
Haskell, Opal, and SML are relatively small, but Clean is about 1.7 times faster.
Maude is about 5 times slower than the other systems, except for ASF+SDF
without sharing. This is caused by the fact that Maude is interpreted (after
translation to core Maude). The reason for including Maude in our benchmarks
is the fact that, compared with other interpreters, the Maude interpreter is
extremely fast.

9.1.2 The evalexp Benchmark. The second benchmark is called evalexp.
As shown in Figure 10, implementations that do not use some form of subterm
sharing cannot cope with the excessive memory requirements of this bench-
mark. Opal, which is a strict language, probably achieves its good performance
by the combined use of common subexpression elimination, peephole optimiza-
tion, and so-called lazy compile-time reference counting garbage collection;
ASF+SDF; and Elan, which are also strict, both use maximal subterm sharing

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



360 • van den Brand et al.

Fig. 10. Memory usage for the evalexp benchmark.

(Elan also uses the ATerm library); and Clean (lazy) uses lazy graph rewriting.
Laziness is not enough, however, as is shown by the figures for Haskell.

Execution times are plotted in Figure 11. Only Clean (lazy) is faster than
ASF+SDF, actually about twice as fast.

9.1.3 The evaltree Benchmark. The third benchmark is called evaltree
and is based on an algorithm that uses a lot of memory both with lazy and strict
implementations, even those based on graph rewriting. Figure 12 shows that
only Elan and ASF+SDF scale up for n> 20. They can keep memory require-
ments at an acceptable level due to their use of maximal subterm sharing. The
execution times are shown in Figure 13. Not surprisingly, the extreme mem-
ory usage of the other systems leads to a degradation in execution times. In
particular, Clean (lazy) is much slower than ASF+SDF this time.

Recall that the sharing scheme used by the ASF+SDF implementation is
transparent to the rewriting process. In particular, it does not lead to graph
rewriting, where multiple occurrences of a redex can be replaced in one stroke,
but subterm sharing is usually not maximal. This explains why in some cases
graph rewriting is faster than term rewriting with maximal subterm sharing
while it is slower in others.

9.2 Some Large ASF+SDF Definitions

Table VI gives some statistics for several large ASF+SDF definitions whose
performance is shown in Table VII. The ASF+SDF compiler was written in

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 361

Fig. 11. Execution times for the evalexp benchmark.

Fig. 12. Memory usage for the evaltree benchmark.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



362 • van den Brand et al.

Fig. 13. Execution times for the evaltree benchmark.

ASF+SDF itself, so the top entry in the fourth column of Table VI gives the
self-compilation time.

We briefly describe the other applications. The Java servlet generator pro-
duces Java servlet code for a textual representation of a UML-like specification.
The latter models database applications, for example, of banks and insurance
companies. The generated Java servlet code implements a GUI to access the
databases via Web pages.

The typesetter generates a textual representation from a box expression
describing the formatting of a document in an abstract way [de Jonge 2001].

The SDF normalizer translates an SDF specification to an intermediate rep-
resentation in so-called KernelSDF. This involves the removal of its modular
structure and simplification of complex grammar constructions. A detailed de-
scription of the operations performed during normalization can be found in
Visser [1997].

Finally, the Pico interpreter is an evaluator for the toy language Pico.
The various Pico language constructions are evaluated given some value
environment.

The C compilation times in the last column of Table VI were obtained using
the gcc compiler with maximal optimizations on a 500-Mhz Pentium III PC
running Linux.

Table VII shows the effects of maximal subterm sharing on the performance
of the compiled versions. The figure in the top entry of the leftmost column is
again the self-compilation time of the ASF+SDF compiler, but in this case only

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 363

Table VI. Size and Compilation Time for Some Large ASF+SDF Definitions

Definition ASF+SDF ASF+SDF Generated ASF+SDF to C C
(rules) (lines) C code compilation compilation

(lines) time (sec) time (sec)

ASF+SDF compiler 1322 8373 45,605 67 171
Java servlet generator 1446 12578 37,193 174 179
Typesetter 607 2685 12,231 12 36
SDF normalizer 941 3932 16,192 20 45
Pico interpreter 200 448 2,462 2 8

Table VII. Performance of Some Large ASF+SDF Definitions with
and without Maximal Subterm Sharing

Application Time (sec) Memory (MB)
with without with without

sharing sharing sharing sharing

ASF+SDF compiler 45 155 27 134
Java servlet generator 12 50 10 34
Typesetter 10 49 5 5
SDF normalizer 8 28 8 11
Pico interpreter 20 80 4 4

the time spent on rewriting was measured, whereas the corresponding figure
in Table VI includes pre- and postprocessing phases.

9.3 The Effects of Maximal Subterm Sharing

In this section we present some further figures to shed more light on the ef-
fects of maximal subterm sharing. Table VIII shows the results of profiling the
typesetter application used in the previous section. We profiled one run with
maximal subterm sharing and the standard pointer equality check, one run
with sharing but with a “deep” equality check mimicking the equality check
when subterm sharing is not necessarily maximal (as would be the case for
graph rewriting), and a third run without sharing.

Table VIII lists the functions that contributed most to total run time with the
relative and absolute times spent by them, and the number of times they were
called. In the standard configuration with sharing enabled, the ATerm library
function make nf1 (Table IV) takes the largest percentage of the total run time,
followed at a considerable distance by lf 28 and other functions. Hence, the
compiled specification spends most of its time building function applications
with one argument. To be more precise, it spends most of its time checking
whether the term already exists. If a new term has to be created, the ATerm
library function alloc term has to allocate space for it, but alloc term is called
very rarely, as can be seen by comparing the number of calls to make nf1 and
alloc term. This is a clear indication of the success of sharing.

In the second section, the use of a “deep” equality causes the term equal
function to pop up at the second position in the profile, taking almost as much
time as make nf1. This causes an increase in total run time and a corresponding
drop in the percentages of the other functions. This difference indicates that

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



364 • van den Brand et al.

Table VIII. Profiling Information for the Typesetter Application: The lf xx

Functions Correspond to ASF+SDF Functions in the Typesetter Specification; the
Other Ones Are Term Manipulation Functions from the ATerm library

Function Rel. time (%) Abs. time (sec) No. of calls

Sharing and make nf1 33.56 5.81 36,033,817
pointer equality lf 28 17.91 3.10 1,671,423

make list 10.80 1.87 10,103,016
get prefix 5.72 0.99 10,273,671
lf 2 4.27 0.74 8,372,608
...

alloc term 0.12 0.02 110,047
...

Sharing and make nf1 23.93 5.64 36,033,817
deep equality term equal 23.42 5.52 69,603,654

lf 28 14.76 3.48 1,671,423
make list 8.23 1.94 10,103,016
insert 3.82 0.90 3,084,966
...

No sharing sweep phase 28.59 14.69 1,222
and structural mark term 18.20 9.35 2,124,199
equality term equal 11.35 5.83 72,134,451

alloc term 9.58 4.92 50,074,596
lf 28 7.34 3.77 1,671,423
mark phase 4.73 2.43 1,222
free term 3.17 1.63 49,962,171
make nf1 3.06 1.57 36,033,817
...

the replacement of a deep equality check with a pointer comparison leads to a
gain of about 24% in execution time in this example.

The last section shows why performance degrades so drastically when shar-
ing is disabled. The garbage collector has to perform extra work to reclaim
space occupied by short-lived terms. This explains the rise of the sweep phase,
mark term, mark phase, and free term functions. The make nf1 function has ac-
tually become more efficient, because it does not have to check for existence of
terms. It can simply call alloc term each time and fill in the term to be created.
Consequently, the make nf1 function has dropped to the eighth position with
only 3% of the time.

Note that the last profile also suggests that the ATerm garbage collector
takes a large amount of time, and that this is the reason ASF+SDF performs
so badly when sharing is turned off. The only reason this is not noticeable
when sharing is turned on is because in that case relatively few new terms are
actually created and garbage collection plays a minor role.

10. CONCLUSIONS AND FURTHER WORK

10.1 Conclusions

The ASF+SDF compiler generates high quality C code in a relatively straight-
forward way. The main factors contributing to its performance are the decisions
to generate C code directly and to use a run-time term storage scheme based

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 365

on maximal subterm sharing. The specific benefits of using maximal subterm
sharing are:

—Reduced memory usage. This saves time as well. Very large terms can be
processed efficiently.

—Fast equality check. Structural equality checks can be replaced by much
more efficient pointer equality checks.

—Space-efficient memoization. Since memo tables tend to contain many sim-
ilar terms, less memo table storage is needed.

We feel our results show maximal subterm sharing to be a promising imple-
mentation technique for other term processing applications as well.

10.2 Further Work

Some possibilities for further improvement and extension are

—Incorporation of additional preprocessing steps such as argument reordering
during matching, evaluation of sufficiently simple conditions during match-
ing in a dataflow fashion, that is, as soon as the required values become
available, and reordering of independent conditions.

—Optimization of repeated applications of a rule like rule [s-1] in Sec-
tion 7.2.2, or of successive applications of different rules by analyzing their
left- and right-hand sides. Similarly, elimination of the redex search phase
in some cases (“matchless rewriting”).

—Incorporation of other rewrite strategy options besides default rules and the
delay attribute that are currently supported.

—Combination of maximal subterm sharing with graph rewriting. As shown by
our benchmarks, in some cases graph rewriting is faster than term rewriting
with maximal subterm sharing, while in others it is slower, so it may be
worthwhile to investigate their combination.

—Use of an incremental garbage collector.

ACKNOWLEDGMENTS

We would like to thank Hayco de Jong for his contribution to the implemen-
tation of the ATerm library, Jurgen Vinju for looking into the efficiency of list
matching and maintaining the current version of the ASF+SDF compiler, Wan
Fokkink for his useful remarks, and Pierre-Etienne Moreau for discussions on
the compilation of term rewriting systems in general. The idea for the bench-
mark programs in Section 9.1 is due to Jan Bergstra.

REFERENCES

ALLEN, J. R. 1978. Anatomy of Lisp. McGraw-Hill, New York, NY.
APPEL, A. W. 1992. Compiling with Continuations. Cambridge University Press, Cambridge, UK.
APPEL, A. W. AND GONÇALVES, M. J. R. 1993. Hash-consing garbage collection. Technical report

CS-TR-412-93, Princeton University,
APT, K. R., BRUNEKREEF, J. J., PARTINGTON, V., AND SCHAERF, A. 1998. Alma-0: An imperative lan-

guage that supports declarative programming. ACM Trans. Program. Lang. Syst. 20, 1014–1066.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



366 • van den Brand et al.

BENANAV, D., KAPUR, D., AND NARENDRAN, P. 1985. Complexity of matching problems. In Rewriting
Techniques and Applications (RTA ’85), J.-P. Jouannaud, Ed. Lecture Notes in Computer Science,
vol. 202. Springer-Verlag, Berlin, Germany, 417–429.

BERGSTRA, J. A., HEERING, J., AND KLINT, P., Eds. 1989. Algebraic Specification. ACM Press/Addison-
Wesley, Reading, MA.

BERGSTRA, J. A. AND KLINT, P. 1998. The discrete time ToolBus—A software coordination architec-
ture. Sci. Comput. Program. 31, 205–229.

BERGSTRA, J. A. AND VAN DEN BRAND, M. G. J. 2000. Syntax and semantics of a high-level in-
termediate representation of ASF+SDF. Technical report SEN-R0030, CWI, Amsterdam, The
Netherlands.

BOEHM, H. 1993. Space efficient conservative garbage collection. ACM SIGPLAN Not. 28, 6
(June), 197–206. (Proceedings of the 1991 Conference on Programming Language Design and
Implementation (PLDI ’91).)

BRUNEKREEF, J. J. 1996. A transformation tool for pure Prolog programs. In Logic Program Syn-
thesis and Transformation (LOPSTR ’96), J. P. Gallagher, Ed. Lecture Notes in Computer Science,
vol. 1207. Springer-Verlag, Berlin, Germany, 130–145.

CLAVEL, M., DURÁN, F., EKER, S., LINCOLN, P., MARTI-OLIET, N., MESEGUER, J., AND QUESADA, J. 1999.
Maude: Specification and programming in rewriting logic—Maude system documentation. Tech-
nical report, SRI International, Menlo Park, CA.

COURCELLE, B. AND FRANCHI-ZANNETTACCI, P. 1982. Attribute grammars and recursive program
schemes I and II. Theoret. Comput. Sci. 17, 163–191 and 235–257.

DERSHOWITZ, N. AND JOUANNAUD, J.-P. 1990. Rewrite systems. In Handbook of Theoretical
Computer Science, vol. B, J. van Leeuwen, Ed. Elsevier Science Publishers, Amsterdam, The
Netherlands. 243–320.

DE JONGE, M. 2001. A pretty-printer for every occassion. Technical report SEN-R0115, CWI,
Amsterdam, The Netherlands.

DIDRICH, K., FETT, A., GERKE, C., GRIESKAMP, W., AND PEPPER, P. 1994. Opal: Design and imple-
mentation of an algebraic programming language. In International Conference on Programming
Languages and System Architectures, J. Gutknecht, Ed. Lecture Notes in Computer Science,
vol. 782. Springer-Verlag, Berlin, Germany, 228–244.

DIK, C. H. S. 1989. A fast implementation of the Algebraic Specification Formalism. M.S. thesis,
Programming Research Group, University of Amsterdam, Amsterdam, The Netherlands.

DINESH, T. B., HAVERAAEN, M., AND HEERING, J. 2001. An algebraic programming style for numer-
ical software and its optimization. Sci. Program. 8, 4 (Sept./Oct.), 247–259. Special issue on
Coordinate-Free Numerics.

FIELD, A. J. AND HARRISON, P. G. 1988. Functional Programming. Addison-Wesley, Reading, MA.
FIELD, J. 1992. A simple rewriting semantics for realistic imperative programs and its application

to program analysis. In Proc. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (San Francisco, CA). ACM Press, New York, NY, 98–107. Also
published as Technical report YALEU/DCS/RR–909, Yale University, New Haven, CT.

FOKKINK, W. J., KAMPERMAN, J. F. TH., AND WALTERS, H. R. 1998. Within ARM’s reach: Compilation
of left-linear rewrite systems via minimal rewrite systems. ACM Trans. Program. Lang. Syst. 20,
679–706.

FRANZ, M. 1994. Code-generation on-the-fly: A key to portable software. Ph.D. thesis,
ETH Zurich, Zurich, Switzerland. Available online at ftp://ftp.inf.ethz.ch/pub/publications/
dissertations/th10497.ps.

GROOTE, J. F., KOORN, J. W. C., AND VAN VLIJMEN, S. F. M. 1995. The safety guaranteeing system
at station Hoorn-Kersenboogaard. In Proceedings of the Tenth Annual Conference on Computer
Assurance (COMPASS ’95). IEEE, Computer Society Press, Los Alamitos, CA, 57–68.

HARTEL, P. H. ET AL. 1996. Benchmarking implementations of functional languages with
“Pseudoknot,” a float-intensive benchmark. J. Funct. Program. 6, 621–655.

HEERING, J., HENDRIKS, P. R. H., KLINT, P., AND REKERS, J. 1989. The syntax definition formalism
SDF—Reference manual. SIGPLAN Not. 24, 11, 43–75. Most recent version available online at
ftp.cwi.nl/pub/gipe/reports/SDFManual.ps.Z.

HENDRIKS, P. R. H. 1991. Implementation of modular algebraic specifications. Ph.D. thesis, Uni-
versity of Amsterdam, Amsterdam, The Netherlands.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



Compiling Language Definitions: The ASF+SDF Compiler • 367

HILLEBRAND, J. A. 1996. Experiments in specification re-engineering. Ph.D. thesis, University of
Amsterdam, Amsterdam, The Netherlands.

HOFFMANN, C. M. AND O’DONNELL, M. J. 1982. Pattern matching in trees. J. ACM 29, 68–95.
JONES, R. AND LINS, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory

Management. Wiley, New York, NY.
KAMPERMAN, J. F. TH. 1996. Compilation of term rewriting systems. Ph.D. thesis, University of

Amsterdam, Amsterdam, The Netherlands.
KAPLAN, S. 1987. A compiler for conditional term rewriting systems. In Rewriting Techniques and

Applications (RTA ’87), P. Lescanne, Ed. Lecture Notes in Computer Science, vol. 256. Springer-
Verlag, Berlin, Germany, 25–41.

KIRCHNER, H. AND MOREAU, P.-E. 2001. Promoting rewriting to a programming language: A com-
piler for non-deterministic rewrite programs in associative-commutative theories. J. Funct.
Program. 11, 2, 207–251.

KLINT, P. 1993. A meta-environment for generating programming environments. ACM Trans.
Softw. Eng. Meth. 2, 176–201.

KLOP, J. W. 1992. Term rewriting systems. In Handbook of Logic in Computer Science, vol. 2,
S. Abramsky, D. Gabbay, and T. S. E. Maibaum, Eds. Oxford University Press, Oxford, UK,
1–116.

MOONEN, L. 1997. A generic architecture for data flow analysis to support reverse engineer-
ing. In Proceedings of the Second International Workshop on the Theory and Practice of Alge-
braic Specifications (ASF+SDF ’97), M. P. A. Sellink, Ed. Electronic Workshops in Computing.
Springer/British Computer Society, London, UK.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann, San
Francisco, CA.

NEDJAH, N., WALTER, C. D., AND ELDRIDGE, S. E. 1997. Optimal left-to-right pattern-matching au-
tomata. In Algebraic and Logic Programming (ALP ’97/HOA ’97), M. Hanus, J. Heering, and
K. Meinke, Eds. Lecture Notes in Computer Science, vol. 1298. Springer-Verlag, Berlin, Germany,
273–286.

OLIVIER, P. A. 2002. Benchmarking of functional/algebraic language implementations. Available
online at http://www.cwi.nl/∼olivierp/benchmark/.

PEYTON JONES, S. L. 1996. Compiling Haskell by program transformation: A report from the
trenches. In Programming Languages and Systems (ESOP ’96), H. R. Nielson, Ed. Lecture Notes
in Computer Science, vol. 1058. Springer-Verlag, Berlin, Germany, 18–44.

PEYTON JONES, S. L., HALL, C. V., HAMMOND, K., PARTAIN, W. D., AND WADLER, P. L. 1993. The Glas-
gow Haskell compiler: A technical overview. In Proceedings of Joint Framework for Information
Technology Technical Conference (JFIT), Keele, England). DTI/SERC, London, U.K., 249–257.

PEYTON JONES, S. L., NORDIN, T., AND OLIVA, D. 1998. C--: A portable assembly language. In Imple-
mentation of Functional Languages (IFL ’97), C. Clack, K. Hammond, and T. Davie, Eds. Lecture
Notes in Computer Science, vol. 1467. Springer-Verlag, Berlin, Germany, 1–19.

PLASMEIJER, M. J. AND VAN EEKELEN, M. C. J. D. 1994. Concurrent CLEAN—version 1.0—
Language refence manual. Technical report draft, Department of Computer Science, University of
Nijmegen, Nijmegen, The Netherlands.

RUTTEN, E. P. B. M. AND THIÉBAUX, S. 1992. Semantics of Manifold: Specification in ASF+SDF
and extension. Technical report CS-R9269, Centrum voor Wiskunde en Informatica (CWI),
Amsterdam, The Netherlands.

SELLINK, M. P. A. AND VERHOEF, C. 2000. Development, assessment, and reengineering of language
descriptions. In Fouth European Conference on Software Maintenance and Reengineering, J. Ebert
and C. Verhoef, Eds. IEEE Computer Society, Los Alamitos, CA.

SMETSERS, S., NÖCKER, E., VAN GRONINGEN, J., AND PLASMEIJER, M. J. 1991. Generating efficient
code for lazy functional languages. In Functional Programming and Computer Architecture
(FPCA ’91), J. Hughes, Ed. Lecture Notes in Computer Science, vol. 524. Springer-Verlag, Berlin,
Germany, 592–617.

TERASHIMA, M. AND KANADA, Y. 1990. HLisp—Its concept, implementation and applications. J.
Inform. Process. 13, 3, 265–275.

TIP, F. AND DINESH, T. B. 2001. A slicing-based approach for locating type errors. ACM Trans.
Softw. Eng. Meth. 10, 1 (Jan.), 5–55.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



368 • van den Brand et al.

VAN DEN BRAND, M. G. J., DE JONG, H. A., KLINT, P., AND OLIVIER, P. A. 2000. Efficient annotated
terms. Softw. Pract. Exper. 30, 259–291.

VAN DEN BRAND, M. G. J., EIJKELKAMP, S. M., GELUK, D. K. A., MEIJER, OSBORNE, H. R., AND POLLING,
M. J. F. 1995. Program transformations using ASF+SDF. In Proceedings of ASF+SDF ’95.
Technical Report P9504. Programming Research Group, University of Amsterdam, Amsterdam,
The Netherlands, 29–52.

VAN DEN BRAND, M. G. J., KLINT, P., AND OLIVIER, P. A. 1999. Compilation and memory management
for ASF+SDF. In Compiler Construction (CC ’99), S. Jähnichen, Ed. Lecture Notes in Computer
Science, vol. 1575. Springer-Verlag, Berlin, Germany, 198–213.

VAN DEN BRAND, M. G. J., SELLINK, M., AND VERHOEF, C. 2000. Generation of components for software
renovation factories from context-free grammars. Sci. Comput. Program. 36, 209–266.

VAN DEN BRAND, M. G. J., VAN DEURSEN, A., HEERING, J., DE JONG, H. A., DE JONGE, M., KUIPERS, T.,
KLINT, P., MOONEN, L., OLIVIER, P. A., SCHEERDER, J., VINJU, J. J., VISSER, E., AND VISSER, J. 2001.
The ASF+SDF Meta-Environment: A component-based language development environment. In
Compiler Construction (CC 2001), R. Wilhelm, Ed. Lecture Notes in Computer Science, vol. 2027.
Springer-Verlag, Berlin, Germany, 365–370.

VAN DER MEULEN, E. A. 1996. Incremental typechecking. In Language Prototyping: An Algebraic
Specification Approach, A. van Deursen, J. Heering, and P. Klint, Eds. AMAST Series in Com-
puting, vol. 5. World Scientific, Singapore, 199–248.

VAN DEURSEN, A. 1994. Executable language definitions: Case studies and origin tracking tech-
niques. Ph.D. thesis, University of Amsterdam, Amsterdam, The Netherlands.

VAN DEURSEN, A., HEERING, J., AND KLINT, P., Eds. 1996. Language Prototyping. AMAST Series in
Computing, vol. 5. World Scientific, Singapore.

VAN DEURSEN, A. AND KLINT, P. 1998. Little languages: Little maintenance? J. Softw. Maint. 10,
75–92.

VAN DEURSEN, A., KLINT, P., AND VERHOEF, C. 1999. Research issues in the renovation of legacy
systems. In Fundamental Approaches to Software Engineering (FASE ’99), J.-P. Finance, Ed.
Lecture Notes in Computer Science, vol. 1577. Springer-Verlag, Berlin, Germany, 1–21.

VAN DEURSEN, A. AND MOONEN, L. 2000. Exploring legacy systems using types. In Proceedings
of the Seventh Working Conference on Reverse Engineering. IEEE Computer Society Press, Los
Alamitos, CA, 32–41.

VAN ROY, P. 1993. The wonder years of sequential Prolog implementation. J. Logic Pro-
gram. 19/20, 385–441.

VINJU, J. J. 1999. Optimizations of list matching in the ASF+SDF compiler. M.S. thesis, Pro-
gramming Research Group, University of Amsterdam, Amsterdam, The Netherlands. Available
online at http://www.cwi.nl/∼jurgenv/.

VISSER, E. 1997. Syntax definition for language prototyping. Ph.D. thesis, University
of Amsterdam, Amesterdam, The Netherlands. Available online at http://www.cs.uu.
nl/∼visser/publications/ftp/Vis97.thesis.ps.gz.

Received May 2000; revised November 2001; accepted April 2002

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.


