Fisheye Menus

Benjamin B. Bederson
Human-Computer Interaction Lab
Institute for Advanced Computer Studies
Computer Science Department
University of Maryland, College Park, MD 20742
+1 301 405-2764
bederson@cs.umd.edu

ABSTRACT

We introduce “fisheye menus’ which apply traditional
fisheye graphical visualization techniques to linear menus.
This provides for an efficient mechanism to select items
from long menus, which are becoming more common as
menus are used to select data items in, for example, e
commerce applications.  Fisheye menus dynamicaly
change the size of menu items to provide a focus area
around the mouse pointer. This makes it possible to
present the entire menu on a single screen without requiring
buttons, scrollbars, or hierarchies.

A pilot study with 10 users compared user preference of
fisheye menus with traditional pull-down menus that use
scrolling arrows, scrollbars, and hierarchies.  Users
preferred the fisheye menus for browsing tasks, and
hierarchical menus for goal-directed tasks.

Keywords
Fisheye view, menu selection, widgets, information
visualization.

INTRODUCTION

The concept of a "fisheye" distortion in a computer
interface to present detailed information in context has
been around a long time. Furnas first introduced the
concept by discussing the cognitive aspects of how people
remembered information [7]. Severa researchers then
applied fisheye distortion to a broad variety of applications
[4, 15, 24, 25]. Several variations of the fisheye technique
have been explored. They have been used in one
dimension for word processing [9], access to time [12], and
for long lists [13, 14]. They have been used in two
dimensions for tables [17], graphical maps [20] and space-
scale diagrams [8]. They have even been used in three
dimensions for document browsing [19]. Some
applications of fisheye distortion techniques have been
carefully evaluated, often finding a significant advantage to
fisheye views[5, 11, 21].

However, despite the careful investigation of fisheye view
distortion techniques, and their application to a broad set of
complex tasks, fisheye views have never been applied to

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

UIST ’00. San Diego, CA USA

[J 2000 ACM 1-58113-212-3/00/11... $5.00

CHI Lettersvol 2, 2

be =lol x|
Applet
ArrowBar ScrollBar Hierarchy Fisheye|
a ;h-."\;....
Menu Content: | 100Weh Sites
o fr————
Focus Length: 11 |4 »

aVite O manizing
aWanted 5hopping
Expedia Travel
Fashion hall
Freefgent
Free Merchant Business

E Free Shop

F Fumiture

G Garden

H Gateway 2000

! Georgia Tech

M Google Search

N Guru Net

P HiFi

R Hotfiot Search

Applet started. S Hotlobs

T HotOffica

ICQ Online Communication

u,

Menu Selections:

nnnnnn

Figure 1. A screen shot of the fisheye menu in use.
This shows 100 web sites taken from the most popular
list of PC Magazine.

the mundane challenge of ordinary menus. This paper
applies standard fisheye techniques to menus in Graphical
User Interfaces with the goa of improving performance in
user's ability to select oneitem from along list.

Selecting items from menus is another well-studied area,
and the trade-offs of menu design are well understood [10,
16]. Menu design has become quite standard with well-
grouped menu items in consistent locations using common
names. This is appropriate for carefully designed
applications where every element of the menus can be
chosen in advance.

However, with the introduction of the Web and e
commerce applications, it is becoming increasingly
common to use menus for selecting data items, as opposed

217



to selecting operations. For example, menus are used to
select from along list of fonts, to select one state out of 50,
to select one country out of 250, or to select a web site
from alist of favorites.

It was this last example that motivated the application of
fisheye views to menus. Managing ones favorite locations
on the web is an important application of web browsers, but
one study showed that most web browser users don't put
more than about 35 items in their favorite lists before
resorting to using hierarchies [1]. While hierarchies
certainly help to organize information, this study found that
while some people used hierarchies, many stopped adding
new favorites altogether. The user interface for managing
favorites may contribute to this. Since web browsers use
pull-down menus to store favorites, and since these menus
don't work very well as the number of elements within the
menu grows, it is not surprising that people don't put more
than that many items in the menus before using hierarchies.
Some researchers have looked at aternative interfaces for
managing web favorites [18], but they have not yet made it
into commercial products. Also, those approaches are fine-
tuned to web favorite organization, and may not apply very
well to other menu selection tasks.

Selecting data items from menus is different than selecting
functions because the data items in the menu are likely to
change from use to use, and there are typically many more
data elements in a menu than there are in functional menus.
In addition, since the user is not as familiar with the menu,
it is more likely that they won't know the exact text of each
item. Thus, supporting browsing as well as searching is
important. The length of the menu is crucia in determining
usability. It takes users a time proportional to the location
of an item in amenu to accessit [6, 22]. However, the real
problem comes with menus that have more items than fit
on the screen. AlphaSliders are one approach for selecting
textual items from along list in asmall space [2]. However
that approach only displays one item at atime, and does not
fit into the pull-down menu metaphor.

The existing approaches to selecting from one of many
displayed items in a long list are limited. There are three
commonly used approaches which are to use scrolling
arrows at the top and bottom of the list, to use hierarchical
"cascading” menus to make the list smaller, or to use
scrollbars. Let uslook at each of these approaches in more
detail.

Standard GUI toolkits today provide support for long pull-
down menus by adding small scrolling arrows to the top
and bottom of the list if the entire list doesn't fit on the
display. When the user clicks on those arrows, the list is
scrolled up or down. Each toolkit implements these arrows
differently, some having fast scrolling if you hold the arrow
down (Microsoft MFC), and some slow (Swing). Some
automatically scroll when the mouse is just placed over the
arrows without clicking (Internet Explorer). However, in
any case, the user is required to first move the mouse to the
arrow, and then scroll until the desired element becomes

CHI Lettersvol 2, 2

visible. An additional, but uncommon problem is that if
the menu is scrolled too far, the mouse must be moved to
the arrow on the opposite side of the menu, and the user
must then scroll in the other direction.

A common alternative to long lists is to use hierarchica
"cascading” menus. This works by having the application
developer, or sometimes the user, organize the menu
elements into groups. Then, one entry that represents each
group is placed in the menu. When the user selects that
group element, the members of the group are displayed in a
second menu off to the side. This approach solves the
problem of physically navigating a long list, but replaces it
with a new problem of requiring the user to know what
group the desired element is in. If the user knows the
hierarchy structure well, then this approach works.
However, if the user does not know the hierarchy structure
well, then the user must look in each group, which is
potentially time consuming. Typical applications with
stable menu structures regularly use hierarchical cascading
menus because presumably the user will rapidly learn
where each element belongs. However, it is uncommon in
practice to find hierarchical menus that are used for
organizing data driven menus.

Finaly, the last common solution for managing long menus
is to use a scrollbar that controls the portion of the menu
that is visible. This seems like an excellent approach
because it gives fixed time access to menus of any length
unlike the more common scrolling arrows, which takes
time proportional to the menu length. However, while
scrollbars are commonly used in dialog boxes, they are
rarely if ever used in pull-down menus. Perhaps this is
because current toolkits do not provide this as a default
behavior, although it is possible to implement it with some
toolkits.

In addition to these visualization methods, nearly all
toolkits support keyboard shortcuts for selecting menu
items. There are often modeless shortcuts (such as Ctrl-C
for "Copy") that select a menu element throughout the
application, even when the menu is closed. In addition to
those shortcuts, the keyboard can be used to select itemsin
the menu when it is open. Developers can either specify
which key should apply to each item by specifying a
"mnemonic", or if it isleft unspecified, the first character of
the item is used. Thus, in an aphabetically sorted list,
pressing any key will jump the cursor to the first item
starting with that letter. Pressing it again will move to the
next item starting with that letter, and so on.

These keyboard accelerators are very powerful as they
bypass some of the shortcomings of the mouse-based
interaction techniques just described. They give users
direct access to either the target element, or at least to the
genera area if there is more than one element sharing the
mnemonic. However, despite their power, many users do
not use them at al. Some users are not aware of them, but
others are aware of them and choose not to use them
anyway. Perhaps this is because their hand is already on the

218



mouse and takes too long to reacquire the keyboard, or
perhaps they dont know the keyboard well enough to
justify searching for the right key. Or they may not know
the exact text and actually are browsing the menu. And
finaly, some users may just not like using the keyboard
when interacting with menus. People that only use the
mouse for selecting menu items are likely to be the largest
beneficiaries of fisheye menus.

FISHEYE MENU DESIGN ISSUES

We offer a new solution to the problem of menus that have
more items than fit on the screen by using a fisheye view to
display the menu elements. In fisheye menus, al of the
elements are always displayed in a single window that is
completely visible, but the items near the cursor are
displayed at full size, and items further away from the
cursor are displayed at a smaler size. In addition, the
interline spacing between items is also increased in the
focus area, and decreased further away from the focus area.
In this manner, the entire list of items fits on a single
screen.  The items are dynamically scaled so that as the
cursor moves, a "bubble" of readable items moves with the
cursor (Figure 1). A fisheye menu applet can be found at
http://www.cs.umd.edu/hcil/fisheyemenu.

The fisheye menu uses all the available screen space, and
will calculate a distortion function so that the menu items
aways just fill the menu. There are two principa
parameters of the fisheye menu that the application
developer can control: maximum font size, and focus
length. As with traditional menus, the designer can specify
the font size, which for the fisheye menu trandatesin to the
maximum font size, since some elements are rendered
smaller. However, the designer can also specify the desired
focus length. This specifies the number of items that are
rendered at maximum size near the cursor.

The focus length parameter is important because it controls
the trade-off between the number of menu items at full size
versus the size that is used to render the smallest items.
The fisheye menu dynamically computes the distortion
function based on the available space and these input
parameters. So, if the focus length is set to a large number
(i.e., 20), then this will push the peripheral items to be very
small, and as the user moves the cursor, there will be a lot
of distortion. If, however, the focus length is set to a small
number (i.e., 5), then there will be more room for
peripheral items and they will al be a bit larger. Figure 2
shows this trade-off.

Alphabetic Index

A fundamental characteristic of the fisheye menu is that
many of the menu items are too small to read at any given
position. However, since it is common to organize menu
items alphabetically for data menus, we can encourage this
organization for fisheye menus without undue burden.
Then, users can use their alphabetic knowledge to move the
cursor to the area they expect the item to be at, thus
bringing that portion of the menu into focus at which point
they can read the menu items and select the particular item

CHI Lettersvol 2, 2

-~ eHobhies
B hre eHow Dol .7
eVite 0 ganizing
- eWantzd Shopping Epinions »
C Expedia Travel elite drganizing
p Fashion Mall eWanted Shopping
= Expedia Travel
Free Merchant Busingss Fresgent C oo ot
EieE S E Fres Merchant Business
" Free Shop Freesgent
Fumiure F Furniture Fres Marchant Business
& S Free Sho
G Garden P
Gateway 2000 e
H H Gateway 2000 E
Georgia Tech ——
Google Search 1 Georgia Tech G
L GurugNgq L Google Search M Gateway 2000
My M 5y et § CeoiaTech
HiFi Google Search
e HotBot Search Gury Met

Hotlobs HiFi

wow=Z

HatBot Search

Hatlabs

Hot Office

ICQ Online Communication
Info Space

Internet Movie Database
iQYC Shopping

Lands End

Figure 2: The same menu of 100 items displayed with
varying focus lengths (7, 12, and 20). There is a fixed
maximum font size.

they want. This is similar to how people use telephone
directory books. Despite the fact that items are listed
sequentialy in the phone book, people use their aphabetic
knowledge to jump to the portion of the phone book where
they expect the item they are looking for to be. They then
see where they actually are, and fine-tune their search.

This telephone book analogy guides the design. One of the
reasons people can find items in telephone books so
quickly is that telephone books have index information at
the top of every page specifying in a large clear font what
information is on that page. These indices alow users to
just look at the indices while looking for the right page, and
then look at the content when they have found the page
they are looking for. It has been shown that indexes can
decrease search time with lists [3].

We designed the fisheye menus to have an alphabetic index
with the goal of making it easier for users to target the
portion of the menu that contains the item they are looking
for. The alphabetic index appears on the left side of the
menu. Each letter of the alphabet for which there is room
is displayed in the specified maximum font size.

The index letters are positioned so that when the pointer is
moved to the same vertical position as an index letter, the
first item starting with that letter will be just under the
mouse pointer. This provides the user with the ability to
rapidly move to the general area of the list they are
targeting.

This is our second design of the index letters. The first
design always positioned the letters at the current position
of the first item starting with that letter. Thus, as the
fisheye focus changed, the index letters would move
around, following the items. This turned out to be

219



Fisheyel

A Ahout Portal
Altavista Search
Amazon Shopping
Andale Shopping
Any Day Calendar
AOL Instant Messager
Ask Jesves
Auctions

B BigStep Small Business
BizRate Surveys
BizTravel

D Brittanica

Fisheye | Fisheye \

Hil
D totBot Seamh

C|Met Technology Hatlobs

E Camagie Melion University E Hot Office
CBE Spontsline 1CQ Online Communication
CerterBeam Business F info Space

G internet Movie Datahase
H iQ%C Shopping
i) - I Land's End
L Lonely Planet "

Lycos Super Family Exchange

Massachusetts Institute of Technology N SurfMonkey Kids Channel
p MoAfias Anti-Virus
@ Mercata Shopping
S MindSpring ISP

Manster Job Search

S Gharles Schwab

H Chumba Computs 1S happing

| Dearmi
ey

L SmanAge Busiress

P Swedish Institute of Computer Science
Q Talk City Online Carmmunities
$ TDWiaterhouse
The Street Financial
T :’:if‘m" Shopaing T Topica Mailing Lists
U men U University of Matyland
- - University of New Mexica
WUS Federal Government
YWebFlyer Travel
‘ieh Monkey Web Development
Welcome to EXP.com
R W Consortium
¥ MpertSite Questions
Z Vahoo!

ZCamml Businazs

20 et -

Figure 3: The same menu displayed with the cursor at
three positions.

distracting and not useful. By the time a user moved the
pointer to the position an index letter was at, that index
letter would have moved (since the focus and thus item
positioning would have changed.) We quickly realized the
value of the index letters was to inform pointer motion, and
shifted to the current stable design described above. Figure
3 shows the fisheye menu at different focus points.

High-Resolution Selection (Focus Lock Mode)

One difficulty with the fisheye menu mechanism as
described so far is that small mouse movements result in a
change of fisheye focus. With traditiona menus, the
mouse must move over the full height of a menu item to
change the focus to the next item. However, with fisheye
menus, the amount the mouse must move to go to the next
item is equal to the smallest font size in the menu. Thisisa
fundamental result of the fisheye algorithm since al of the
menu items must be selectable by pointer movement in the
fixed vertical space of the menu.

This is a significant liability because despite the fact that
the focused elements are large and plainly readable, they
are difficult to select.

We overcame this problem by offering a "focus lock" mode
to the fisheye menu. Users operate the menu as described
above until they get near the item of interest. They then
move the pointer to the right side of the menu, which locks
the focus on the item the cursor is over. Then, when users
move the pointer up and down, the focus stays fixed, but
individual menu elements can till be selected. The focus
region on the right side of the menu gets highlighted to
indicate that the menu isin focus lock mode.

Further, if the pointer is moved above or below the focus
region (staying on the right side of the menu), the focus
areais expanded. Eventually all of the menu items become

CHI Lettersvol 2, 2

full-size and thus easy to select. But, of course, not al of
the items are visible anymore as the ends get pushed off the
screen as the focus area is expanded. Since the menu
layout is quite different in focus lock mode, the index
characters become inaccurate, and so they are faded out as
the focus areais expanded in focus lock mode.

If users decide to continue looking in a different portion of
the menu, moving the pointer back to the left side of the
menu turns off focus lock mode, and the menu returns to
regular behavior. This focus lock approach to high-
resolution selection within a fisheye view solves the
resolution problem at the cost of a small mouse movement.

We considered several alternative approaches to entering
the focus lock mode. We first tried using the right button,
but gave that up as it seemed too unlikely that users would
discover it on their own — especialy since it did not follow
the standard Windows model of pressing the right button
for a context-sensitive menu. And, of course, it would not
work at all for systems without a second mouse button. We
also considered using the speed of the mouse to determine
the focus mode, but that seemed to be too unpredictable by
users. Also, an earlier study of the AlphaSlider confirmed
thisintuition [2].

We ended up with the current design, which offers an
affordance for the focus lock feature. There is a subtly
shaded box on the right side of the menu that moves up and
down with the focus. This was intended to draw user’'s
attention to the right side of the menu. In addition, the two
small arrows on the right side are intended to suggest to
users that they can move the pointer up and down in focus
lock mode. When the pointer is moved towards the arrows,

Fisheye | Fisheye | Fisheye |

Land's End

Lonely Planet

Lycos

Massachusetts Institute of Technology
Mcrfee Anti-Virus

Mercata Shopping

MindSpring ISP

Monster Job Search

torta orch
0 utpost Shopping
H Palace Visual Chat
I PC Magazine PC Labs
L Powitiow Instant Messaging
M produstopia Shopping
Quicken
RealNetworks Streaming Media
Q Remarg Collaboration Services
5 Rayal Institute of Technalogy
Scour Media Search
T See UThere Qrganizing
y Serice 911 Computer Help
SlashDot
yy Smarthge Business
Stamps
Super Family Exchange

Surf Monkey Kids Channe|
E Computer Sciarz

-

EN

My Help Desk

NECH Computer Shopping
Mew York University
Naorthern Light Search
Outpost Shopping

Falace Visual Chat

PC Magazine PC Labs
Powiow Instant Messaging
Productopia Shopping
Quicken

Realhletworks Streaming Media
Remarg Collaboration Services
Rayal Institute of Technology
Scour Media Search

See U There Organizing
Service 911 Computer Help
SlashDot

SmartAge Business
Stamps

Super Family Exchange

Surt Mankey Kids Channel

Swadih Insttute of ComputarScince
Talk City Orline Commurnitins

My Simon Shopping

MP3

MSN

My Help Desk

MECX Computer Shopping

Mewy York University

Narthern Light Search

Outpost Shopping

Palace Visual Chat

PC Magazine PC Lahs

Powdow Instant Messaging

Productopia Shopping

Quicken

RealNetworks Streaming Madia

Remarqg Collaboration Services

Roval Institute of Technology

Scour Media Search

See U There Organizing

Service 911 Computer Help

SlashDat

SmartAge Business

Stamps:

Super Family Exchange

Suf Monkey Kids Channel
ompuer Sciea

-

Figure 4: A fisheye menu in focus lock mode whose
focus area is being extended upwards

the focus area is extended, and the arrows move
accordingly. The users can thus discover that the focus can

220



Item
Size

Focus
i<—|ength ->i
[} [}

Max font size--

---Min font size

>
Iltem Number

Figure 5: The basic Degree of Interest function used for
the fisheye menu.

be extended. Figure 4 shows the focus lock mode with the
focus area being extended upwards.

IMPLEMENTATION

The fisheye menu is a drop-in replacement for Javas
standard "JMenu" component in the Swing GUI toolkit.
This new widget, called FishEyeMenu, is written in Java 1,
and works for applications and applets. This means that
any Java code that currently uses traditional Swing menus
can switch to using the fisheye menus with a one-word
change by replacing “new JMenu()” with “new
Fi shEyeMenu() "

The standard approach to implementing fisheye distortion
techniques is to compute a "Degree of Interest” (DOI)
function for each element to be displayed. The DOI
function calculates whether to display an item or not, and it
caculates the item's size. Typical degree of interest
functions include both the distance of an item from the
focus point as well as the item's a priori importance [7].
Thus, certain landmark items may be shown at a large size
even though they are far from the focus point.

The fisheye menu uses a very simple DOI function that
only includes distance from the focus point, and does not
use a priori importance. A simple function that captures the
essence of the fisheye menu is shown in Figure 5. It keeps
several menu items near the focus point at the maximum
size, where the exact number is specifiable. Then, the
menu items get smaller, one point in font size at a time
until the minimum font size is reached at which time, ll
more distant items stay at the minimum font size.

Using this DOI function, the fisheye menu calculates the
largest minimum size font that will result in a menu that fits
on the screen. If there are so many items in the menu, or if
there is so little available screen space that there is not
enough room for the menu, then the DOI function
parameters are adjusted so there is enough room. First, the
focus length is reduced. If there is still not enough room

! Note that the online applet uses Java 2 to decrease the
portability problems associated with accessing Swing
from Java 1.

CHI Lettersvol 2, 2

when the focus length is set to 1, then the maximum font
sizeisreduced.

Complexities

In practice, the DOI function is actualy a little more
complex than just described for two reasons. The first
reason is that we want the menu items to be visually stable
outside of the focus area. That is, if the focusis on the first
half of the menu, it is important that the second half of the
menu doesn't move at all as the focus changes. The fisheye
menu is stable using the above DOI function when the
focus is not near one of the ends of the menu. However,
when it is near the ends of the menu, there is a surprising
side effect of the algorithm, which results in the entire
menu shifting.

Since we render each item based on the position of the item
before it, one item alone changing size will slide all other
lower menu items up or down. Moving the focus in the
middle of the menu doesn't cause a problem because for
every item that gets bigger, another items gets smaller by
the same amount. To understand the issue here, let us look
at the simplest case where the focus is on the first item in
the menu. In this case, there are no items before the focus
item to get rendered, and the items after the focus item get
smaller until the minimum size is reached. Compare this
with the focus being on the second item in the menu. Now,
one item before the focus is rendered at a large size while
the items after the focus get smaller in the same way.
Thus, more space is taken altogether, and the entire menu
shifts down a little bit. The entire menu continues to grow
as the focus moves down from the end until the distortion
no longer goes to the end of the menu and the menu
becomes stable.

Our solution is to increase the size of the focus area just
enough to account for the smaller number of focus items
when the focus point is near the menu end. This way, the
total amount of space used by the focus area is aways
constant, and the entire menu remains visualy stable.

The fisheye menu uses this modified DOI function to
calculate the required size of the popup menu. This leads
to the second reason that our DOI function is more
complex in practice. We use integer calculations since text
is only rendered in integer sizes, and so the popup menu
size can end up being substantially smaller than the
available space. We want to use as large a menu size as
possible since the bigger the menu is, the more items we
can render in a large enough font to read, and the more
usable the fisheye menu will be.

Once the minimum size font is calculated, a menu that uses
al the available screen space is created. Then the DOI
function is modified using the same technique that we used
to solve the first problem - the focus area is expanded until
the text fills up the full menu space.

One remaining issue has to do with the alphabetic index.
Since the index characters are aways rendered at full size,
they would overlap each other when they are far from the

221



focus area, since the associated menu items at that point are
quite small. The fisheye menu avoids this overlapping
problem by simply not rendering indices that would
overlap with another. Thus, in the periphery, not every
index character is shown.

The fisheye menu is implemented by pre-calculating the
size of every item and the space between each item for each
focus position, and storing that information in look-up-
tables. This pre-calculation is necessary in order to
caculate the position of the index letters. This aso
improves performance since there is very little calculation
during rendering. One final, but important optimization is
the use of region management. Since the fisheye menu is
visually stable, only the changing focus portion of the
menu changes as the pointer moves. Our implementation
keeps track of the area on the screen that changes, and only
renders that portion. Thus, for a menu of 200 items,
typicaly less than 30 items need to be rendered for each
mouse movement.

EVALUATION

We conducted a pilot study of fisheye menus comparing
user preference of them against the three menu mechanisms
commonly used today: arrow buttons to scroll up and
down, scrollbars, and hierarchies. The intent of this study
was to get a preliminary idea of whether fisheye menus had
potential. We did not expect that the results of this study
would provide a definitive understanding of whether
fisheye menus were faster, more appropriate, or preferable
for tasks. Rather, we hoped to get a rough idea of user's
preferences that would let us know if our intuitions were
realistic, and to inform future evaluations.

We picked 10 users that were not from our lab, and were
not familiar with fisheye menus before the study. Five of
the subjects were computer science students with
programming experience, and five of the subjects were
administrative staff that work in our building, and did not
have programming experience. We felt that looking at
programmers vs. hon-programmers was important because
fisheye menus are somewhat technical, and we sensed that
people with less technical experience may not feel
immediately comfortable with them. Asit turned out, there
was a difference between these two classes of users that
will be reported in the Results section.

Seven of the subjects were female and three were male.
Five were in there 20's, two were in their 30's, two were in
their 40's, and one was over 50. All but one reported using
computers more than 20 hours per week.

The test was entirely automated using a custom Java
program. The program requested demographic
information, and explained that the purpose of the test was
to get feedback on the four types of menus for selecting an
item from a list. The subjects were then instructed to try
out each of the menu types, spending as much time as they
liked. At that point, they were instructed to ask any
guestions about how the menus worked (the test was
administered by the author of this paper.)

CHI Lettersvol 2, 2

The four menu types were labeled ArrowBar, ScrollBar,
Hierarchy, and Fisheye. All menu items were ordered
alphabetically. The ArrowBar was implemented with
arrows at the top and bottom of the screen. When the
arrows were pressed, the list would scroll at a rate of 20
items per second. The ScrollBar was implemented with a
standard scrollbar on the right side of the menu that could
be used to scroll the menu. The Hierarchy was constructed
with one menu item for each letter of the alphabet. Menu
items were placed in cascading menus under the first letter
of the text of that item. Finally, the Fisheye menu was that
described in this paper. Each of these menus are available
for trial at the fisheye menu website.

Then, the subject was instructed to select three different
specific items from each menu. Each menu was populated
with 100 websites that were selected from the list of most
popular websites from PC magazine (with four well known
universities that replaced four entries that did not have a
short descriptive title.) The items that the subjects were told
to select were chosen from near the beginning, middle, and
end of each list. The subjects were also asked to browse
the lists for a website they would like to visit. The selected
item was displayed for the user to see, however,
information was not logged as to whether to the subjects
correctly selected the specified item.

The subjects were asked to rate the menus. They were
asked to rate each menu using a 9-point Likert scale
according to seven characteristics taken from QUIS — the
Questionnaire for User Interface Satisfaction [23]. The
seven characteristics were:

e terrible—wonderful

o frustrating — satisfying

e difficult —easy

e dow-—fast

e hardtolearn—easy to learn
e boring—fun

e annoying — pleasant

Finaly, the subjects were asked to rank the four menu
types in order of preference for goal-directed tasks and
browsing tasks. They were also offered the option of
typing in any comments they had about the four menu

types.

Results

The average subjective satisfaction of the four menu types
was recorded for all users, and separated by programmer
vs. non-programmer. For al users, on a scale from 1 — 9
(with 9 being most positive), Hierarchy was the favorite
(6.8), Fisheye (6.4) was rated dightly higher than Scrollbar
(6.2), and ArrowBar (4.9) was the lowest.

When split by programmer, an interesting difference
appears. The ratings of ArrowBar and ScrollBar did not
change very much, but Fisheye and Hierarchy did. For
programmers, Fisheye (7.0) and Hierarchy (6.9) were about
the same. For non-programmers, the spread between
Fisheye (5.8) and Hierarchy (6.8) substantially increased.

222



When looking at the individual questions, we see that the
subjects had widely differing opinions about Hierarchy vs.
Fisheye in different categories. Hierarchy was preferred
over Fisheye in the three categories of ‘frustrating —
satisfying’, ‘hard — easy’, and ‘hard-to-learn — easy-to-
learn’. However, Fisheye was preferred over Hierarchy in
the four categories of ‘terrible — wonderful’, ‘slow — fast’,
‘boring — fun’, and ‘annoying — pleasant’.

When asked to directly rank the four menu typesin order of
preference, there was a difference for goal-directed and
browsing tasks (Figure 6). For goal-directed tasks,
ArrowBar and ScrollBar were clear losers with Hierarchy
just beating out Fisheye. For browsing tasks, ArrowBar
was at the bottom, ScrollBar and Hierarchy were about tied
in the middle, and Fisheye was the most preferred.
However, the large standard deviation of Fisheye shows
that there was a broader range of reaction. Some users
ranked it about the same as ScrollBar and Hierarchy, and
some users ranked it much higher.

All Users M ArrowBar
Subjective Preference Rank O ScrollBar
E Hierarchy
4 OFisheye
3.5
o 3 T 1 ||
£
< 25 _—
3 L 1 1
@ 2
15 A 1 —
1 4
Goal-Directed Task Browsing Task

Figure 6: Rankings of four menu types by direct
comparison for goal-directed and browsing tasks.
Error bars mark 1 standard deviation.

When separated out by programmer vs. non-programmer,
there was a similar effect as with the satisfaction ratings.
Programmers preferred Fisheye to Hierarchy in al cases,
with a small margin (0.2) for goal-directed tasks, and a big
margin  (1.0) for browsing tasks. Non-programmers
preferred Hierarchy to Fisheye for goal-directed tasks by a
margin of 0.6 and they were tied for browsing tasks.

The subjects comments were informative and mirrored the
rating and ranking results. Two non-programmers
specifically said that they did not like fisheye at all. The
other eight subjects all liked fisheye, but frequently had
concerns about the difficulty of learning to use it.
However, they also expressed optimism that with more
training, it would become more enjoyable and perhaps
preferable. A few typical comments were:

“Fisheye was the most difficult to learn yet with
continued use may actually become the most useful.”

“ArrowBar and ScrollBar are boring but very easy to
use. | amused toit. Hierarchy and Fisheye are very
interesting.”

CHI Lettersvol 2, 2

“Once one understands that one has to go to the
colored area in Fisheye it becomes easier. But if one
doesn’t know that it's frustrating.”

Analysis

While the study contained a small number of subjects and
the results were not analyzed statistically, we noted some
trends. These should be interpreted with caution, but do
seem to make sense.  The test was administered without a
description of what fisheye menus were or how they
worked. Instead, the subjects were told to play with them
for as long as they wanted and only then could they ask
guestions.

By observing this initial exposure to fisheye menus, and by
responding to the subjects’ questions, it was clear that at
least in the minute or two that they tried them, most
subjects did not understand how to use the fisheye menu
fully. All of the subjects quickly discovered that moving
the mouse up and down on the left side of the menu
operated the basic fisheye functionality. However, severa
were confused about the exact function of the alphabetic
index on the left side. Severa users tried clicking on them
— which just selected the item that was currently
highlighted. After one or two tries with this, they then
realized that the index was just informative, and not
interactive.

A more important problem was that only a single subject
truly discovered how the “focus lock” mode on the right
side of the menu worked. Despite the visua feedback,
subjects were just not expecting to have different behavior
when the mouse pointer was on different sides of the menu.
Some subjects never moved the pointer to the right side and
so never discovered that behavior at all. Other subjects
moved the pointer to the right side of the menu accidentally
or eratically. They just noticed that the menu would
sometimes change behavior in an inconsistent manner.
They did not correlate the change in menu behavior with
the side of the menu that the pointer was over.

Once the subjects were done exploring the menus and
asked questions, the focus-lock mode was explained.
Interestingly enough, all 10 subjects completely understood
how it worked in just a few seconds of explanation. Thus,
the visual design of the menu clearly needs some work to
make the focus-lock mode more discoverable.

Another major lesson learned from these studies is that
subjects’ response varied widely. Looking at the average
results only tells part of the story. Two of the subjects did
not like the fisheye menus at al. It had nothing to do with
the difficulty they had to discover how they worked.
Rather they just didn’t like them. One of those users
reported that the small menu items made her feel badly
because she felt that her eyesight was poor.

On the other hand, severa of the users were eager to start
using fisheye menus in their regular work immediately.
This bimodal preference suggests that fisheye menus, if

223



deployed in an application, should be optional. Some users
arelikely to prefer them, and some are likely not to.

The last lesson we learned from this study is that
application designers should consider the use of scrollbar
and hierarchical menus instead of the traditional arrow
menus used by default by current operating systems. Or
better yet, let users set an option to specify how long menus
will be presented.

The ArrowBar menu was the clear loser in al cases.
Subjects felt it was boring, slow, and frustrating. Yet, this
is the most common type of long menu in commercial
systems. The ScrollBar menu, on the other hand, provided
a nice compromise for goal-directed and browsing tasks,
and was generally enjoyed by users. While the Hierarchy
menu was often preferred for goal-directed tasks, the same
menu will be used in different ways by different users.
Some users will know exactly what they want while some
will browse. So, the Hierarchy menu should be used
cautioudly if at all, and only when it is clear that users
know exactly what they are looking for.

Expert Timing

We aso performed a very simple test to see how fast an
expert could use each of the menu types. The author of this
paper selected an item from the middle of the menu from
each of the menus 10 times working as quickly as possible.
The fastest time was recorded. This was done for the 100
web sites, and also for alist of 266 countries.

For the 100 websites, the times were: ArrowBar (3.4 secs);
ScrollBar (2.2 secs); Hierarchy (1.5 secs); Fisheye (1.7
secs). For the 266 countries, the times were: ArrowBar
(8.8 secs); ScrollBar (2.6 secs); Hierarchy (2.1 secs);
Fisheye (2.3 secs).

These timing results match closely with the subjective
preferences for goal-directed tasks, and so suggest that
these data may reflect a broader trend than would be
indicated by so few subjects.

CONCLUSION

Selecting an item from a list is an important and frequent
task. We have presented here fisheye menus, a new
mechanism that supports this kind of selection. Based on
our preliminary evaluation, we believe that this approach is
promising. It clearly is not for all users, but just as clearly,
many users prefer it, so at this point we recommend
considering fisheye menus for optional use where selection
fromalong list is required.

We plan on continuing the investigation of fisheye menus
by conducting a controlled empirical evaluation, including
analysis of the speed users can select items with the
different menu types. We also will consider other menu
types such as matrix or multi-column layouts, and will ook
at other factors such as the number of itemsin the menu.

Finaly, we have begun to look at putting content aside
from text in fisheye menus, and using them for tasks other
than menu selection. Putting in a horizontal bar indicating

CHI Lettersvol 2, 2

a numerical value (similar to the strategy of Table Lens
[17]) in the linear fisheye menu appears to be an interesting
way to monitor time-varying data.

ACKNOWLEDGEMENTS

| appreciate the thoughtful comments of the members of the
Human-Computer Interaction Lab who helped me fine-tune
the details of the fisheye menus. In particular, | thank
Harry Hochheiser who suggested the aphabetic index, and
the subjects who volunteered their time to give me valuable
feedback.

REFERENCES

1. Abrams, D., Baecker, R., & Chigndl, M. (1998).
Information Archiving With Bookmarks: Personal
Web Space Construction and Organization. In
Proceedings of Human Factors in Computing Systems
(CHI 98) ACM Press, pp. 41-48.

2. Ahlberg, C., & Shneiderman, B. (1994). The
AlphaSlider: A Compact and Rapid Selector. In
Proceedings of Human Factors in Computing Systems
(CHI 94) ACM Press, pp. 365-371.

3. Beck, D., & Elkerton, J. (1989). Development and
Evaluation of Direct Manipulation Lists. SGCHI
Bulletin, 20(3), pp. 72-78.

4. Dill, J., Bartram, L., Ho, A., & Henigman, F. (1994). A
Continuoudly Variable Zoom for Navigating Large
Hierarchical Networks. In Proceedings of IEEE
International Conference on Systems, Man and
Cybernetics | EEE, pp. 386-390.

5. Donskoy, M., & Kaptelinin, V. (1997). Window
Navigation With and Without Animation: A
Comparison of Scroll Bars, Zoom, and Fisheye View.
In Proceedings of Extended Abstracts of Human
Factors in Computing Systems (CHI 97) ACM Press,
pp. 279-280.

6. Fitts, P. M. (1954). The Information Capacity of the
Human Motor System in Controlling the Amplitude of
Movement. Journal of Experimental Psychology, 47,
pp. 381-391.

7. Furnas, G. W. (1986). Generalized Fisheye Views. In
Proceedings of Human Factors in Computing Systems
(CHI 86) ACM Press, pp. 16-23.

8. Furnas, G. W., & Bederson, B. B. (1995). Space-Scale
Diagrams. Understanding Multiscale Interfaces. In
Proceedings of Human Factors in Computing Systems
(CHI 95) ACM Press, pp. 234-241.

9. Greenberg, S., Gutwin, C., & Cockburn, A. (1995).
Sharing Fisheye Views in Relaxed-WYSIWIG
Groupware Applications. In Proceedings of Graphics
Interface (Gl 95) Morgan Kaufman, pp. 28-38.

10. Hochheiser, H., & Shneiderman, B. (2000).
Performance Benefits of Simultaneous Over
Sequential Menus As Task Complexity Increases.
International Journal of Human-Computer Interaction,

224



11.

12.

13.

14.

15.

16.

17.

18.

pp. (in press).

Hollands, J. G., Carey, T. T., Matthews, M. L., &
McCann, C. A. (1989). Presenting a Graphica
Network: A Comparison of Performance Using
Fisheye and Scrolling Views. (Third International
Conference on Human-Computer Interaction) Elsevier
Science Publishers, pp. 313-320.

Koike, Y., Sugiura, A., & Koseki, Y.
TimeSlider: An Interface to Time Point. In
Proceedings of User Interface and Software
Technology (UIST 97) ACM Press, pp. 43-44.

Masui, T. (1998). LensBar - Visualization for
Browsing and Filtering Large Lists of Data. In
Proceedings of Information Visualization Symposium
(InfoVis 98) New Y ork: |EEE, pp. 113-120.

Masui, T., Minakuchi, M., Borden, G. R, &
Kashiwagi, K. (1995). Multiple-View Approach for
Smooth Information Retrieval. In Proceedings of User
Interface and Software Technology (UIST 95) ACM
Press, pp. 199-206.

Mitta, D., & Gunning, D. (1993). Simplifying
Graphics-Based Data: Applying the Fisheye Lens
Viewing Strategy. Behaviour & Information
Technology, 12(1), pp. 1-16.

Norman, K. (1991). The Psychology of Menu
Slection: Designing Cognitive Control at the
Human/Computer Interface. Ablex Publishing Corp.

Rao, R, & Card, S. K. (1994). The Table Lens
Merging Graphical and Symbolic Representations in
an Interactive Focus+Context Visualization for
Tabular Information. In Proceedings of Human
Factors in Computing Systems (CHI 94) ACM Press,
pp. 318-322.

Robertson, G., Czerwinski, M., Larson, K., Robbins,
D. C, Thiel, D., & van Dantzich, M. (1998). Data

(1997).

CHI Lettersvol 2, 2

19.

20.

21.

22,

23.

24,

25,

Mountain: Using Spatial Memory for Document
Management. In Proceedings of User Interface and
Software Technology (UIST 98) ACM Press, pp. 153-
162.

Robertson, G. G., & Mackinlay, J. D. (1993). The
Document Lens. In Proceedings of User Interface and
Software Technology (UIST 93) ACM Press, pp. 101-
108.

Sarkar, M., & Brown, M. H. (1992). Graphical Fisheye
Views of Graphs. In Proceedings of Human Factorsin
Computing Systems (CHI 92) ACM Press, pp. 83-91.

Schaffer, D., Zuo, Z., Bartram, L., Dill, J., Dubs, S.,
Greenberg, S., & Roseman, M. (1997). Comparing
Fisheye and Full-Zoom Techniques for Navigation of
Hierarchically Clustered Networks. In Proceedings of
Graphics Interface (Gl 97) Canadian Information
Processing Society, pp. 87-96.

Sears, A., & Shneiderman, B. (1994). Split Menus:
Effectively Using Selection Frequency to Organize
Menus. ACM Transactions on Computer-Human
Interaction, 1(1), pp. 27-51.

Slaughter, L. A., Harper, B. D., & Norman, K. L.
(1994). Assessing the Equivalence of Paper and On-
Line Versions of the QUIS 5.5. In Proceedings of 2nd
Annual Mid-Atlantic Human Factors Conference pp.
87-91.

Spence, R., & Apperley, M. (1992). Data Base
Navigation: an Office Environment for the
Professional. Behaviour & Information Technology,
1(2), pp. 43-54.

Spenke, M., Beilken, C., & Berlage, T. (1996).
FOCUS: The Interactive Table for Product
Comparison and Selection. In Proceedings of User
Interface and Software Technology (UIST 96) ACM
Press, pp. 41-50.

225



