
Comprehension with[in] Virtual Environment Visualisations

Claire Knight and Malcolm Munro
Visualisation Research Group,

Centre for Software Maintenance.
Department of Computer Science,

University of Durham,
Durham, DH1 3LE, UK.

{C.R.Knight, Malcolm.Munro}@durham.ac.uk

Abstract
For many years basic visualisation, based around
simple boxes and lines, has been done in an attempt to
be able to ease some of the cognitive overload caused by
program comprehension. The problems with such
visualisations is that they can very easily become
incomprehensible by trying to force large amounts of
information into a small space, relying solely on two
dimensions for the representations. Three-dimensional
visualisations are one approach that is being considered
to combat these problems, although there are also many
different issues that must be considered for these sorts of
visualisations. Especially when those visualisations are
of intangible software systems. A solution is to use
virtual environments as a base for these three-
dimensional visualisations, which allows a sense of
context to be maintained and also promotes
collaboration between the people trying to comprehend
the code.

1. Introduction

Software visualisation is an important weapon in the
program comprehension armoury. It is a technique that
can, when designed and used effectively, aid in
understanding existing program code. It can achieve this
by displaying information in new and different forms,
which may make obvious something missed in reading
the code. It can also be used to present many aspects of
the data at once.

Much effort has been spent on visualising programs
in two-dimensions, with graph structures such as call-
graphs being prominent. It is acknowledged that these
forms of visualisation suffer when the number of, and

relationships between, information is complex. The
representations themselves can even become more
complicated than the code itself. There is now a move
away from such structures in an attempt to solve the
inherent layout problems, but much work remains to be
done in this area since alternatives also have their own
problems. The use of three-dimensions to visualise
programs has in recent years attracted attention, and
some promising results have been published, for
example the work by Young [15].

There are several different ideas as to the strategies
programmers use when comprehending code. A good
overview of the difference strategies and their
interrelationships can be found in Storey et al. [14]. A
useful distinction made by these authors is that a mental
model is the representation in the programmer’s mind
and that the cognitive model is the processes and
structures that are used to help the programmer form
their mental model.

This paper presents software visualisation, virtual
environments, metaphors and then a visualisation that
has been developed in an attempt to visualise in a useful
way ever more complex and rapidly changing code.

2. What is Software Visualisation?

There is not a simple answer to this question. There
are many ways of defining software visualisation, each
tailored towards the type of visualisation it is intended to
support. The range of visualisations covered by these
definitions is also large. What is important is that the
use of these visualisations as a tool is kept in mind.
Friedhoff and Benzon [5], write (p16):

“If this new discipline of visualization is to
realize its full potential, however, it will also
have to borrow from those areas traditionally
concerned with imagery such as art history and
perceptual and cognitive psychology. The field
of visualization should not be so absorbed by the
miracles that are its technical basis that it
ignores a larger interest in the way in which
images can be used to enhance the power of our
thinking.”

Intelligence amplification is of importance to
software visualisation (and any other form of
visualisation) because in representing large and complex
data sets graphically the aim is to help the user to get a
better understanding of content of the data sets. By
aiding the user in this way visualisation tools are acting
also as intelligence amplification tools, which Frederick
Brooks believes (documented by Rheingold [16]) is, and
always will be, much more powerful then using
computers for artificial intelligence techniques. Reading
through many thousands of pieces of information and
then summarising them in a finite graphical space would
be an immense, complex and possibly tedious task. For
a computer with the right “instructions”, it is a simple
data processing exercise.

Hubbold et al. [7] make a connection with the field of
virtual reality (VR), and therefore visualisations that
make use of virtual reality as an enabling technology.
They identify the pattern recognition and contextual
abilities of humans.

“In our everyday existence we cope with, and
filter out, tremendous amounts of information
almost effortlessly and with very little conscious
thought. Indeed, if the same information, in all
its detail, were to be presented in a form that we
had to think about consciously, then we would be
overwhelmed quite easily. Spatial awareness,
pattern recognition, information filtering,
coordination of multiple information streams are
things we take for granted. Rather than look for
a solution in AI, part of the VR thesis is that
information presented in a suitable way can be
processed far more effectively and directly by
people.”

This is important when considering three-dimensional
visualisations because, generally, they will use some
form of VR technology.

A general software visualisation definition that
encompasses these ideas (which are traced fully in [8])
can therefore be written as:

“Software visualisation is a discipline that
makes use of various forms of imagery to provide
insight and understanding and to reduce
complexity of the existing software system under
consideration.”

Existing forms of visualisation, such as the call graph
shown in Figure 1, adhere to some facets of this
definition in that they use imagery and provide some
insights but they do not reduce the perceived complexity
of the software under consideration. Some research has
tried to move the traditional two-dimensional
representations into three-dimensions but this has
generally not been a success because these
representations do not transfer well [15].

Much of the visualisation done to date of programs
has been abstract in nature; geometrical shapes in either
2D or 3D, possibly of differing colours have been used
to represent elements of the program code. Real world
visualisations tend to visualise the data by using
elements from the everyday human world. Whilst these
two approaches differ in the representations used, they
can be complimentary, and it is very likely that final
solutions to any visualisation will encompass some
elements of both. It is also important to consider the
force the data exerts on the visualisation style. With
program code, either style is acceptable because the
software is intangible, but for other data sets the data
may drive the style to be used.

The goal of software visualisation is also included in
the above definition. To create a visualisation for no
real purpose would be a pointless exercise. It has long
been known that understanding software is a complex
and hard task because of the complexity of the software
itself. Therefore techniques that aid the programmer in

Figure 1 - Traditional call graph

his comprehension of an existing software system
deserve research focus. Software visualisation aims to
aid the programmer by providing insight and
understanding through graphical displays and views, and
to reduce the perceived complexity through the use of
suitable abstractions and metaphors.

3. Using Virtual Environments

(Collaborative) Virtual Environments is a research
area that is primarily concerned with the construction of
multi-user virtual worlds rather than the work processes
or interaction that takes place within those worlds. The
research covers all facets of virtual world creation from
the underlying graphics engines to varying algorithms
for creating the best perceptual experience within the
worlds.

Churchill and Snowdon [4] provide a very good
description of virtual environments:

“As such CVEs provide a potentially infinite,
graphically realised digital landscape within
which multiple users can interact with each other
and with simple or complex data
representations.”

Virtual environments can be found in science fiction
and fantasy literature where general on-line worlds are
described rather than being for one purpose, as is the
case with most current virtual environment systems.
Examples of these “worlds” are Neal Stephenson’s [13]
Metaverse and William Gibson’s [6] Cyberspace or
Matrix.

Virtual environments provide a good basis for three-
dimensional visualisations because they enable all
aspects of the definition of software visualisation (given
in the previous section) to be exploited. This does
require the visualisation to be designed with the virtual
environment in mind and appropriate metaphors used
with thought. Using a virtual environment is not
necessarily a recipe for a good, usable and useful
visualisation.

3.1 The Use of Metaphors

A metaphor is where a word or phrase (or in terms of
visualisation, a graphical representation of that word or
phrase) is used in place of another. This tends to suggest
some form of analogy between the two concepts,
although this may be at a higher level of abstraction than
individual words or phrases. From a visualisation
perspective the metaphors act as a mapping from the

concepts required in the virtual world to their graphical
representation. This need was identified by Levialdi et
al. [9] in the construction of their database visualisation
system.

“Using VR visualization techniques to
represent the results of queries implies the
definition of a mapping, or metaphor, among the
objects of the database and the objects of some
virtual world.”

It is important to note that most (if not all) virtual
environments are implemented in some form of virtual
reality system. This means that discussions about the
benefits of virtual reality are applicable when
considering virtual environments.

According to Benford et al. [1] the use of natural
metaphors can aid the usability of virtual environments.

“… an attempt to exploit people’s natural
understanding of the physical world, including
spatial factors in perception and navigation, as
well as general familiarity with common spatial
environments…”

Pettifer and West [11] suggest that the potential
power of virtual reality comes from the strength of its
metaphor, and the fact that it is closer to natural
interaction than many other forms of computer system.
They also identify the benefits of natural metaphors, and
making use of perceptual and spatial skills learnt and
used in the real world in the virtual environment.

“A three-dimensional world metaphor has much
more scope for direct human/computer
interaction than the two-dimensional desktop
because it engages in us those perceptual and
spatial faculties that allow us to comprehend our
surroundings and to process effortlessly the vast
amounts of information that are presented to our
senses second by second. It is the potential to
directly engage these faculties that is the defining
characteristic of virtual reality. As the immersive
environment is far richer than the desktop, the
metaphors for interaction assume a far greater
significance. … The role and management of
metaphors for the virtual environment therefore
assumes key significance.”

It is obvious from the above that the design of the
metaphor used in the virtual environment can play a
large part in the usability of that system, both in terms of
human computer interaction, and in terms of enabling
the user to carry out the required tasks. What is also of
benefit is that in using three-dimensional environments

some of the cognitive processing needed for navigation
and visual interpretation can be shifted to the sub-
conscious as these are activities that are carried out daily
with no real thought. Metaphors not only provide a
basis for the environment, but for the mapping from the
data to the visualisation. Similar principles apply when
visualising with metaphors, such as consistency,
interaction and usability.

3.2 Reasons for Using Virtual Environments

Using three dimensions for visualisation adds an
element of familiarity and realism into systems. The
world is a three-dimensional experience and by making
the visualisation more like that world means there is less
cognitive strain on the user. This in turn makes the
system easier and more comfortable to use because of all
the experience and knowledge the user has built up
elsewhere. In using three dimensions the depth cues that
make the world, and the visualisation, appear 3D can be
used as part of the visualisation. This means that the aim
of the visualisation to aid the comprehension of complex
phenomena can be achieved without adding unnecessary
complications because of the visualisation used.

Stasko, [12], when writing about an Information
Visualizer System from Xerox Parc writes that the
designers noted that:

“…the three-dimensional displays help shift
the viewing process from being a cognitive task
to being a perception task. This transfer helps to
enable humans’ pattern matching skills.”

This is only true of well designed displays, but
supports the views that images that are known to the user
aid them in understanding the images presented.

Chalmers [2] writes

“In designing an information display, we
should support movement and exploration
through the space so as to let people build up
their own models of the information. By moving
and searching through a complex environment,
looking in detail as some parts, and in overview
at others, we make sense of it and make our our
decisions about how to use it and work with it.

Note that it is not enough to have an
information space through which people can
move. One has to give thought to what people
will see from different positions and angles.”

This, whilst containing basic information, is very
often ignored or not implemented properly. This forces
the user into patterns of working they are not familiar

with and can decrease the effectiveness of that work.
Later in Chalmers’ paper the following is written:

“For such uses of an information space, a
naturalistic 3D view seems a powerful but
familiar way of controlling information detail.
Perspective lets us gain an overview of distant
regions and detail of what is close.”

From the simple scale above, and the information
provided by Chalmers ([2]), it would seem appropriate
to choose interactive 3D virtual environments as a good
way of visualising software and programs.

4. Software World

The hardest problem in visualising anything is that,
theoretically, the visualisation has to be able to deal with
the range of items from one to infinity. This massive
range means that automation and layout algorithms (both
for two and three-dimensional visualisations) are hard
problems. It also means that the visualisations need to
be defined with this in mind; or to provide a way of
dealing with very large numbers and indicating this fact
to the user.

A benefit of virtual environments it that it is possible
to cause the generation of a new environment which can
be accessed upon user demand if the number of data
items exceeds a certain threshold. A disadvantage of
this is that then decisions have to be made as to how the
divisions between environments are made and how the
visualisation is able to cope with, for example, evolution
in a way that the user can understand. With program
code and software systems the evolution of
visualisations is important because every system faces
maintenance (and hence change) of some description
during it’s life. It is also important to consider the size
of the data sets to be visualised at each level, and to
design the visualisations accordingly to try and display
these items for the expected inner (realistic) number
range.

One solution to the problem of visualising program
code in three-dimensions by using virtual environments
is the Software World. This visualisation has been
developed to try and achieve all the aims of software
visualisation identified in the definition in Section 2.

Software World makes much use of real world
metaphors through its use of, for example, cities. The
use of user populated virtual environments is the driving
force for this choice of real world metaphor as the basis
of the visualisation. In creating a virtual environment

that does not widely differ from the world experienced
on a daily basis, the perceptual abilities of the users can
be freed to concentrate on the data under investigation.

4.1 Code to Visualisation: The Mapping

The Software World is a visualisation that
encompasses real world items based on city and urban
developments and cartography in an attempt to deal with
visualising software systems of differing sizes in a
coherent manner. At the detailed levels, the code is
shown as buildings and districts of a city environment,
whilst the higher level detail is shown in a map style
using overview and amalgamation techniques to fit a
possibly large amount of information into a finite space.
Nesting within graphical objects when the user is distant
is another way to deal with large and/or varying amounts
of information. The use of an urban environment allows
the natural perception of users to be harnessed [10].

The world has different levels, which can be briefly
described as
• World; flattened, overview picture (atlas style) not

necessarily countries as would be known in standard
geography but shows different elements of the
visualisation at a very high level and the
relationships between those elements.

• Country; each element shown in the world view is a
country. It provides a way of splitting the items in
the world down one level without the detail that is
provided by the next level down.

• City; shown within countries, as the next level of
granularity. These cities are composed of sub-areas
but try to ease the navigation burden through the use
of standard urban navigational aids.

• Districts; there can be from 1..n of these in a city,
the number depending on the information to be
represented in the visualisation. They group
together related aspects of the software and provide
groupings to be used when moving from a higher
level of abstraction to a more detailed level.

• Streets/Buildings/Gardens/Monuments; these
show the detail of the visualisation and provide the
next level of abstraction down from the districts.
They also act as legibility features and landmarks of
the city.

• Inside Buildings/Gardens; this is the finest level of
detail, where detailed direct mappings from the code
to the visualisation can be made. The use of walls,
for example, also provides a way of displaying extra
information to the user such as text. Text needs this
sort of context in a three-dimensional space to be
understandable and visible from many directions.

Software World is targeted at the visualisation of Java
code. Some of the items to be visualised are the files,
packages, classes, methods and variables and the various
attributes of these elements that constitute the full code.
This information is essentially a cross reference database
of the elements and to provide easier navigation,
information retrieval and ultimately understanding, these
relations may be shown in the visualisation as a form of
hypertext style link. The Java language elements can be
mapped to the different visualisation levels as shown in
Table 1.

For Java, each file is an object (class), therefore each
district is an object. For those objects containing other
objects (or files containing several objects) then a
district can have sub districts, one for each object. The
language definition of Java allows certain assumptions to
be made, and the auxiliary classes in a file (since they
are not public) are used only by the code in the main
class. This is why allowing many classes at the same
scope level to be sub-districts is a reasonable mapping
decision.

At the same level as the attributes of the class
(district), other urban items such as gardens/parks and
monuments can be use to represent file and class
attributes that are not methods. These items can also
serve as navigational aids based on urban planning, as
documented by Lynch [10].

Table 1 - Actual mappings from Java code to graphics

Visualisation Level Code Element
World The software system as a whole.
Country Directory structure, which maps to the packages in Java.
City A file from the software system.
District Class (contained within the specific file and hence city in the

visualisation).
Building Methods.

Within districts, the methods (buildings) are laid out
in a block (grid). The reason for this is that it means that
assumptions about the relationships (if any) between
methods do not have to be made. It also allows for
easier, sensible, evolution of the visualisations as it can
easily be shown to the user where changes have occurred
in the underlying code. If a district (or even a city with
districts) gets too dense then the visualisation will
represent it as such. It is then a visual indication that
restructuring of the code could be beneficial. The user
of the visualisation can then “bulldoze” the crowded
areas!

As an example of this the street scene, Figure 2,
represents part of a district (String) and shows buildings
(compareTo, toCharArray, and substring). The size of
the buildings represent the number of lines of code
(normalised), the number of doors represents the number
of parameters, and the number of windows shows the
number of variables declared in the method. The colour
of the building shows whether the method is private or
public. The name of the method is on a plaque by each
door, and for those buildings with no doors (if there are
no parameters) one plaque is placed on the building for
information.

The code that this visualisation is based on is from
the 1.1.x distribution of the Java programming language
from Sun and is taken from the String class. The method

signatures of the illustrated methods can be seen in this
code snippet:

public int compareTo(String anotherString)
{ . . . }

public char[] toCharArray()
{ . . . }

public String substring(int beginIndex, int
endIndex)
{ . . . }

4.2 Exploration and Query

There are two main, general, activities involved in
program comprehension. The first of these is overview
browsing and exploration, where the code is scanned for
items that may be of interest. The second is a more
directed form of exploration, in that the start point and
item of interest is known and by moving to this point in
the code detailed browsing and exploration can then take
place. In summary these activities can be known as
exploration and query respectively. They also map to
the top-down and bottom-up strategies of program
comprehension.

The Software World visualisation is able to support
both of these forms of user enquiry about the program
code. Exploration at any level is done through the use of
the visualisation and it’s metaphor, for example, by

Figure 2 - A street from a Software World

locating a place using the overview map, travelling to
that place and then exploring on foot the buildings and
environment that represents the program code at that
point. For example, in Figure 2, exploration has led to a
street that is part of a district (String) that shows
buildings (methods) that are part of that district (class).

Queries are supported through the use of a query
system providing a leap into the visualisation system and
through the bookmarking facilities that each user has of
the visualisation. These both enable the user to “jump”
into the visualisation at a given point without having to
explore the higher levels. For example, a query such as
“What are the methods of the class String?” would
generate the visualisation shown in Figure 2.

5. Results, Future Directions and Conclusions

This paper has shown that it is possible to move away
from two and three-dimensional abstract visualisations.
One way forward has been presented that makes use of a
three-dimensional real world metaphor. The use of this
real world metaphor supports the natural perceptive
abilities of programmers and maintainers.

There are problems when defining real world
metaphors for Java (or any programming language).
Once a metaphor has been decided upon then there is the
problem of the mapping from language element to the
metaphor. Table 1 showed simple mappings, whilst
more detailed mappings can be seen illustrated in Figure
2. These detailed mappings for the Software World
visualisation consider the attributes of the simply
mapped elements. The use of the methods from the
String class (shown in Figure 2) as the buildings show
the simple mapping. The height of the building, number
of doors and windows, and the plaques provide detail
based on lines of code in the method, number of
parameters, number of local variables and the name of
the method.

The visualisation has been shown to facilitate
exploration and query. By supporting these two
activities the Software World visualisation is able to
sustain top-down and bottom-up comprehension
strategies. Comprehension work by Chan and Munro [3]
shows the benefit of supporting more than one
comprehension strategy.

A future aim is to develop the visualisation to support
user communication and collaboration. One intended
development is to make use of notice boards within
buildings (methods in terms of Java) where functionality
and programmer understanding notes can be attached for

other users to read. Electronic sticky notes can be used
to update and improve the knowledge about the method
on these displays, with eventual conversion to sheets on
the notice board (a more permanent form of
documentation) if the information is of value. The use
of workspaces for users of the visualisation is also
planned. This workspace in the Software World is
intended to be an office in the visualisation system
which allows users to define and use hyperlinks,
bookmarks and keep notes. These features have all been
identified as good facets of program comprehension
systems [14].

Another future aim is to develop the analysis and
mappings to deal with the evolution of the underlying
code. The evolution considered to date has been that of
insertion and deletion of classes and methods, but not
currently low level changes to code. In the Software
World insertion can be shown by scaffolding around new
buildings or districts, with demolition signs and fences
around deleted buildings and districts.

Prototype tools have been developed to implement
the ideas in the Software World. A parser for Java has
been constructed to provide the information for a set of
mapping tools that will then generate input into the
virtual reality software. Virtual worlds have been
created manually, but automation of this process is in
progress.

The visualisation presented in this paper, the
Software World, has shown a way to make use of three
dimensions and virtual environments in trying to create
program comprehension support techniques to overcome
the limitations of traditional techniques. Background
information and examples have been presented, along
with the intended future directions of the work. It is
important that research effort is directed towards new
and useful visualisations so that the support mechanisms
for program comprehension are improved and refined,
especially with the complexity and change program code
is subjected to.

Acknowledgements

This work is partly financed by an EPSRC studentship.

References

[1] S. Benford, C. Brown, G. Reynard, C. Greenhalgh.
Shared Spaces: Transportation, Artificiality and
Spatiality.

Proceedings of the 1996 ACM Conference on CSCW,
Boston, Masachusetts, USA, November 16-20, 1996.
ISBN 0-89791-765-0. pp77-85.

[2] M. Chalmers.
Design Perspectives in Visualising Complex
Information.
Proceedings IFIP 3rd Visual Databases Conference,
Lausanne, Seizerland, March 1995.
http://www.ubs.com/info/ubilab/print_versions/ps/cha
95.ps.gz.

[3] P. S. Chan, M. Munro.
PUI: A Tool to Support Program Understanding
Proceedings of the IEEE 5th International Workshop
on Program Comprehension, Dearborn, Michigan,
May 28-30, 1997, pp192-198.

[4] E. F. Churchill, D. Snowdon.
Collaborative Virtual Environments: An Introductory
Review of Issues & Systems.
Virtual Reality, Vol. 3, No. 1, 1998, pp3-15.

[5] R. M. Friedhoff, W. Benzon.
Visualization: The Second Computer Revolution. W.
H. Freeman and Company. ISBN 0-7167-2231-3.
Published 1991

[6] W. Gibson.
Neuromancer
Paperback edition publiched in 1995 by Voyager, an
imprint of HarperCollins Publishers. ISBN 0 00
648041 1

[7] R. Hubbold, A. Murta, A. West, T. Howard.
Design Issues for Virtual Reality Systems.
Presented at the First Eurographics Workshop on
Virtual Environments, Barcelona, 7th September 1993.

[8] C. Knight.
Visualisation for Program Comprehension:
Information and Issues.
University of Durham, Computer Science Technical
Report 12/98.
http://www.dur.ac.uk/~dcs3crk/workfiles/documents/L
it_Survey_Tech_Reports/Tech_Report_12-98.ps.gz

[9] S. Levialdi, A. Massari, L. Saladini.
Visual Metaphors for Database Exploration.
A position paper relating the Virgilio system, available
on-line from
http://www.darmstadt.gmd.de/~hemmje/Activities/Vir
gilio/Publications/virgilio.ps.

[10] K. Lynch.
The Image of the City.
The M.I.T. Press & Harvard University Press,
Cambridge Massachusetts 1960.

[11] S. Pettifer, A. West.
Deva: A coherent operating environment for large
scale VR applications.
Presented at the first Virtual Reality Universe
conference in Santa Clara, California, April 1997.

[12] J. T. Stasko.
Three-Dimensional Computation Visualization.
Georgia Institute of Technology, Technical Report
GIT-GVU-92-20, 1992.

[13] N. Stephenson.
Snow Crash
Paperback edition published by ROC (Penguin Group)
1993. ISBN 0-14-023292-3.

[14] M.-A. D. Storey, F. D. Fracchia, H. A. Müller.
Cognitive Design Elements to Support the
Construction of a Mental Model During Software
Visualization.
Proceedings of the IEEE 5th International Workshop
on Program Comprehension, Dearburn, Michigan,
May 28-30, 1997, pp17-28.

[15] P. Young, M. Munro.
Visualising Software in Virtual Reality.
Proceedings of the IEEE 6th International Workshop
on Program Comprehension, Ischia, Italy, June 24-26,
1998, pp19-26.

[16] H. Rheingold.
Virtual Reality
Mandarin Science, ISBN 0-7493-0889-3, 1992.

