
3D Representations for Software Visualization

Andrian Marcus
Kent State University

Department of Computer Science
Kent, Ohio USA 44240
amarcus@cs.kent.edu

Louis Feng
Kent State University

Department of Computer Science
Kent, Ohio USA 44240

lfeng@cs.kent.edu

Jonathan I. Maletic
Kent State University

Department of Computer Science
Kent, Ohio USA 44240
jmaletic@cs.kent.edu

Abstract

The paper presents a new 3D representation for visualizing large
software systems. The origins of this representation can be
directly traced to the SeeSoft metaphor. This work extends these
visualization mechanisms by utilizing the third dimension,
texture, abstraction mechanism, and by supporting new
manipulation techniques and user interfaces. By utilizing a 3D
representation we can better represent higher dimensional data
than previous 2D views. An overview of our prototype tool and
its basic functionality is given. Applications of this method to
particular software engineering tasks are also discussed.

CR Categories: D.2.2 [Software Engineering] Design Tools and
Techniques, D.2.7 [Software Engineering] Distribution,
Maintenance, and Enhancement, H.5.2 [Information Interfaces
and Presentation] User Interfaces

Keywords: Software visualization, 3D visualization, File maps,
SeeSoft

1 Introduction

Software visualization addresses a wide variety of problems that
range from algorithm animation and visual programming to
visualizing software design issues of large-scale systems. Our
particular focus, with this research, is the visualization of large
scale software to assist in comprehension and analysis tasks
associated with maintenance and reengineering. This work brings
together research from software analysis, information
visualization, human-computer interaction, and cognitive
psychology.

Research in software visualization has flourished in the past
decade. A large number of tools, techniques, and methods were
proposed to address various problems. Unfortunately, the success
of many of these results is still to be proven and qualitative
evaluation of software visualization system is often extremely
difficult.

One of the most successful and well-known application, SeeSoft
[Ball and Eick 1996, Eick et al. 1992], was proposed by Eick et al.
in the early 90’s. Several attributes of the SeeSoft metaphor
warrant its success and usefulness. One of the most important of
these attributes is the natural and direct mapping from the visual
metaphor to the source code and back. This in turn leads to a
natural navigation between the representations. This makes the

visual representation easy to understand; yielding high levels of
trust on behalf of the user. Color and pixel maps are used to show
relationships between elements of a software system (rather than
graph-based representations). This allows the representation of
large amounts of source code, the non-trivial relationships, and
data on a standard 2D visualization medium (e.g., monitor or
screen). Many other software visualization tools use graph-based
representations that suffer from scalability, layout, and mapping
problems.

In this paper, we present the sv3D (source viewer 3D) framework,
which implements a 3D metaphor for software visualization. Our
3D metaphor is based on the SeeSoft representation however it
brings a number of extensions to the original concept. The
underlying motivation of this work is in exploring new mediums
and representations to address particular software engineering
tasks [Maletic et al. 2002].

The next section presents related work in the field that motivates
our approach. Section 3 describes which aspects of software
visualization are addressed by our work. The proposed 3D
representations are implemented within the sv3D (source viewer
3D) framework. The architecture, implementation and main
features of sv3D are presented in the following sections.
Examples and applications of sv3D are shown with respect to
related work. The paper concludes with listing the aspects of
sv3D that are under development and require further research.

2 Related SeeSoft Work

SeeSoft-like representations are used by a number of existing
tools: Tarantula [Jones et al. 2001], The Aspect Browser
[Griswold et al. 2001], The Aspect mining Tool [Hannemann and
Kiczales 2001], Bee/Hive [Reiss 2001], GSEE [Favre 2001],
Advizor [Eick 2000], etc.

Despite its success, SeeSoft and most of its versions have noted
limitations. Namely, the use of 2D pixel bars limits the number of
attributes that can be visualized as well as the type of relationships
that can be shown and hierarchical relationships are difficult to
represent. Additionally, one of the major strengths of the
metaphor (i.e., direct linking to the source code) also yields one of
its weaknesses that is, little support for multiple abstraction levels
and limited usage of the 2D space.

A number of improvements of the original SeeSoft representation
were made by researchers. In particular, Tarantula [Jones et al
2001] uses brightness to represent and extra attribute. However,
as noted by its authors brightness is confusing and very poorly
perceived by the users. Bee/Hive [Reiss 2001] introduces the file
maps, which make use of texture and the third dimension in the
visualization. The file maps form only one view supported by
Bee/Hive. By supporting multiple views of the data and multiple
data sources, Bee/Hive overcomes many of the limitations of the
SeeSoft view. However, the supported user interactions are
somewhat limited for the 3D renderings, thus suffering from some
of the problems inherent to 3D visualizations (e.g., occlusion).

sv3D builds on the success of SeeSoft and Bee/Hive, while trying
to address some of the inherent limitations of the medium and
representation. In particular, sv3D supports object-level
manipulations that differs from Bee/Hive and SeeSoft, which
support only manipulation of the entire space.

3 Software Visualization

We view software visualization systems in light of their
applications toward supporting large-scale software development
and maintenance. In order to accomplish this we define five
dimensions of interest with regard to software visualization
[Maletic et al 2002]. These dimensions reflect the why, who,
what, where, and how of the software visualization. The
dimensions are as follows:

• Tasks – why is the visualization needed?
• Audience – who will use the visualization?
• Target – what is the data source to represent?
• Representation – how to represent it?
• Medium – where to represent the visualization?

A detailed view over these dimensions can be found in [Maletic et
al 2002]. The focus of the work presented here is along the
representation dimension of software visualization and we will
further elaborate on this issue.

3.1 Representation

Depending on the goals and target of the software visualization
system, the type of users, and available medium, a form of
representation needs to be defined to best convey the target
information to the user. In addition to the related work, presented
earlier, we look to the research in information visualization and
cognitive sciences [MacKinlay 1986, Tufte 1983, Ware 2000] to
make the best choices in designing the representation for software
visualization. This research centers on methods to best map raw
data into a visual structure and view.

MacKinlay [MacKinlay 1986] defined two criteria to evaluate the
mapping of data to a visual metaphor: expressiveness and
effectiveness. These criteria were used in 2D mappings, but can
also be applied for 3D mappings.

Expressiveness refers to the capability of the metaphor to visually
represent all the information we desire to visualize. For instance,
if the number of visual parameters available in the metaphor for
displaying information is fewer than the number of data values we
wish to visualize, the metaphor will not be able to meet the
expressiveness criterion.

The relationship between data values and visual parameters has to
be a univocal relationship; otherwise, if more than one data value
is mapped onto the same visual parameter than it will be
impossible to distinguish one value’s influence from the other.
On the other hand, there can always be visual parameters that are
not used to map information, as long as there is no need for them
to be utilized.

The second criterion, effectiveness, relates to the efficacy of the
metaphor as a means of representing the information. Along the
effectiveness dimension we can further distinguish several
criteria: effectiveness regarding the information passing as
visually perceived, regarding aesthetic concerns, regarding
optimization (e.g., number of polygons needed to render the
view).

In the case of quantitative data (e.g., software metrics, LOC, trace
data), not only the number of visual parameters has to be
sufficient to map all the data, but also, they must be able to map
the right data. There are visual parameters that are not able to
map a specific category of data; for instance, shape is not useful
for mapping quantitative data, while the size of a metaphor is
adequate.

Effectiveness implies the categorization of the visual parameters
according to its capabilities of encoding the different types of
information. Moreover, this also implies categorizing the
information according to its importance so that information that is
more important can be encoded more efficiently when options
must be taken. This categorization of the importance of the
information has two expressions: one is an assigned importance of
the information in the context of a software system; the other is a
preference of the user. Nonetheless, the user may choose to
override this and define his own importance of the data, according
to his priorities is usually the first step to understand a
phenomenon or system. Although these characteristics of data
apply mostly to data visualization, they must be taken into
consideration when visualizing a software system.

In order to satisfy these criteria for the mapping, one must have a
solid data characterization. The metaphors should be designed
such that they maximize the amount of data that can be
represented with an accent on the user’s information seeking
goals. In a similar manner as Bee/Hive, sv3D is designed to be a
visualization front-end, independent from the source of the data.
Thus sv3D can be used as a general data visualization tool to
some degree. However, it is intended to be used for software
visualization; the data mapping and choice of metaphors are
determined by this aspect.

The power of a visualization (language/representation) is derived
from its semantic richness, simplicity, and level of abstraction.
The aim is to develop a language with few metaphors and
constructs, but with the ability to represent a variety of elements
with no ambiguity or loss of meaning. An important aspect to be
considered in defining a visual representation is the nature of its
users. One may design a language for use by software developers
with solid knowledge of programming, program designs, and
system architecture. The metaphors in the language should be
simple, having a familiar form and straightforward mapping to the
target.

With all these considerations in mind, the representation can take
several forms (e.g., source code, tables, diagrams, charts, visual
metaphors – icons, figures, images, virtual worlds, etc.) and have
various attributes (e.g., interactive, static, dynamic, on-line or off-
line views, multiple views, drill-down capabilities, multiple
abstraction levels, etc.). Once again, these elements and attributes
need to be defined and designed with several goals in mind, to
support the needs of the user.

3.2 Support for user needs

Shneiderman [Shneiderman 1996], presents seven high level user
needs that an information visualization application should
support. For evaluation purposes, we must refine these into
lower-level tasks as done by Wiss, Carr, and Jonsson [Wiss et al.
1998]. The needs are presented below and act as a guideline for
developing navigational needs of the user in sv3D:

Overview: Gain an overview of the entire collection of data that
is represented. This is often a difficult problem in the case of
visualizing the structural information of large systems.

Zoom: Zoom in on items of interest. When zooming, it is
important that global context can be retained. This subsumes
methods to drill down to lower levels of abstraction.

Filter: Filter out uninteresting items. Filtering by removing parts
of the visualization will necessarily disturb the global context.
Therefore, it is important to see whether the design supports some
kind of abstraction of the removed parts.

Details-on-demand: Select an item or group and get details
when needed. Getting details on a selected item is usually
implemented by the embedding application.

Relate: View relationships among items. For a hierarchical data
structure, it is necessary that the visualization show parent-child
relationships. This is one of the most important features of many
software visualization systems. Software systems rely on many
inter-related components, working together to solve problems.

History: Keep a history of actions to support undo, replay, and
progressive refinement. A visitation path should be supported.

Extract: Allow extraction of sub-collections and of query
parameters. This is related only to the application and the
underlying data set. How the data is visualized does not affect
this.

We will describe later in the paper how sv3D supports each of
these requirements.

4 2D versus 3D Representations

No visualization method addresses all the needs of the users. One
successful approach to address more of the user’s needs is to offer
multiple views of the data as done by [Knight and Munro 2001,
Reiss 2001, Storey et al. 2001]. Using one view of the data limits
the number of attributes and the available exploration space. The
solution we propose to overcome this problem is the efficient use
of a 3D space for visualization.

Visualization in the 2D space has been actively explored. Many
techniques for generating diagrams, graphs, and mapping
information to the 2D representation have also been studied
extensively. Although the question of what benefits 3D
representation offer over 2D still remains to be answered, some
experiments have given optimistic results. These results further
motivate our work presented here.

The work of Hubona, Shirah and Fout [Hubona et al. 1997]
suggest that users' understanding of a 3D structure improves when
they can manipulate the structure. Ware and Franck [Ware and
Franck 1994] indicate that displaying data in three dimensions
instead of two can make it easier for users to understand the data.
In addition, the error rate in identifying routes in 3D graphs is
much smaller than 2D [Ware et al. 1993]. The CyberNet system
[Dos Santos et al. 2000] shows that mapping large amount of
(dynamic) information to 3D representation is beneficial,
regardless of the type of metaphors (real or virtual) used. Also,
3D representations have been shown to better support spatial
memory tasks than 2D [Tavanti and Lind 2001]. In addition, the
use of 3D representations of software in new mediums, such as
virtual reality environments, are starting to be explored [Knight
and Munro 1999, Maletic et al. 2001].

The debate in the information and software visualization fields on
the 2D vs. 3D battle is still heated. We support the results that
show the advantages of 3D representations. In our view the

design of these representations and the underlying mapping to the
data is what makes a 3D visualization successful or not. The
following section describes the design details and rationales
behind sv3D.

5 The sv3D Framework

sv3D is a software visualization framework that builds on the
SeeSoft metaphor. It brings a number of major enhancements
over SeeSoft-type representations:

• It creates 3D renderings of the raw data.
• Various artifacts of the software system and their attributes

can be mapped to the 3D metaphors, at different abstraction
levels.

• It implements improved user interactions.
• It is independent of the analysis tool. It accepts a simple and

flexible input in XML format. The output of numerous
analysis tools can be easily translated to sv3D input format.

• Its design and implementation are extensible.

5.1 Mapping Raw Data to Visualization

We intentionally separated visualization from data collection.
sv3D is designed to work with a variety of analysis tools as an
independent visualization front-end. Therefore the input format

to sv3D is kept as generic as possible.

Figure 1. Elements of the visualization. In the current
version sv3D uses containers, poly cylinders, height, depth,

color and position.

We define a sv3D application P as a quadruple
: { , , , }P V D S M=

• defines the visual metaphors to be used. V
D• represents the data resulted from software analysis stored
as a set of filesD d , corresponding to a set
of source code filesS s .

1 2{ , ,..., }nd d=
1 2{ , ,..., ns=

1 2,..., }km m
}s

• defines the mapping between data
and visualization as a set of relations m D .

{ ,M m=
i S V× ×∈

Each source code file s is composed of lines of text i ∈

i ∈
d

S
1 2{ , ,..., }pi i is t t t=

ik ∈

i
D

. For each source code files there is an
associated analysis data filed . Each d is an XML file
with elements e corresponding to a line of text t s .

i
i

i
k
i i∈

Each element e has a set of attributes that contain the analysis
data . In the current version of sv3D
each attribute is linked to an element of the visualization

, by a mapping m . The number of elements in
the visualization is fixed, but the number of the attributes in the
data is not. If there are more attributes than visual elements, the
user will decide which ones will be represented, or the system
chooses a subset automatically. The same is true if the number of
visual elements exceeds the number of data attributes.

ik1 2{ , ,..., }qik ik ik ike a a a=

jv V∈ i M∈

p

x xp
y yp

+
−
z+ +
z −

σ

j V∈
- -{ , , , , , , , , }.j x yv p o p p z z c c σ+ +=

Figure 2. A 2D overview of a system containing 30 C++ source code files (approx. 4000 LOC). Each file is mapped to a
container and the name of the file is shown on top of the container. Color is used to show nesting level of the line of source code.

Every element v is a nine-tuple:

Figure 1 shows a close-up on a container highlighting the
elements that support representation of analysis data. In this view
each poly cylinder represents a line of text from the source code
associated with the container. The visual components of the
container represent values from the associated data file. The
diameter of a poly cylinder is adjustable and is defined in the
mapping.

The current version of sv3D supports mapping to the following
elements of the visualization, defined inV : Future versions of sv3D will also support container position in the

space, relationships between containers, and texture of the poly
cylinders. This will allow representation of hierarchical data and
other relationships between software elements.

• Poly cylinder -
• Poly cylinder container - o
• Poly cylinder position in the container on its o axis -

Expressiveness and effectiveness were the guiding principles in
defining the visual elements and the default mappings. In
addition, we must balance two opposing issues with regard to the
user namely, the simultaneous display of as much information as
possible and the dangers of information overload.

• Poly cylinder position in the container on its o axis -
• Poly cylinder height - z
• Poly cylinder depth - z
• Poly cylinder color on o axis - c
• Poly cylinder color on o axis - c

−
• Poly cylinder shape -

Zoom: sv3D supports zooming and panning at variable speeds.
This is especially important because the visualization space can
possibly be quite large. Each container in the visualization can be
manipulated individually (rotate, scale, translate). The user can
also zoom in and out on the entire representation. Figure 4
represents the same system represented by figure 2, rendered in
the 3D space. Here, some of the files were brought into a closer
view and manipulated for a better camera angle.

Zoom: sv3D supports zooming and panning at variable speeds.
This is especially important because the visualization space can
possibly be quite large. Each container in the visualization can be
manipulated individually (rotate, scale, translate). The user can
also zoom in and out on the entire representation. Figure 4
represents the same system represented by figure 2, rendered in
the 3D space. Here, some of the files were brought into a closer
view and manipulated for a better camera angle.

sv3D provides the user with a set of default mappings. By
default, in the current version, sv3D maps a containero to a
source code files . Each poly cylinder

i
i j ip o∈ is mapped to a

line of source code j i∈it . The coordinates p and of a poly
cylinder within in the container are determined by the position in
the source code file, with a fixed width of the container. Finally,
the first 4 attributes in every element ofd are mapped to cylinder
colors (c andc), height (z), and depth (z) respectively.

s x

i
−

yp

+ − +

The user can define, save, or load mappings, as well as other
parameters such as the diameter of the cylinder. In addition to the
mappings the user can define and save views that highlight
different elements of the visualization. These views preserve a
current state of the visualization (i.e., the source data, the
mapping, and the current manipulations and visual parameters).

The default mapping is not ideally suited for all user needs. When
defining custom mappings, the user need to consider what types
of data can be mapped to each visual element. Some elements are
better suited for quantitative data, some for categorical data. In
different views, some of the elements cannot convey the
information as well as in others. Poly cylinder height, depth, and
color are best suited for quantitative data representation. Shape
and texture are suited for categorical data representation. Only a
very few shapes and textures should be used (2-3 types each). In
addition, these attributes of the visualization are less effective at
increased zoom levels and loose their effectiveness during
overviews. Reducing the diameter of the cylinder to one pixel
will of course remove this information from the visualization.
Position within containers and links between containers are best
suited for representation of relations.

Once the data is rendered based on the current mapping, the user
can manipulate any part of the visualization, or change parts of
the mapping. In the design of sv3D, particular attention was
given to user interactions and manipulations. These aspects make
the difference between an effective 3D visualization and an
ineffective one.

5.2 Support for user interaction

sv3D provides support for the user tasks discussed previously.
We now describe this support for each type of user task.

Overview: This is one of the strongest features of sv3D. The
underlying 2D visualization construct used in designing the poly
cylinder containers is the pixel bar chart [Keim et al. 2002], which
generalizes the concept used by SeeSoft. Thus sv3D can show
large amounts of source code in one view just as the SeeSoft
metaphor is able to show. The simplicity of the metaphor is a
feature that permits the user to zoom out and see the entire system
in a single view. In addition, the visualization is rendered in a 3D
space.

Navigation in each direction is supported, as well as panning, thus
the user can get a view of the system form any angle and can
rearrange individual elements such that the overview is most
effective. Figure 2 shows a 2D overview of a small system with
30 C++ source code files and approximately 4000 lines of code.
Each file is mapped to one container. Each poly cylinder
represents a line of code. In this simple example color is used to
represent the nesting level of a statement. On top of each
container the name of the associated file is visible. When
manipulating a container in the 3D space, the name of the file
always faces the camera. Display of strings associated with
containers (e.g., file names) can be enabled or disabled by the
user.

Navigation in each direction is supported, as well as panning, thus
the user can get a view of the system form any angle and can
rearrange individual elements such that the overview is most
effective. Figure 2 shows a 2D overview of a small system with
30 C++ source code files and approximately 4000 lines of code.
Each file is mapped to one container. Each poly cylinder
represents a line of code. In this simple example color is used to
represent the nesting level of a statement. On top of each
container the name of the associated file is visible. When
manipulating a container in the 3D space, the name of the file
always faces the camera. Display of strings associated with
containers (e.g., file names) can be enabled or disabled by the
user.

Filter: At this point sv3D directly supports a number of filtering
methods. Un-interesting units can be filtered through their
attributes or by direct manipulation. Transparency is used to deal
with both occlusion and filtering. The user can chose various
degrees of transparency on each class of cylinder, based on their
attributes (color, shape, or texture). With semi-transparency the
global context is preserved and heuristic information is retained.
Elevation [Chuah et al. 1999] can also be used to filter out un-
interesting units by lifting them into separate levels. Figure 3a
shows a container representing a file (mailbox.cpp) from the
system shown in figure 2. Figures 3a and 3b show how
transparency is used to solve the occlusion problem. One can see
a number of green cylinders in figure 3b, which are not visible in

Filter: At this point sv3D directly supports a number of filtering
methods. Un-interesting units can be filtered through their
attributes or by direct manipulation. Transparency is used to deal
with both occlusion and filtering. The user can chose various
degrees of transparency on each class of cylinder, based on their
attributes (color, shape, or texture). With semi-transparency the
global context is preserved and heuristic information is retained.
Elevation [Chuah et al. 1999] can also be used to filter out un-
interesting units by lifting them into separate levels. Figure 3a
shows a container representing a file (mailbox.cpp) from the
system shown in figure 2. Figures 3a and 3b show how
transparency is used to solve the occlusion problem. One can see
a number of green cylinders in figure 3b, which are not visible in

Figure 3a. The container is associated with one C++ source
code file (mailbox.cpp). Each poly cylinder represents a
line of text. Color is mapped to control structure type.

Height is mapped to nesting level. See figures 2 and 6 for
details. See also color plate 2a.

Figure 3b. Eliminating occlusion with transparency
control. Same file as in figure 3a (mailbox.cpp) is shown
from the same angle. The green color is opaque and the

other colors are at 85% transparency. See also color plate
2b.

figure 3a. Figure 3c shows how elevation is used to separate
colors, shades of blue are separated from yellow, green, and grey
on different levels.

Unwanted container can be shrunken or moved outside the current
view. Display of names of elements and values can be turned on
and off.

Details-on-demand: Current metaphors implemented in sv3D
emphasis simplicity for a number of reasons. Complex visual
representations do not necessarily convey information well. It is
also important to be able to support user interaction, therefore
performance is important. Two types of 3D manipulators (i.e.,
track ball and handle box) are available to the user to interact with
the visualization. Also, a number of 2D interactions are

supported. An information panel displays the data values on
selected items. Figure 4 shows several containers selected and
scaled. The name of the files linked to the containers is also
shown. Two of the containers have active manipulators (e.g.,
handle box on the left container, and track ball on the right
container).

Relate: The relationships between items are shown through the
elements of the visualization that do not directly support
representation of quantitative data (such as shape, texture, and
position). The other elements (such as color and height) could
also be used to show relationships. Although pixel bar charts and
its variations do not directly support representation of hierarchical
relationships, we are investigating a variant representation based
on set-based visualizations of overlapping classification
hierarchies [Graham et al. 2000]. In addition, the 3D space allows
arranging the containers in any place. We are investigating ways
to use links between the 3D containers and arrange them in a
graph layout.

History: The user can take snapshots of the current view. The
current view is described by a scene graph, which is composed by
the attributes of the camera and all 3D objects. These snapshots
of the scene graph can be saved and reviewed. A sequence of
such snapshots can be played, thus representing a path within the
visualization. More than that, we intend to build into sv3D
change tracking based on individual users.

Extract: The development of sv3D at this stage is focused on
representation and user interaction. Extraction and querying
features will be added in the future.

Our view of the representation of a software visualization system
subsumes much of the taxonomical categories proposed by Price
[Price et al. 1993] and Roman [Roman and Cox 1993].

6 sv3d Architecture and Implementation

The user needs were the driving factors in the design and
implementation of sv3D. We tried to achieve a high level of
extensibility, flexibility, and performance. In order to achieve
these goals sv3D is designed as an extensible framework using Qt
[Trolltech 2002] for the user interface and Open Inventor
[Wernecke 1994] for the rendering components. The SoQt
Toolkit [Coin3D 2002] allows sv3D to use Qt and Open Inventor
together to generate applications. Figure 5 shows a high level
view of sv3D’s architecture.

Qt is a well known cross platform GUI framework. The Linux
KDE was built using the Qt GUI framework. Qt offers great
portability and generates common user interfaces. Since sv3D is
intended to be used in concert with other analysis tools on various
platforms, Qt was a natural choice for the GUI implementation.

Figure 3c. Eliminating occlusion with elevation control.
Same file as in figure 3a (mailbox.cpp) is shown from a

different angle. Shades of blue (on top) are separated from
green, yellow, and grey respectively (on the lower levels).

See also color plate 2c. OpenGL has long been the standard cross platform API for high
quality, high performance interactive 3D visualizations.
However, a higher level toolkit suitable for developing large
visualization applications is beneficial.

Open Inventor is an open source high level C++ object oriented
toolkit originally developed at SGI. The toolkit is system-
independent and runs on major platforms, such as Microsoft
Windows, Linux, and UNIX.

Figure 4. Overview in the 3D space of the mailing system. Color represents control structure (figure 2) and height represents
nesting level. Two files have active manipulators (handle box for scaling in the left and track ball for rotating in the right). See

also color plate 1.

The input data for a sv3D application is in XML format. Sv3D
utilizes the SAX XML parser in Qt to process data files. The
SAX parser is an event driven, memory efficient interface, no data
object tree is needed. We partially addressed one of the burning
issues in software visualization – scalability. In addition, all the
implementation is in C++, which offers considerably higher
efficiency in 3D rendering than Java3D.

The data processing and mapping component is currently
implemented in two steps. The processing step converts the value
of each entity attribute to an internal representation, normally as
integers. The internal representation of the visualization is
represented as a scene graph allowing the management of
complex visualizations. A scene graph consists of 3D objects,
called nodes, arranged in a tree structure. Complex objects are
composed of collections of other simpler objects. The
visualization is rendered by traversing the tree. Scene graph
objects are constructed by creating a new instance of the desired
class and are accessed and manipulated using the methods of the
class. Nodes can be added or removed from the scene graph
dynamically allowing run time user interaction. Open Inventor
provides a number of customizable manipulators to handle user
interactions. sv3D uses a standard Open Inventor file format to

load and store the 3D scene database and exchange with other
applications.

In addition, sv3D is designed such that the user can extend its
functionality easily. The core components of sv3D are designed

Figure 5. sv3D architecture

Figure 6. A 2D overview of a system containing 30 C++ source code files (approx. 4000 LOC). Each file is mapped to a
container and the name of the file is shown on top of the container. Color is used to show control structures.

To show how the use of 3D brings advantages over the standard
SeeSoft view, we present an example based on the one described
in [Ball and Eick 1996]. We chose to represent the
implementation of a simple voice-mail system. The software
system consists of 30 C++ source code files and has
approximately 4000 lines of code. Figure 2 depicts a 2D
overview of this system. This view is similar to a SeeSoft pixel
representation. Each file is represented by a container; the file
name is indicated on top of the container, and the heights of the
cylinders are zero. Color is used to show the nesting level of a
statement (quantitative data). In this example, the deepest nesting
level is 4.

as an application framework. A number of hot spots are provided
that allow the user to customize the framework and generate
applications that best suit its needs. The GUI can be extended,
new methods for mapping and new visual elements can be
defined. In addition the user can extend the framework to define
collaboration with other applications.

7 Applications of sv3D

SeeSoft-like tools have a variety of uses in assisting the user
solving software engineering tasks. Obviously, sv3D can be used
for all these tasks such as: fault localization [Jones et al 2001],
visualization of execution traces [Reiss 2001], source code
browsing [Griswold et al 2001, Hannemann and Kiczales 2001],
impact analysis, evolution, slicing [Ball and Eick 1996], etc.

The same system is shown in figure 6 (please see above). In this
view the color is used to represent the control structure to which
the statement belongs. The following control structures are
represented: if, else if, else, while, switch, and for. Also the
statements that are not inside any control structure are colored. If
a structure is contained within another (e.g., there is an if
statement within a for loop) the color of the poly cylinder will
show the included structure. One problem with this
representation is that the user cannot differentiate between nested

In addition, by allowing visualization of additional information
(via 3D), sv3D can be used for solving other more complex tasks.
For example, in the case of Tarantula [Jones et al 2001], using
height (sv3D) instead of brightness will improve the visualization
and make the user tasks easier.

for statements and contiguous for statements. To do that, the user
needs both views (i.e., from figure 2 and figure 6) available and
switch between them. This is one of the situations when
combining the two views, by using height to map to one of the
attribute is highly beneficial. Figure 4 shows a view of the same
mailing system with color mapped to control structure (just as in
the view from figure 2) and nesting level mapped to the height of
the cylinders. In order for the user to perceive the height of the
cylinders, containers need to be brought closer to the camera,
rotated, and scaled. In figure 4 several of the containers were
moved and rotated. Two of them have active manipulators for
stretching (the handle box) and for rotating (the track ball).

As discussed before, occlusion can hamper the user’s efforts.
Figure 3b and 3c show how transparency and elevation can be
used in this example to counter the occlusion. Both techniques
are used on one of the containers from the mailing system
example.

In addition to using height, we could also use depth, shape, or
texture, as indicated in figure 1. For example, the depth of the
cylinder can be used to show method limits and texture to show
the difference between declarations and implementations.

8 Conclusions and Future Work

The paper presents sv3D, a framework for software visualization.
The framework uses 3D metaphors to represent source code and
related attributes. It is based on the SeeSoft [Eick et al 1992]
pixel representation and the 3D File Maps [Reiss 2001]. It brings
a number of extensions to these concepts, especially in regard
with the manipulation of the 3D structures. Through a more
flexible mapping and use of 3D, the representation is able to show
more information than previous SeeSoft-type software
visualization tools. Using transparency, elevation and special 3D
manipulators, sv3D overcomes many of the shortcomings of 3D
visualizations such as occlusion. In addition, by using Open
Inventor and Qt as support for the implementation we ensure
portability and efficiency, which is critical for the success of 3D
renderings. The presented examples, while simple, show how
using 3D allows the representation of multiple attributes in one
view.

Several aspects and extensions of sv3D need to be addressed. We
plan to allow definition of mappings that will represent the
software system at higher abstraction levels. For example, a
container can be mapped to a function, a class, a hierarchy of
classes, or a package, rather than just one source code file. The
position of the cylinders within a container currently map to the
position of the associated lines of text in the source code. In the
future versions, position of the cylinder within a container will
represent some other type of information. For example, if the
container represents a class, the declaration part could be shown
in a different part of the container than the implementation part.

In its current version, sv3D only represent poly cylinders with 4
edges and uniform fill. Variable number of edges will be
supported and also different textures. We need to define these
visual attributes very carefully to ensure their usefulness. As
mentioned previously, containers in the 3D space may be
connected by edges to form a 3D graph. This will allow
representation of hierarchical data and also diagrammatic
visualizations such as UML class diagrams.

Several aspects are important to make sure that sv3D fully
exploits the advantages of the 3D space. First, a stereoscopic
version (sv3Ds) is being implemented. This will be used with

passive stereo displays and allow the user to experience depth of
the image through stereopsis. In addition, the current version of
sv3D is already designed to be used on dual monitors. One
monitor can be used exclusively for the rendering, while the other
for displaying the user controls and textual information.

One of the major problems of software visualization tools is
scalability. By using the 3D space, sv3D deals with the real estate
problem. However, efficiency is the limiting factor for 3D
renderings, in general. In the current version, sv3D performs
exceptionally well in representing up to 40-50 KLOC. For larger
software systems the performance of the rendering and user
interaction is reduced. We are working on making the rendering
more efficient. We expect that the next version will work very
fast representing systems in the 100 KLOC range.

Finally, we need to conduct controlled user studies to better assess
the advantages and disadvantages of the sv3D, as well as the
efficiency issues.

9 Acknowledgments

This work was supported in part by grants from the Office of
Naval Research N00014-00-1-0769 and the National Science
Foundation CCR-02-04175.

10 References

BALL, T. and EICK, S. 1996. Software Visualization in the
Large. Computer, vol. 29, no. 4, April, pp. 33-43.

CHUAH, M. C., ROTH, S. F., MATTIS, J., and KOLOJEJCHICK, J.
1999. SDM: Selective Dynamic Manipulation of
Visualizations, in Readings in Information Visualization
Using Vision to Think. S. K. Card, J. D. MacKinlay and B.
Shneiderman, Eds., San Francisco, CA Morgan Kaufmann,
pp. 263-275.

COIN3D. 2002. Coin3D. Webpage, Date Accessed: 12/2002,
http://www.coin3d.org.

DOS SANTOS, C. R., GROS, P., ABEL, P., LOISEL, D.,
TRICHAUD, N., and PARIS, J. P. 2000. Mapping Information
onto 3D Virtual Worlds. in Proceedings of International
Conference on Information Visualization (IV '00), London,
England, July 19-21.

EICK, S., STEFFEN, J. L., and SUMMER, E. E. 1992. Seesoft - A
Tool For Visualizing Line Oriented Software Statistics.
IEEE Transactions on Software Engineering, vol. 18, no.
11, November, pp. 957-968.

EICK, S. G. 2000. Visual Discovery and Analysis. IEEE
Transaction on Visualization and Computer Graphics, vol.
6, no. 1, January/March, pp. 44-58.

FAVRE, J.-M. 2001. A Flexible Approach to Visualize Large
Software Products. in Proceedings of ICSE'01 Workshop
on Software Visualization, Toronto, Ontario, May 12-13.

GRAHAM, M., KENNEDY, J. B., and HAND, C. 2000. A
Comparison of Set-Based and Graph-Based Visualisations
of Overlapping Classification Hierarchies. in Proceedings
of AVI 2000, Palermo, Italy, May 23-26.

GRISWOLD, W. G., YUAN, J. J., and KATO, Y. 2001. Exploiting
the Map Metaphor in a Tool for Software Evolution. in
Proceedings of 23rd IEEE International Conference on
Software Engineering (ICSE'01), Toronto, Ontario, May
12-19, pp. 265-274.

HANNEMANN, J. and KICZALES, G. 2001. Overcoming the
Prevalent Decomposition in Legacy Code. in Proceedings
of ICSE 2001 Advanced Separation of Concerns Workshop,
Toronto, Canada, May 15.

http://www.coin3d.org/

HUBONA, G. S., SHIRAH, G. W., and FOUT, D. G. 1997. 3D
Object Recognition with Motion. in Proceedings of
CHI'97, pp. 345-346.

JONES, J. A., HARROLD, M. J., and STASKO, J. T. 2001.
Visualization for Fault Localization. in Proceedings of
ICSE 2001 Workshop on Software Visualization, Toronto,
Ontario, Canada, pp. 71-75.

KEIM, D. A., HAO, M. C., DAYAL, U., and HSU, M. 2002. Pixel
bar charts: a visualization technique for very large multi-
attribute data sets. Information Visualization, vol. 1, no. 1,
March, pp. 20-34.

KNIGHT, C. and MUNRO, M. 1999. Comprehension with[in]
Virtual Environment Visualisations. in Proceedings of
Seventh IEEE International Workshop on Program
Comprehension (IWPC'99), Pittsburgh, PA, 5-7 May, pp.
4-11.

KNIGHT, C. and MUNRO, M. 2001. Mediating Diverse
Visualisations for Comprehension. in Proceedings of Ninth
International Workshop on Program Comprehension
(IWPC'01), Toronto, Canada, pp. 18-25.

MACKINLAY, J. D. 1986. Automating the design of graphical
presentation of relational information. ACM Transaction on
Graphics, vol. 5, no. 2, April, pp. 110-141.

MALETIC, J. I., LEIGH, J., MARCUS, A., and DUNLAP, G. 2001.
Visualizing Object Oriented Software in Virtual Reality. in
Proceedings of International Workshop on Program
Comprehension (IWPC01), Toronto, Canada, May 21-13,
pp. 26-35.

MALETIC, J. I., MARCUS, A., and COLLARD, M. L. 2002. A
Task Oriented View of Software Visualization. in
Proceedings of IEEE Workshop of Visualizing Software for
Understanding and Analysis (VISSOFT 2002), Paris,
France, June 26, pp. 32-40.

PRICE, B. A., BAECKER, R. M., and SMALL, I. S. 1993. A
Principled Taxonomy of Software Visualization. Journal of
Visual Languages and Computing, vol. 4, no. 2, pp. 211-
266.

REISS, S. P. 2001. Bee/Hive: A Software Visualization Back
End. in Proceedings of ICSE 2001 Workshop on Software
Visualization, Toronto, Ontario, Canada, pp. 44-48.

ROMAN, G.-C. and COX, K. C. 1993. A Taxonomy of Program
Visualization Systems. IEEE Computer, vol. 26, no. 12,
December, pp. 11-24.

SHNEIDERMAN, B. 1996. The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualizations. in
Proceedings of IEEE Visual Languages, pp. 336-343.

STOREY, M.-A. D., BEST, C., and MICHAUD, J. 2001. SHriMP
Views: An Interactive Environment for Exploring Java
Programs. in Proceedings of Ninth International Workshop
on Program Comprehension (IWPC'01), Toronto, Ontario,
Canada, May 12-13, pp. 111-112.

TAVANTI, M. and LIND, M. 2001. 2D vs 3D, Implications on
Spatial Memory. in Proceedings of IEEE Symposium on
Information Visualization (INFOVIS'01), San Diego, CA,
October 22-23, pp. 139-148.

TROLLTECH. 2002. Trolltech - Qt - Overview. Webpage,
http://www.trolltech.com/products/qt/.

TUFTE, E. R. 1983. The Visual Display of Quantitative
Information, Graphic Press.

WARE, C. 2000. Information Visualization. Perception for
Design, Morgan Kaufmann Publishers.

WARE, C. and FRANCK, G. 1994. Viewing a Graph in a Virtual
Reality Display is Three Times as Good as a 2D Diagram.
in Proceedings of IEEE Visual Languages, pp. 182-183.

WARE, C., HUI, D., and FRANCK, G. 1993. Visualizing Object
Oriented Software in Three Dimensions. in Proceedings of
CASCON'93, Toronto, Ontario, Canada, October, pp. 612-
620.

WERNECKE, J. 1994. The Inventor Mentor. 2nd ed., Addison-
Wesley Publishing Company.

WISS, U., CARR, D. A., and JONSSON, H. 1998. Evaluating
Three-Dimensional Information Visualization Designs A
Case Study of Three Designs. in Proceedings of
International Conference on Information Visualisation
(IV'98), London, England, July 29-31.

http://www.trolltech.com/products/qt/

	Introduction
	Related SeeSoft Work
	Software Visualization
	Representation
	Support for user needs

	2D versus 3D Representations
	The sv3D Framework
	Mapping Raw Data to Visualization
	Support for user interaction

	sv3d Architecture and Implementation
	Applications of sv3D
	Conclusions and Future Work
	Acknowledgments
	References

