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Abstract

This study examines the direction and scope of
comprehension-related activities of professional
programmers carrying out several comprehension and
maintenance activities over time.  Procedural and
object-oriented (OO) programmers studied a program
and subsequently performed modifications during two
sessions. Results showed that the OO programmers
tended to use a strongly top-down approach to program
understanding during an early phase of study of the
program but increasingly used a bottom-up approach
during the maintenance tasks. The procedural
programmers used a more bottom-up orientation
throughout all activities.  The scope of the activities
was greater for the procedural than for the OO
programmers. However, regardless of paradigm, the
programmers over time built a broad, rather than a
localized, view of the  program.

1. Introduction

The comprehension of program code is one of the
key cognitive activities in programming, and program
maintenance depends, in part, on comprehension [6, 20,
26, 27, 28]. To make successful modifications to a
program without introducing errors, the programmer
must have an adequate understanding of what a
program does and how it does it.  However, the
question is what “adequate” means.  To answer that
question requires experimental work.  To date, several
experimental studies of programmers carrying out
maintenance tasks [15, 17, 18, 29, 30] have opened up
this field to study.  Now there is a need for more
knowledge about what information sources
programmers use to understand programs during
maintenance activities,  how the use of the information

sources evolves over time, and what effect, if any,  the
programming paradigm has on program understanding
during maintenance.

In this study we track the knowledge sources used
by expert programmers during maintenance of a
program in order to determine: 1) the scope of
comprehension, and 2) the direction of comprehension.
In addition, we analyze how comprehension-related
activities evolve in successive maintenance episodes on
the same program and how the information gathering
and comprehension of procedural and OO programmers
differ.  This study differs from earlier studies in
comparing the activities of procedural and OO
programmers.  It also uses larger programs than earlier
studies and makes observations of activities in several
comprehension and maintenance episodes over a longer
period of time.

2. Prior research on comprehension

2.1 Scope and direction of comprehension
activities

The scope of comprehension activities refers to the
breadth of familiarity with the program gained by the
programmer during comprehension activities. Littman
et al. [17] found two strategies used by programmers
concerning scope of comprehension, systematic and as-
needed. Using the systematic strategy, the programmer
attempts to gain a broad understanding of the program
before carrying out modifications. The goal is to
understand the design of the original programmer so
that modifications fit with the existing code. On the
other hand, using the as-needed strategy, the
programmer attempts to minimize the amount of code
that has to be understood.  The programmer does not
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attempt to understand the overall design of the program
but concentrates instead on the functioning of selected
local parts of the code that are critically involved in the
modification. Littman et al. found that programmers
who used the systematic approach carried out
modifications more successfully. The authors argue that
programmers using the systematic strategy were more
successful because their systematic study increased
their ability to detect interactions between the code
central to the modification and code elsewhere in the
program.

While a systematic comprehension strategy may be
most successful for making modifications in the
laboratory, it is not clear how usable such a strategy is
outside the laboratory. von Mayrhauser and Vans [27]
present the view that systematic comprehension may be
infeasible in a large program with thousands of lines of
code.  An experiment by Koenemann and Robertson
[15] made a similar argument about scalability and
began to address comprehension strategies in larger
programs.  Koenemann and Robertson found that
comprehension was as-needed in a larger program and
that programmers did not attempt to use a truly
systematic strategy.  Instead, the scope of
comprehension was largely directed by the
modification task being attempted.  Browsing for
identifiers was used to find possibly relevant procedure
names, but not to gain an overview of the program.
Programmers did not spend time comprehending parts
of the program that they believed irrelevant to the
modification task.  On the other hand, von Mayrhauser
and Vans [29] observed an instance of systematic study
of an large program by a professional programmers in
industry.  However, it is not clear how large a part of
the program was subjected to systematic study or
whether this behavior was ever repeated.

The direction of comprehension activities
concerns whether the strategic approach to program
comprehension is top-down, bottom-up, or a mixture of
the two. Shneiderman and Mayer [23] and also
Pennington [19] have proposed largely bottom-up
theories of program comprehension.  For example,
Pennington’s [19] well-known comprehension model
describes two program abstractions formed by the
programmer during comprehension.  The program
model is a low-level abstraction consisting of detailed
knowledge of operations at a level close to the program
code and of control flow relations representing the
order of execution.  The program-level abstraction is
formed early during program understanding using
information in the program text.  The domain model is
a higher-level abstraction containing knowledge of data
flow and function.  This abstraction is formed after the

program model.  It is built from knowledge in the
program model along with knowledge of relevant
programming plans. Pennington’s experimental studies
[18, 19] and a study by Bergantz and Hassell [1]
support the existence of these two program abstractions
during comprehension and also the formation of the
program model before the domain model.

Brooks [3] and Soloway and his colleagues [25]
present top-down, hypothesis-driven theories of
program understanding.  For example, the theory of
Soloway and his colleagues [24, 25] treats
comprehension as a plan-based activity.  Plans are
schematic knowledge about how to carry out
stereotypical actions in a program.  Plans exist at
different levels.   Strategic plans are global plans for the
solution of a problem; tactical plans are language-
independent specifications of algorithms for solution of
local parts of a problem; implementation plans are
plans for carrying out a tactical plan in a given
programming language.  Also, discourse rules are
programming conventions that govern how plans are
expressed and combined.  Program understanding
begins with the programmer hypothesizing a high-level
program goal, then decomposing it into more specific
subgoals that should be present in a program having a
given high-level goal.  Having identified expected goals
and subgoals, the programmer must determine whether
they exist in the program.  The programmer uses
knowledge of stored plans and discourse rules to try to
satisfy the subgoals and ultimately the top-level goal.
Modification of the subgoals and iteration of
comprehension is required if they cannot be directly
satisfied by supporting evidence in the program.
Soloway and his colleagues (cited above) present
empirical support for their plan-based model.

While the top-down and bottom-up models have
been very influential, today mixed models of program
comprehension are increasingly viewed as more
realistic descriptions of large program comprehension
[16, 28, 29, 30].  These models consider programmers
to behave opportunistically in program understanding,
switching from top-down to bottom-up comprehension
strategies depending on the situation.  Shaft and Vessey
[22] and von Mayrhauser and Vans [29] propose that
programmers use a top-down, goal-oriented, or
hypothesis-driven, approach to understanding when
they are working in a familiar domain where they know
a large number of plans.  On the other hand, when they
encounter code that is new to them and in an unfamiliar
domain, they use the bottom-up approach described by
Pennington, first developing a program model
consisting of a control flow abstraction from the
program text and later forming a domain model
consisting of data flow and functional abstractions.  In a
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large program consisting of tens of thousands of lines
of code or more, switches from top-down to bottom-up
comprehension and vice versa may occur frequently
because the programmer’s knowledge about the domain
varies in different parts of the program.  von
Mayrhauser and Vans [31] observed that the use of
bottom-up and top-down comprehension varies with the
task, and that it also varies with the familiarity of the
programmer with the domain and the program at hand.
Programmers with knowledge of the domain take a
more top-down approach than do programmers with
less domain knowledge.  Also, programmers with less
language knowledge or less knowledge of the current
program are more bottom-up in comprehension [30].

2.2. Procedural and OO comprehension

Most of the possible advantages identified for the
object-oriented paradigm concern design and reuse.
However, von Mayrhauser and Vans [29] suggest that
there may also be advantages for program
comprehension if OO-style programs support a more
top-down, domain-oriented approach to
comprehension.  They call for the extension of research
on comprehension in program maintenance to programs
written in the object-oriented paradigm.  Gilmore and
Green’s [11] work on the effect of program notations
on information availability suggests that a program
style, or notation, will lead to better comprehension of
given information if it highlights that information in
some way.  The OO style emphasizes objects, their
actions, and their relationships and thereby highlights
domain-based information.  It may also be argued that
the OO style tends to have more inherent code-level
structure and may encourage more design structuring.
Consistent with Gilmore and Green’s argument,
experimental results of Burkhardt, Détienne, and
Wiedenbeck [4] show that OO experts do tend to
develop a domain-based abstraction in terms of these
entities during program comprehension. Further results
[5] suggest that OO experts use more top-down
behavior than do OO novices, while the scope of
comprehension of OO experts and novices is similar.
Corritore and Wiedenbeck [8] compared OO and
procedural experts directly in program comprehension.
They found that there was no difference in
comprehension of function and data flow by the two
groups, but OO programmers initially developed
stronger knowledge of program structure including the
relationships of program objects, and poorer knowledge
of specific operations and control flow.  This suggests a
more top-down approach among OO programmers.
However, after modifying the program, OO

programmers improved their program-level knowledge
to equal that of the procedural programmers.

Few experimental studies comparing maintenance in
the OO and procedural paradigms exist.  Henry and
Humphrey [13] found that modifications to OO
programs were more local, i.e., involved editing of
fewer modules, than modifications to the corresponding
procedural programs.  This might indicate that it is
possible to successfully make changes in an OO
program using a local, as-needed comprehension
strategy.   Daly, Brooks, Miller, Roper, and Wood [10]
studied the maintainability of OO programs as a
function of the depth of the inheritance hierarchy.  A
deeper hierarchy led to problems in making
modifications. These problems appear to be
comprehension-related, e.g. difficulties tracing the
inheritance hierarchy.

2.3. Research questions

Our research questions focus on comprehension
strategies and how they change over time during
program understanding and maintenance.

Our first question is whether OO experts show a
more top-down direction of comprehension activities
than procedural experts.  The OO style with its greater
structuring and emphasis on objects, their hierarchical
relationships, and their functionality may facilitate a
more top-down strategy.

Our second question is whether OO experts have a
narrower scope of comprehension activities than
procedural experts.  In the OO paradigm, objects
encapsulate both data and functionality.  Because of
encapsulation, changes to the functions of an object are
internal to the object.  This may mean that
modifications can be done with less broad knowledge
of the program as a whole.

Our third question is how comprehension strategies
change over repeated modification of the same
program.  A narrow scope of comprehension activities
in initial maintenance of a program may incrementally
become a wide scope, as a programmer works with a
program over time.  Thus, we believe that it is
necessary to begin considering program understanding
and maintenance in a longitudinal perspective.

3. Research method

3.1 Participants

Thirty professional programmers participated in the
study.  Fifteen were procedural C programmers, and 15
were object-oriented C++ programmers.  All but 2 had
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post-baccalaureate degrees.  Twenty-seven held their
highest degree in computer science or engineering.  On
average, participants had been programming for 11.6
years with a range of 2.5 - 20 years.  The average
length of full-time employment as a system analyst or
programmer was 7 years.

The C and C++ groups did not differ statistically
with respect to demographics or programming
experience.  However, a known difference between the
C and C++ groups was that the C group had relatively
low exposure to OO programming, while most
members of the C++ group did have previous
experience programming in procedural languages.  This
difference between the groups results from the fact that
currently most programmers with substantial
experience in industry began their careers working in
procedural languages.

3.2 Materials

C and C++ were chosen to represent the procedural
and OO paradigms respectively because the language
notations are the same except for the specifically
object-oriented features, reducing the likelihood that
extraneous differences between the languages would
affect the results.  Two functionally equivalent versions
of a database program were written in procedural C and
object-oriented C++. The program manipulated records
of passengers, crew members, and flights of a small
airline.  This database problem was chosen because it
did not require highly specialized domain knowledge.

Both programs and their supplementary materials
were as equivalent as possible, while at the same time
prototypical of their paradigm.  The C++ program
represented complex data entities through classes and
made extensive use of the OO features of inheritance,
composition, encapsulation, and polymorphism.  The
procedural program was written in a structured and
modular manner.  It implemented complex data entities
through structure variables.  Both programs used array
and list data structures.  In the C++ program, the
functions were methods attached to classes, while in C
stand-alone functions were used. The same underlying
algorithms were used in corresponding functions of the
C and C++ program (for searching, string processing,
etc.).  The two programs also used the same or similar
variable names whenever possible.  Both programs
were similar in length, C++ 822 lines vs. C 783 lines.
The C++ program was partitioned into files
corresponding to objects.  The C program was
partitioned into files by the main conceptual entities
(e.g., customer, flight).  These corresponded to objects
in the OO program.  Each program also had standard
C/C++ files, such as main and includes.

Comments were not included in the source code of
either program; however, extensive external
documentation was provided.  Documentation to
supplement the source code included program
summaries, descriptions of the functionality of program
modules, charts of inheritance hierarchies, charts of
calling structures, and diagrams of data structures. The
materials were designed to be functionally equivalent
for the two paradigms, although they were not identical.
The most notable difference was that there were no
inheritance hierarchy charts for the procedural
program.  However, in place of inheritance hierarchy
charts, a substitute documentation was provided for the
procedural program that showed graphically the C
structures and their components.  This served to
balance the amount of documentation and to provide
information about the program entities.  Two program
modification tasks were also designed.  The programs,
associated external documentation, and modification
tasks were inspected by C and C++ experts, who
evaluated the similarity of the content of the materials
and the typicality of the programs and tasks to their
respective paradigms.  Modifications were made based
on their critiques.

3.3 Procedure

Each participant was run individually in two 2-hour
sessions that were held seven to ten days apart.  In the
first session the participant studied the program for 30
minutes, followed by a short modification task. This
modification was used to motivate the study of the
program, but data were not collected on it. Participants
completed the two experimental program modifications
during the second session.   The order of presentation
of the modifications was counterbalanced.

The program and all supplementary materials were
presented on-line in a graphical Unix environment
created for the study.  The environment supported
standard editing features such as cut and paste and also
compilation and running of the program.  One
restriction of the environment was that only one
document (segment of program code or supplementary
documentation) was visible at a time.  This restriction
allowed us to determine clearly what materials
participants accessed. The participants were not
familiar with the environment prior to the experiment.
They were trained in its use at the beginning of the first
session.  Screen capture software recorded participants’
use of the materials.  Data were collected in the study
phase and the two modifications.  The data consisted of
which files were accessed by participants but not the
order in which files were accessed.
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4. Results

For purposes of this study, we defined the  scope of
comprehension activities as the proportion of files
accessed.  A systematic strategy would be indicated by
a broad study of all or almost all of the available
program materials.  An as-needed strategy would be
indicated by limitation of the study of program
materials to only a small part of those available.  We
defined the direction of comprehension activities as the
level of abstraction of the program materials accessed.
Our program materials were at three levels of
abstraction, corresponding to three file types that we
provided to the participants: documentation files (.doc),
header files (.h), and implementation files (.cc).
Documentation files were the most abstract, containing
the external documentation of the program. Header
files contained the declarations of data elements and
functions and were at a middle level of abstraction.
Implementation files contained the code of functions
and were at the lowest level of abstraction. Accessing
the more abstract documentation and header files was
interpreted as reflecting the use of top-down processes
and accessing the less abstract implementation files was
seen as reflecting a bottom-up strategy.  A mixed
direction of comprehension, incorporating top-down
and bottom-up elements,  would be indicated by the use
of files at different levels of abstraction.

Analysis of Variance was used to examine
differences between procedural and OO participants in
the proportion and type of files accessed during the
different experimental tasks: program study,
modification 1 and modification 2. Follow-up analysis
was carried out using ANOVA and Tukey’s HSD.
Since our pool of participants was limited by the high
expertise required, we had a small sample size, leading
to reduced statistical power.  As a result, we set .10 as
our alpha level.  We did follow-up analysis on the
ANOVAs if: 1) the p-value was less than .10, and 2)
the effect size (ε2) was moderate or large by Cohen’s
(1977) guidelines, i.e., ε2 of less than .06 is small,
between .06 and .14 is moderate, greater than .14 is
large.  Effect size indicates the strength of a
relationship and is often considered an indication of
practical significance.  As the tests below indicate, we
found that a number of results were marginal in terms
of statistical significance but  had a large effect size.

The basic analysis was a three-way, mixed-model
Analysis of Variance.  The between-subjects factor was
programming paradigm (procedural or object-
oriented).  The two within-subjects factors were file
type (documentation, header, or implementation) and
activity (program study, modification 1, or modification
2).  The dependent variable was the mean proportion of

files accessed.  The range of the means of the
dependent variable was 0 to 1.

The ANOVA indicated a significant main effect of
paradigm (F(1,28) = 4.03, p < .05, ε2 = .13).
Procedural participants accessed significantly more
files than OO participants overall. In addition, there
was a significant main effect of file type (F(2,56) =
7.89, p < .001, ε2 =of .22). The follow-up analysis
indicated that, considering all participants and activities
together, a higher proportion of implementation and
header files was accessed than documentation files (p <
.05), but there was no significant difference between
accesses of header and implementation files. The main
effect of activity was significant, as well, and had a
large effect size (F(2,56) = 34.09, p < .001; ε2 = .55).
Follow-up analysis showed that all participants
accessed more files during the study period than during
the modifications (p < .05).

Table 1: Means and standard deviations (in
parentheses) of proportion of files accessed
by file type in the three activities.

Implement.
Files

Header
Files

Docu-
ment.

All

Study
.75

(.27)
.76

 (.25)
.75

 (.35)
.75

(.18)

First
Mod.

.57
(.19)

.43
(.26)

.38
(.37)

.46
(.29)

Second
Mod.

.55
(.21)

.45
(.33)

.15
(.23)

.39
(.31)

All
.62

(.14)
.55

(.15)
.43

(.24)
.53

(.08)
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Table 2: Means and standard deviations (in
parentheses) of proportion of files accessed
by the procedural and object-oriented groups
for the three file types.

Procedural OO All

Documen-
tation

.37
     (.28)

.48
(.19)

.43
(.24)

Header
Files

.60
 (.13)

.49
 (.16)

.55
(.15)

Implement.
Files

.70
(.11)

.54
(.12)

.62
(.14)

All
.56

(.08)
.50

(.07)
.53

(.08)

There was a significant two-way interaction of file
type and activity (F(4,112) = 6.89, p < .001, ε2 = .20,
see Table 1).  There was also a significant interaction of
paradigm and file type (F(2,56) = 3.94, p < .03, ε2 =
.12, see Table 2).  However, the two-way paradigm by
activity interaction was not significant.

Follow-up on the file type by activity interaction
indicated that participants accessed documentation files
more during the study period than during the
modifications (p < .05).  In addition, they accessed
more header files during the study period than during
the modifications (p < .05).

Follow-up testing for the paradigm by file type
interaction did not find any significant differences,
most likely because of low statistical power.  However,
it appears that there was a trend for procedural
participants to access more implementation than
documentation files over all three activities.

The three-way interaction among paradigm, activity,
and file type was also significant (F(4, 112) = 2.35, p <
.058, ε2 = .08, see Table 3).  In the follow-up analysis
we used two-way ANOVA to examine each activity
separately, using paradigm as the between subjects
factor and file type as the within subjects factor.  For
pairwise comparisons Tukey’s HSD was again used.

During the study phase, the main effects of paradigm
and file type were not significant, but there was a
significant interaction of paradigm and file type (F(2,

Table 3: Means and standard deviations (in
parentheses) of proportion of files accessed
by the procedural and OO groups for the three
file types in the three activities.

Procedural      OO

Doc.
Files

     .62
    (.44)

     .88
    (.16)

Head
er
Files

     .81
    (.17)

     .70
    (.31)

Study
Period

Impl.
Files

     .85
    (.25)

     .64
    (.26)

Doc.
Files

     .38
    (.39)

     .37
    (.36)

Head
er
Files

     .43
    (.30)

     .44
    (.21)

Mod. 1

Impl.
Files

     .62
    (.16)

     .52
    (.22)

Doc.
Files

     .12
    (.19)

     .18
    (.28)

Head
er
Files

     .56
    (.35)

     .34
    (.29)

Mod. 2

Impl.
Files

     .63
    (.18)

     .47
    (.21)

56) = 7.28, p < .01, ε2 = .21).  Pairwise comparisons
showed that, during the study phase,  the procedural
participants accessed significantly more
implementation files than did the OO participants (p <
.05).  In contrast, OO participants accessed
significantly more documentation files than did
procedural participants during the study phase (p <
.05).  Within the procedural group, implementation and
header files were accessed significantly more than
documentation files (p < .05).  By contrast, within the
OO group documentation files were accessed more than
either header or implementation files during the study
phase (p < .05).

In modification 1, a significant main effect of file
type was discovered (F(2, 56) = 3.56, p < .04, ε2 = .11).
The main effect of paradigm was not significant, nor
was the paradigm by file type interaction. Pairwise
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comparisons indicated that, across both paradigms,
participants accessed more implementation files than
documentation files during modification 1 (p < .05).

During modification 2, there were significant main
effects of file type (F(2, 56) = 20.88, p < .001, ε2 = .43)
and paradigm (F(1, 28) = 3.39, p < .08, ε2 = .11).
Procedural participants accessed more files overall
during modification 2 then did the OO participants.
Follow-up testing on the main effect of file type
showed that all participants accessed more
implementation files than header files and more header
files than documentation files during modification 2 (p
< .05).  The ANOVA also indicated a significant two-
way interaction of paradigm and file type (F(2, 56) =
2.75, p < .07, ε2 = .09).  Pairwise comparisons showed
that the procedural group accessed more
implementation and header files than documentation
files during modification 2. Their use of documentation
files was near zero. The OO group similarly accessed
more implementation files than documentation files
during modification 2 and showed a strong drop in use
of abstract information.
 While performance on the maintenance tasks, was
not the focus of this study, it is interesting to note that
the OO and procedural groups did not differ in this
respect.  The solutions were evaluated for correctness
and completeness on a three point scale, and there was
no significant difference between the groups.

5. Discussion

The scope of comprehension (measured as the
proportion of files accessed) of participants in this
study was quite broad.  Our results show that a high
proportion of files was accessed, and by the end of
modification 2 participants were potentially aware of
most of the code from having accessed such a large
proportion of the files.  This differs from the finding of
Koenemann and Robertson [15] who report a very
localized scope of comprehension.  They explain the
narrow scope of comprehension in their study by
suggesting that programmers only look at code or
documentation that they perceive as directly relevant to
a programming task currently being carried out.
However, our findings of high percentages of file
accesses and access of almost all functions by the end
of the second modification suggest a broader scope of
comprehension.  While programmers are certainly
motivated in the short-term by the demands of the task
at hand, a longer-term perspective, as in this
experiment, shows that knowledge accumulates over
different tasks on the same program, until a broad
scope of comprehension is achieved.   This growth of
knowledge allows programmers to anticipate and deal

with interactions which occur when a modification in
one part of a program affects the code in another part.

Although it is generally true that the scope of
comprehension was broad, the scope was influenced by
the phase of the experiment and the programming
paradigm.  The experiment was divided into a study
phase followed by two modification phases.
Participants generally had a greater scope of access to
files of all types while initially studying the program.
During the two modifications, the scope became
narrower and more focused, as reflected in lower file
access rates. Although we did see a narrowing of access
to files, comparing our procedural participants to those
of Koenemann and Robertson [15], the breadth in our
study remained much greater, i.e. access to 40 percent
of the functions after the modifications in our study, as
opposed to 20 percent of the functions in their study.
This difference is probably related to greater
complexity of the tasks in our study, our longer three
phase design, and the nature of the program.
Programmers in our study made modifications to a
program that they had first studied and modified a week
earlier.  Because of the time lapse, there may have been
some recurring study behaviors as they revisited parts
of the program to make the modifications in the second
session.  We see this revisiting of code as realistic.  In
the workplace, maintenance programmers may have to
return to code that they have modified previously, so
they have an on-going need to re-familiarize
themselves with a program.  However, as in this
experiment, the study of the program is somewhat
different each time because of the motivation provided
by the specific maintenance task.

In our experiment the procedural group had a
greater scope of comprehension than the OO group.
The difference was reliable, although not very large: 59
percent of the functions were visited by the procedural
group vs. 40 percent of the functions by the OO group.
The greater scope of the procedural group carried
through the study phase and the two modifications.
However, the explanation for the difference in scope
may be different in the study vs. the modification tasks.
In the study period, the scope  and direction of
comprehension strategies may have interacted. If the
OO participants used a top-down approach in the study
phase, they may have gained a broad overview of the
program from the abstract documentation files without
having to consult so many of the numerous but less
abstract implementation files. In the later program
modification tasks, the OO group may have had a
narrower scope because the encapsulation of the OO
paradigm facilitated the OO participants in focusing
their efforts. That is, the encapsulation made the
changes more local to a specific class and protected the
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rest of the program from effects of the changes. This
effect of encapsulation is predicted in the OO literature
[9, 12, 14, 21].

We classify the direction of comprehension
(measured as the level of abstraction of files accessed)
in our experiment as “mixed.”  We observed substantial
use of both top-down and bottom-up strategies.
Nevertheless, the bottom-up orientation was globally
more prevalent, as reflected by higher access rates to
implementation and header files compared to
documentation files. The documentation files were used
heavily only during the study period.  Furthermore,
they were especially heavily used by OO participants.
Thus, the direction of comprehension was influenced
by both the phase of the experiment and the paradigm.
During the study period, OO participants used a top-
down strategy relying strongly on documentation: they
accessed almost 90 percent of the documentation files
but only 60 to 70 percent of the other files. Procedural
participants used a more bottom-up strategy during the
study period, accessing slightly over 60 percent of the
documentation files but 85 to 90 percent of the header
and implementation files.  They continued to be
bottom-up during the modifications maintaining higher
access rates to the implementation and header files than
to the documentation files.  By contrast, the OO group
changed their strategy more over time depending on the
activity.   Initially they used a top-down approach to
comprehension, but in the later phases, as they made
program modifications, their strategy became more
bottom-up.  This shift of orientation became more clear
as the experiment progressed, and is most evident in the
sharp decline in their use of documentation in the last
modification.  We suggest  that the more abstract files
provided the information necessary for general
comprehension of the program, but a more bottom-up
orientation was needed to gather all of the information
needed to carry out the modifications.   The demands of
the modification tasks focused the information needs of
the programmers on the code itself and, furthermore, on
specific parts of the code.  It is true that the same
decline in the use of abstract information occurred in
the procedural group; however, it was less extreme
because they used external documentation fairly lightly
throughout.

The use of a mixed strategy and the change over
time suggest that the type of activity and the
programmer’s history of experience with the program
play important roles in the direction of comprehension.
In an initial phase of familiarization with the program,
more top-down behavior is found. However, after the
program is partially familiar and given the motivation
of a modification task, abstract descriptions are less
useful, so the strategy tends to be much more bottom-

up.  At the same time, the programmer is continuously
gaining greater knowledge of the program in the course
of carrying out modifications.  This accumulation of
knowledge about the program results in even less need
for abstract documentation in later modification tasks.
This agrees with results presented by von Mayrhauser
and Vans [29].  It also suggests that theories of program
comprehension should take into account at least the
task motivation and the programmer’s longitudinal
experience with the program.  They may also need to
take into account the programming paradigm, since our
results show that the OO group took a more top-down
approach during initial study with the program than did
the procedural group.  In prior work,  Burkhardt et al.
[5] observed a top-down orientation in OO experts.
Our results agree with Burkhardt et al.’s with respect to
the early phase of study or familiarization with a
program.   However, we found a change to a bottom-up
strategy with experience with a given program and
motivated by a modification task.

6. Conclusion

Two characteristics of strategic importance in
program understanding are the scope of comprehension
and the direction of comprehension.  This research
provides evidence about the scope and direction of
comprehension of professional procedural and OO
programmers in understanding and modification of a
program over repeated episodes.

Both the procedural and the OO group employed a
wide scope of comprehension over the course of the
study.  The scope was greater during the initial study
period, then narrowed during the modifications.
However, it still remained relatively broad in both
groups of programmers throughout the experiment.
This was in contrast to the finding of a highly restricted
scope of comprehension by Koenemann and Robertson
[15].  From our experiment it appears that programmers
do indeed restrict their breadth of comprehension of a
program to focus on the parts most strongly relevant to
the modification.  However, at the same time they
attempt to understand the program broadly enough to
notice potential interactions with other program code.
With respect to procedural vs. OO comparison, we
found that the scope of comprehension was broader in
the procedural than the OO group, particularly during
the study period.  This may indicate that information is
more scattered in the procedural paradigm, forcing
programmers to visit many implementation files to find
what they need.  However, since there are few studies
comparing the OO and procedural paradigm, we feel
that more experimental evidence is needed on this point
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to make a firm conclusion.
The comprehension strategies of procedural and OO

programmers also differed with respect to direction of
comprehension.  The differences between the two
groups were strongest during initial program
comprehension activities and were less evident during
the program modifications.  We conclude that both
groups employed a comprehension strategy that was
largely bottom-up when making successive
modifications to the program.  However, during the
early phase of program comprehension, OO
programmers tended to utilize a top-down orientation.
Procedural programmers, on the other hand, were more
strongly bottom-up even during this early phase.

A limitation of this study is the grain of the analysis.
We used proportion of files accessed and level of
abstraction of files accessed as surrogates for scope and
direction of comprehension.  From sets of
comprehension questions administered in the middle
and at the end of the experiment, we do know that the
participants’ understanding of the program increased
over time and that they had a relatively good
understanding of the program at the end of the
experiment [8].  However, from counting file accesses
we do not know exactly what the participants read or
thought about while looking at a file.  Furthermore, we
know how use of files evolved over the three phases of
the experiment, but within those phases we do not
know the order in which files were accessed.  More
detailed studies, possibly using videotaping and a think
aloud method, are needed to overcome these
limitations.

This study makes a beginning at examining the
effect of paradigm on comprehension.  More focused
research into the differences in comprehension between
OO and procedural programmers is needed.  In this
study we faced the dilemma of experimental control vs.
generalizability that so often arises in research on
programming.  We chose to carry out a laboratory
experiment with high experimental control but at the
expense of using a small program and relatively
artificial setting.  In our view, controlled laboratory
experiments and workplace observational studies are
complementary.   We think that two kinds of studies are
called for: laboratory studies using programs as large
as possible for an experimental study, along with a
more extended longitudinal approach of repeated
exposure to the program, and also observational studies
of programmers comprehending large programs in the
workplace using a technique of repeated data
collection over time.  In workplace observations we
would like to see, if possible, the use of techniques
such as contextual inquiry [2], which allow the
researcher to get a better understanding of the reasons

for the programmers’ actions, at the expense of slightly
higher intervention in their work.
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