24 -29 April 1993

INFERCHI 93

74

Mental Representations of Programs
by Novices and Experts

Vikki Fix Susan Wiedenbeck Jean Scholtz
Computer Science Department Computer Science Department Computer Science Department
University of South Dakota University of Nebraska Portland State University
Vermillion SD 57069, USA Lincoln, NE 68588, USA Portland, OR 97207, USA

phone: (605), 677-5388
email: vikkif@charlie.usd.edu

ABSTRACT

This paper presents five abstract characteristics of the
mental representation of computer programs: hierarchical
structure, explicit mapping of code to goals, foundation
on recognition of recurring patterns, connection of
knowledge, and grounding in the program text. An
experiment is reported in which expert and novice
programmers studied a Pascal program for comprehension
and then answered a series of questions about it designed
to show these characteristics if they existed in the mental
representations formed. Evidence for all of the abstract
characteristics was found in the mental representations of
expert programmers. Novices' representations generally
lacked the characteristics, but there was evidence that they
had the beginnings, although poorly developed, of such
characteristics.

KEYWORDS: program comprehension, mental
representation of programs

INTRODUCTION
In this paper we are concerned with the characteristics of
the mental representation that expert and novice
programmers form while studying a program for
comprehension. Knowing what kind of information
understanders have at their disposal and how it is
characteristically organized is crucial to understanding
mental representations and predicting performance on
comprehension-related programming tasks. The
comparison of novices and experts is important because
the differences found in a direct comparison help to define
the contribution of expertise to task performance. We
propose that an expert's mental representation exhibits
five abstract characteristics, which are generally absent in
novice representations:

1. It is hierarchical and multi-layered;

2. It contains explicit mappings between the layers;

3. Itis founded on the recognition of basic patterns;

4, Itis well connected internally;

5. Itis well grounded in the program text.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1993 ACM 0-89791-575-5/93/0004/0074...$1.50

phone: (402) 472-5006
email: susan@cse.unl.edu

phone: (503) 725-4103
email: jean@cs.pdx.edu

ABSTRACT CHARACTERISTICS

Some past research on program comprehension (1, 8, 9]
has focused on the classes of information that
programmers extract during program comprehension. An
interest in this research has been to determine whether
programmers build a representation consisting mostly of
concrete information about how the program works or of
functional information about what the program does. A
general finding has been that better comprehenders are
distinguished from poorer comprehenders by their mastery
of functional information. In the research reported here we
do not focus on the classes of information making up the
content of the representation but rather on the
representation's general features. We investigated a group
of features which had been suggested in the programming
literature as characteristic of mature mental representations
in programming: hierarchical multi-layered structure,
explicit mappings, incorporation of basic recurring
patterns, well connectedness, and foundation in the
program text. We call these abstract features of a
representation to distinguish them from the categories of
information that form the content of the representation, as
studied by Adelson and Pennington. In our view these
features are manifestations of general comprehension
mechanisms used in program understanding, and they help
to explain at a deeper level why certain categories of
information are extracted by programmers during the
comprehension process. While some of these features
have been studied empirically, many of them have not
been studied or have not been studied specifically in the
context of program comprehension tasks. Each of the
features is described below with references to related work.

A hierarchically structured mental representation of
a program is one which conceptualizes elements of a
program as forming a layered network of arbitrary depth
and breadth, depending on the specific program [6]. A
hierarchical structure of mental representations by
programmers has been suggested by some observations of
programmers carrying out programming tasks. Both
Jeffries [4] and Nanja and Cook [7] observed that advanced
programmers, but not novices, used a strategy of reading a
program in the order in which it would be executed, and
they believed that this led to development of a hierarchical
understanding of the program. However, Holt, Boehm-
Davis, and Schultz [3], using a free recall technique, found
no significant difference between novices and experts in

INFERCHI ™93

24 -29 April 1993

the depth of their mental models of programs. We
hypothesized that expert programmers would show more
evidence of hierarchical structure in their mental
representations of a program than would novices, when
comprehending a well-written program with clear
hierarchical relations embedded in it.

An important feature of the mental representation is not
just the existence of multiple layers of representation but
the existence of explicit mappings between the layers.
Letovsky [6] has argued that the overall goals of a
program are usually readily understandable to programmers
from such sources as mnemonic names or documentation.
Likewise, the lowest level, the implementation, which
consists of the data structures and actions of the program,
is also readily understandable, i.e., a programmer can
understand the action of each line of code in isolation.
The problem in comprehending programs is to create a
mapping between high-level goals and their code
representation. In empirical work, Pennington 8] found
that the most skilled expert programmers tied their
hypotheses about a program's function to specific
information in the program code itself. This was not true
of some less skilled experts who made numerous,
speculative hypotheses about a program's function from
triggers like variable names, without ever really verifying
them by figuring out what the segments of code did. We
expected a strong difference between novices and experts in
their ability to link specific segments of code to program
goals. However, we did not expect a correspondingly
strong difference in their ability to understand overall

program goals.

The use of recurring basic patterns as a foundation
for knowledge representation has been a theme of
programming research for a number of years. According
to Soloway and Ehrlich [10], programming knowledge is
represented as a set of frame-like structures, called plans,
for handling stereotypical situations which arise frequently
in programming. If basic programming knowledge is
stored as plans, then one would expect to see evidence of
plan recognition during program comprehension and plan-
like structures in the mental representation of individual
programs. Soloway and Ehrlich presented evidence that
experienced programmers’ comprehension was disrupted by
programs that were written in an unplan-like way, thus
supporting the idea that plan recognition must occur in
comprehension. We hypothesized that there would be a
difference between novices and experts in their ability to
connect program code with plan labels for all but the very
simplest plans.

A well connected representation is one where the
programmer understands how parts of the program interact
with one another. Interactions are difficult to understand,
probably because they embody instances of delocalized
plans, i.e., plans in which the code implementing them is
scattered throughout the program, rather than localized in
one place [11]. This lack of contiguity introduces
difficulties in comprehension, since one cannot see the
plan implementation as a single coherent unit. Jeffries,
Turner, Polson, and Atwood [5] found that experienced

programmers designing a program pay special attention to
parts of the code that interact, for example the design of
interfaces between related modules. Given the difficulties
posed by the interaction of segments of code, we expected
that experienced programmers would try to extract such
information in the comprehension process and it would
thus be included in their mental representation of the
program. Novices, on the other hand, would be unlikely
to concentrate on this type of information.

Representations which are well grounded in the
program text are also suggested in the literature as
characteristic of good mental representations. Well
grounded representations include specific details of where
structures and operations occur physically in the program.
An understanding grounded in the program text is useful
because it allows programmers who have studied a
program once to relocate with minimal search information
which is needed to carry out programming tasks. In her
protocols Jeffries [4] observed that expert programmers,
but not novices, were very skillful at locating information
which they had previously seen in a program when it was
needed a second time. We tested experts' and novices'
ability to locate information in a program text with the
hypothesis that experts would surpass novices at locating
most, but not all, kinds of information.

METHODOLOGY

Subjects

Twenty novice and 20 expert programmers took part in
the study. All of the subjects were volunteers. The
novice programmers were undergraduate students who had
recently completed a first semester Pascal course. The
expert subjects were professional programmers with a
median of 7 years of experience.

Materials

The program used in this study was written in Pascal. It
was 135 lines long and occupied 3 printed pages. The
program manipulated student data. The program
consisted of a main program and 9 subprograms. The
decpest nesting of program blocks was 4 levels deep. The
operations contained in the program had been covered in
the beginning computer science courses taken by the
novices: reading and writing files, interactively reading and
writing to the terminal, manipulating arrays, sorting,
searching, finding an average, and finding a maximum
value. The use of procedures and functions, parameter
passing, local variables, and the nesting of subprograms
were all taught. Mnemonic identifiers were used in the
program, which was also indented in a normal style to
show nesting of blocks and of individual statements inside
compound statements. No documentation was given.

The comprehension questions which subjects answered are
described in Table 1. Comprehension questions have been
used as a method of measuring understanding in past
research on program cognition (see(2]). The questions
focused on determining whether programmers exhibited
the abstract characteristics in their representations of the
program. The questions required recalling information

75

24-29 April 1993

INFERCHI 93

76

Question Number Question Content Abstract Category Significant Difference

1 Match procedure names to the procedures | Hierarchical structure p=-0043
they call

2 List procedure names Hierarchical structure n.s.

3 Write description of goals of selected Explicit Mappings p=-0001
procedures

4
Write description of principal goals of Explicit Mappings n.s.
program

5 Label complex code segments with plan Recurring patterns p=.0001
label

6
Label simple code segments with plan Recurring patterns n.s.
label

7 List names used for same data objects in | Well connected p=.0013
different program units

8 List important variable names Well connected n.s.

9 Fill in names of program units in a Well grounded p=-0007
skeleton outline of the program

10 Match variable names to the procedures in | Well grounded p=-0006
which they occur
11 Indicate physical location of invariant Well grounded n.s.

program parts

Table 1: Summary of comprehension questions

about different objects or relations in the program The
correspondence of the questions to the abstract
characteristics is discussed below. The different questions
relevant to one particular abstract characteristic were
balanced to require a similar amount of information from
the subject.

Questions 1 and 2 were designed to elicit whether the
subjects’ mental representations had a hierarchical, layered
structure. The stimulus program reflected a clear
hierarchical, layered structure in its use of nested
procedures and functions. Question 1 asked subjects to
match procedure names to the procedures which they
called. A high score on this question would indicate that a
subject had understood the hierarchical structure of the
program and made it a part of the mental representation.
Question 2 required subjects simply to list the names of
the procedures used in the program, without regard to their
physical order or the calling sequence. Thus, this question
dealt with the same program elements, procedure names,
but independent of their hierarchical context. A lack of
difference between groups on this question would suggest
that a difference on Question 1 was not explained merely
by overall better memory of program elements.

Questions 3 and 4 were relevant to judging the ability to
link code to program goals. Question 3 asked the subject
to write a brief description of two procedures in the
program, telling what program goals they realized. Thus,
it was a measure of the subjects' ability to map between
the code and the program goals. Subjects were also asked
to write a sentence or two about Aow the procedure carried
out its goals. This was included to gather information
about whether subjects’ mental representations also
contained information about methods by which goals were
implemented. Question 4, by contrast, asked the subject
to write a brief description of what the whole program did,
including the main goals. In asking about only the high
level goals, Question 4 involved information which was
likely to be available to programmers superficially,
without a need for detailed understanding of what code
implemented the various goals or how. It was expected
that both novice and experienced programmers would be
able to extract the overall goals asked for in this question
but that there would be group differences in the ability to
map between high level goals and the program code, as
required by Question 3.

INFERCHI "33

24-29 April 1993

Questions 5 and 6 looked for evidence of the incorporation
of basic plan knowledge in the understanding of the
program. In each question the subject was given brief
code segments from the program and was asked to give a
label to each segment, consisting of a few words, to tell
what it did (e.g., "initializes variable™). The patterns in
Questions 5 and 6 were of different levels of complexity.
Question 5 contained somewhat complex patterns,
including the linear search for the largest value in the
array, the segment which read input in a loop until end of
file and counted the elements read, the sort routine, and the
binary search routine. Question 6 also contained
stereotyped patterns but ones of the most elementary kind,
e.g., incrementing a counter. Being able to label any of
the code segments in Questions 5 or 6 with an appropriate
plan label is evidence of the use of plan knowledge in the
understanding of the program. However, the different
levels of complexity of the patterns in the two questions
was meant to distinguish the ability of programmers at
different skill levels to bring plan knowledge to bear in
representing the code.

Questions 7 and 8 were relevant to judging the well
connectedness of the representation. Question 7 gave
subjects a list of variable names and asked them to
indicate what other names, if any, those variables were
known by in different program units. Thus, to answer
this question subjects had to have an idea of what a data
item represented, and they had to understand how it was
passed through the program, possibly with different
identifiers, while still representing the same object.
Question 8 asked subjects to list the names the major
variables in the program. Generating these would indicate
knowledge of the essential objects in the program, but it
would not indicate well connectedness in the
representation.

Questions 9, 10, and 11 were used to judge how well
grounded the representation was in the program text.
Question 9 presented a list of the names of the program
units and beside that a skeletal template of the program
which represented the location of the program units by
boxes. Nested units were shown by a box within a box.
Subjects had to write the given subprogram names in the
proper boxes in the template. High performance on this
task would be an indication that the subject had
synthesized an overview of the location of procedural units
and incorporated it in the mental representation. While
Question 9 had to do with the location of actions in the
text, Question 10 concerned the location of objects.
Question 10 required subjects to match different variable
names to the program units in which they appeared
(including some names which occurred in more than one
unit). The ability to do this would also show well
groundedness because the subject had a representation of
where objects occurred in the text. The last question asked
the subject to indicate the location of certain elements in
the program text which are invariant in that they can be
described by a relative location which is unchanging from
one program to the next (e.g., Question: "Where is the
end statement of the main program located?” -- Answer:
last line of text; Question: "Where were the declarations

for local variables of the procedures located?" -- Answer:
after the procedure heading). Correct answers on Question
11 would show some ability to handle the program as a
piece of text having a particular structure, based on
syntactic knowledge. However, it would not show
program-specific grounding of knowledge in the program
text.

Procedure

Subjects were run individually or in groups of 2 or 3.
The subject was given a listing of the program to study
for 15 minutes. They were told to study the program in
detail in order to understand its structure and function as
fully as possible. At the end of the study period the
program listing was taken away. Subjects were given a
question booklet with one question per page. The
questions were not arranged in the numerical order shown
in Table 1 but in an order chosen so that an earlier
question did not give away the answer to a later question.
Subjects were not allowed to return to a previous
questions once they had turned the page. They were
allowed to take as long as they needed to work through the
question booklet. For experts the times ranged from 40
minutes to 1 1/4 hours with the average around one hour.
For novices the times ranged from 45 minutes to 1 1/2
hours with the average around 1 1/4 hours.

RESULTS

First a MANOVA was run to test whether there was an
overall difference in performance between experts and
novices. It was found that the experts scored significantly
higher than the novices (F(11, 28) = 8.9635, p = .0001).
Following the significant MANOV A, individual ANOVA
procedures were run on the different questions. For these
ANOVAs on the individual performance variables the
alpha level was set at .0045, i.e, .05 divided by 11, the
number of tests performed. This was done to reduce the
likelihood of Type I errors, i.e., rejecting null hypotheses
that were true. The results of the individual ANOVAs are
presented in the following paragraphs.

1. Hierarchical, multi-layered structure. Question 1 tested
the presence of hierarchy in the subjects' representations.
Experts scored significantly higher than novices (F(1,38)
= 9.20, p = .0043). The expert mean score was 6.03 out
of a possible score of 7 (if the subject had all the correct
calls asked for and no spurious ones). The novices' mean
was 3.40. Question 2 tested knowledge about the same
program units as Question 1 but without requiring an
understanding of the hierarchical structure. The ANOVA
was not significant. The experts’ mean score was 4.25
out of a possible score of 7, and the novices' mean score
was 2.85.

2. Well developed mapping of code to goals. Question 3
asked for information about how two subprograms
fulfilled goals of the program. The subjects' descriptions
were analyzed for the presence of 7 specific information
clements. Experts scored significantly higher than
novices on Question 3 (F(1, 38) = 11.87, p = .0014).
The expert mean out of the 7 elements was 5.2, while the
novices' mean was 2.8. Although our main interest was

77

24-29 April 1993

INFERCHI 93

78

subjects' ability to link code to program goals, we also
analyzed subjects’ statements about the methods which the
subprograms used lo achieve their goals. For this
analysis, subjects' dcscriptions were scored for the
presence of 4 specific information elements related to
method. Experts also scored significantly higher on this
measure (F(1, 38) = 34.45, p = .0001). The experts' mean
was 2.90 out of the 4 elements, and the novices' mean
was .85. Question 4 asked only about the overall goals of
the program. There was no significant difference between
novices and experts on Question 4. The experts’ mean
was 6.15 and the novices' mean was 5.50 out of 7
elements on which the descriptions were scored.

3. Recurring patterns. Question 5 contained moderately
complex recurring patterns, while Question 6 contained
very simple recurring patterns. The results showed that
there was a significant difference on Question 5 (F (1, 38)
= 57.58, p = .0001). Out of a possible score of 4 the
experts’ mean was 3.7 and the novices' mean was 1.7.
There was no significant difference between novices and
experts on Question 6. Out of a possible score of 4 the
experts’ mean was 4 and the novices' mean was 3.7.

4. Well-connected representation. Question 7 probed
about knowledge of data connections by asking what were
the names used for the same conceptual objects in different
subprograms. The experts were superior to the novices
(F(1, 38) = 11.99, p = .0013). The experts’ mecan was
3.55 out of a possible score of 7, and the novices' mean
was 1.43. Question 8 simply asked for a listing of names
of data elements, independent of any connections to other
data names used in the program. There was no significant
difference between the two groups on the 7 principal
variables. The experts’ mean was 4.80 out of 7 and the
novices' mean was 3.90.

5. Well grounded in the text. There was a significant
difference on Question 9, the location of subprogram
names on the program template (F(1, 38) = 13.58, p =
.0007). The expert mean was 8.8 out of 9 names, and the
novices' mean was 6.7. Question 10 involved linking
variable names to the context in which they appeared.
The experts performed significantly better than the novices
(F(1, 38) = 14.08, p = .0006). The experts' mean was
5.63 out of a possible score of 10, while the novices'
mean score was 1.65. Question 11 asked about locations
of elements in the code that have a fixed absolute or
relative location. There was no significant difference on

this measure. The experts' mean was 9.3, and the novices'
mean was 9.1 out of 10.

DISCUSSION AND CONCLUSIONS

The results of this study tend to support the existence of
the five abstract characteristics in the mental
representations of expert programmers. However, novice
programmers do not show the same characteristics in their
mental representations, or do not show them to the same
degree. Experts extract many different kinds of
information from a program which become a part of their
mental representations. They are not distinguished from a
novice along a single dimension or just a couple of

dimensions. Taken together, these differences in the
mental representation may provide a partial explanation of
why novice performance is poorer than expert performance
on tasks which have program comprehension as a
prercquisite. The results suggest that a number of skills
contribute to the formation of the mental representation,
for example, skill at recognizing basic recurring patterns,
skill at understanding the particular structure inherent in a
program text, skill at recognizing the links tying the
separate program modules together, etc. When a
programmer exercises these skills, a good representation
which supports comprehension-related programming tasks
is likely to emerge.

A limitation of this experiment is the lack of
"naturalness” of the task and its possible implications.
The subjects were instructed to study the program in order
to comprehend in detail its structure and function. While
the novices did not consider this an unusual task,
apparently some of the experts did. A few of them
commented that in studying a program they normally had
a concrete objective in mind, such as finding a bug or
determining the effects of a potential modification. In this
case thcy were on a fishing expedition and, as a result,
were not sure where to focus their efforts. This raises the
question of what information experts would extract during
program comprehension when given a more concrete goal.
We speculate that the objects and relations recalled could
change quite significantly depending on the nature of the
situation posed in the instructions. For example, a
modification instruction in which the subject was told the
modification to be made would be likely to lead to
concentration on a specific part of the program at the
expense of other parts. Also, the size of the program and
the familiarity of its domain would influence the
information gathered during comprehension. Thus, with
respect to the results reported here, we can only claim that
experts are capable of creating a broad, multi-faceted
representation, not that they necessarily do so every time
they work with a program. However, we do expect that
maintenance programmers who work with a large program
over a period of time eventually develop a multi-faceted
representation similar to what we found.

One may question why novices do not exhibit the same
characteristics in their mental representations as experts.
Clearly, some of the difference is simply the result of
possessing less programming knowledge. For example,
knowledge of recurring patterns may be deficient among
novices and need to be built up through study and practice.
On the other hand, some other characteristics of expert
mental representations are based on information readily
available in the program, yet novices do not extract it.
Examples are the hierarchical structure inherent in the
flow of control of the program and the connections
between modules which are represented in the passage of
data among modules. It may be that novice programmers
do not pick up some information because they are using a
different program comprehension strategy than experts, as
suggested by Jeffries's observations [4] of a different order
of program reading among novices. A different reading or
study strategy may obscure some information selected by

INFERCHI 33

24-29 April 1993

experts and at the same time may highlight other
information less useful to support programming tasks.
We also suggest that novices may lack basic skills
necessary to developing an expert-like representation,
particularly skill at performing symbolic execution.
Novices inability to carry out symbolic execution or their
use of it in inappropriate circumstances has been noted in
the past {4, 5]. Attention to study strategy and to
appropriate use of symbolic execution in instruction may
aid novices in developing more expert-like representations.

REFERENCES
1. Adelson, B. When novices surpass experts: The
difficulty of a task may increase with expertise.

Journal of Experimental Psychology: Learning,
Memory and Cognition 10 (1985), 483-495.

2. Boehm-Davis, D. A, Software comprehension. In
Handbook of Human-Computer Interaction, M.
Helander, Ed., NY: North-Holland, 1988, pp. 107-
121,

3. Holt, R. W., Boehm-Davis, D. A., and Schultz, A.
C. Mental representations of programs for student
and professional programmers. In Empirical Studies
of Programmers: Second Workshop, G. M. Olson,
S. Sheppard, and E. Soloway, Eds., Norwood, NJ:
Ablex, 1987, pp. 33-46.

4. Jeffries, R. A comparison of the debugging behavior
of novice and expert programmers. Paper presented at
the American Educational Research Association
Annual meeting, 1982.

10.

11.

Jeffries, R., Turner, A. A., Polson, P. G., and
Atwood, M. E. The processes involved in
designing software. In Cognitive Skills and Their
Acquisition, J. R. Anderson, Ed., Hillsdale, NJ:
Erlbaum, 1981, pp. 255-283.

Letovsky, S. Cognitive processes in program
comprehension. In Empirical Studies of
Programmers, E. Soloway and S. Iyengar, Eds.,
Norwood, NJ: Ablex, 1986, pp. 58-79.

. Nanja, M. and Cook, C. R. An analysis of the on-

line debugging process. In Empirical Swudies of
Programmers: Second Workshop, G. M. Olson, S.
Sheppard, and E. Soloway, Eds., Norwood, NJ:
Ablex, 1987, pp. 172-184.

Pennington, N. Comprehension strategies in
programming. In Empirical Studies of
Programmers: Second Workshop, G. M. Olson, S.
Sheppard, and E. Soloway, Eds., Norwood, NJ:
Ablex, 1987, pp. 100-113.

Pennington, N. Stimulus structures and mental
representations in expert comprehension of
computer programs. Cognitive Psychology 19
(1987), 295-341.

Soloway, E. and Ehrlich, K. Empirical studies of
programming knowledge. IEEE Transactions on
Software Engineering 10 (1984), 595-609.

Soloway, E., Pinto, J. Letovsky, S., Littman, D.,
and Lampert, R. Designing documentation to
compensate for delocalized plans. Communications
of the ACM 31 (1988), 1257-1267.

79

