
f the many revolutions that have captured the hearts of programmers,
object orientation has been arguably the most forceful and alluring.
Central to the paradigm is that it matches how we think about the world
and therefore self-evidently points the way for all future development.

Given that corrective-maintenance costs already dominate the software life cycle
and look set to increase significantly, I argue that reliability in the form of reducing
such costs is the most important software improvement goal. Yet, as I will show,
the results are not promising when we review recent corrective-maintenance data
for big systems in general and for OO systems, in this case written in C++. I assert
that any paradigm that is capable of decomposing a system into large numbers of
small components—as frequently occurs in both OO and conventional systems—
is fundamentally wrong. Thus, because both paradigms suffer from this flaw, we
should expect no particular benefits to accrue from an OO system over a non-OO
system. Further, a detailed comparison of OO programming and the human
thought processes involved in short- and long-term memory suggests that OO
aligns with human thinking limitations indifferently at best. In the case studies I
describe, OO is no more than a different paradigm, and emphatically not a better
one, although it is not possible to apportion blame between the OO paradigm it-
self and its C++ implementation.

Les Hatton, Oakwood Computing

Does OO Sync with
How We Think?

I s ob jec t o r ientat ion an imper fec t parad igm
for re l iab le co d ing? Worse, do es i t fo cus on
the wrong par t o f the l i fe c yc le? The author
th inks so and exp la ins why.

O

4 6 I E E E S o f t w a r e M a y / J u n e 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E

.

SILVER BULLET OR SILVER DUD?

Historically, engineering has progressed in one
of two ways:

♦ through slow, incremental improvements de-
rived from consistent measurement, or

♦ as the result of a quantum leap.
In most branches of engineering, we usually find a
mixture of the two, with occasional quantum leaps
interspersed between long periods of consolidation
that are based on careful measurement. Examples
of quantum leaps in civil engineering include the
arch keystone and the Roman invention of cement.

Why quantum leaps fall short
Software engineering ought to be the same, but

regrettably, our lack of emphasis on measurement-
based incremental improvement leads us to expect
far more from an occasional invention-powered
quantum leap. We seek a silver bullet: a single prod-
uct or technique that will, by itself, provide a far-
reaching panacea that transforms our field
overnight. Our many failures in the search for this
silver bullet1,2 do not mean that there are none, but
conventional engineering teaches us that they are
few and far between. Worse, without measurement,
we may never find or exploit our silver bullets be-
cause we will not recognize them for what they are.

OO represents one of the latest and certainly
most expensive attempts to find a silver bullet. It
so dominates recent software engineering re-
search and teaching that if it is found to be even
partially unworkable, we will again have thrown
away a vast amount of money on a whim. Or, even
worse, we will be forced to continue using it de-
spite its shortcomings.

Silver-bullet specs
Before we can establish if OO is indeed a valid sil-

ver bullet, we must ask what specifically we would
want a silver bullet to accomplish in software engi-
neering terms. Over the last few years, some orga-
nizations and groups have assiduously amassed
enough data on software systems to uncover pow-
erful messages we should no longer ignore. The cen-
tral questions we currently ask about software con-
cern several factors.

♦ Reliability. Many sources indicate that around
80 percent of all money spent on software goes to
postrelease maintenance. Further, major studies such
as those conducted by Bob Arnold3 strongly suggest
that corrective maintenance is the most expensive

component, amounting to some 50 percent of all
maintenance. The remaining 50 percent is ascribed
to the other two recognizable maintenance compo-
nents: adaptive (improvements based on changed
behavior) and perfective (improvements based on
unchanged behavior). Thus for every hour we spend
developing a system, we spend two hours correct-
ing it during its life cycle. As Figure 1 shows, correc-
tive maintenance appears to be the most significant
component of the life cycle at around 40 percent.
Clearly, then, a valid silver bullet must have a huge
beneficial effect on corrective-maintenance costs.

♦ Productivity. Programmers cost a lot of money,
so any silver bullet should increase productivity, but
what does this mean? Productivity, or the rate at
which a task is completed, directly depends on the
ability to carry out essential development or main-
tenance tasks—successfully, with long-term goals
of usefulness in mind. The very rapid production of
inferior code could not conceivably be called pro-
ductive given the corrective-maintenance costs such
code must incur.

♦ Ease of modification. This is simply a measure
of how efficiently maintenance can be carried out.

♦ Reuse. This involves the notion of reusing parts
of a design or code in a system for which they were
not originally built. Suitability for reuse is primarily
aimed at the development phase. A feature of soft-
ware development since the quantum leap of sepa-
rate compilation, a notion first understood by Alan
Turing in the ’40s and ’50s, reuse enables the emer-
gence of subcomponent libraries for specific tasks
such as numerical algorithms in Fortran. Judging by
detailed surveys such as that done by the ACM,4

apart from GUI building, reuse is not an outstanding
success with C++—this despite reuse being the sec-
ond most common reason developers switch to that

M a y / J u n e 1 9 9 8 I E E E S o f t w a r e 4 7

Figure 1. A simple picture indicating the relative costs of com-

ponents of the life cycle. These figures leave no doubt that correc-

tive maintenance is of strategic importance.

.

language. Regrettably, the most common reason for
the switch is so the developer can add C++ to his or
her curriculum vitae. In contrast, I recall achieving a
greater than 90 percent level of reuse 20 years ago
using scientific library routines called from Fortran.

Thus a valid silver bullet for software must lead
to a massive reduction in maintenance, which is by
far the life cycle’s biggest component. OO should
focus on improving maintenance’s biggest compo-
nent, corrective maintenance, rather than obsess-
ing unnaturally on the relatively minor develop-
ment phase.

OO CASE STUDY

The following recent OO case history details a de-
velopment project in which project staff tracked in
detail corrective-maintenance costs and other main-
tenance issues. I’ll then compare those results with
other recently published data.

The case study took place during the 1995 de-
velopment of static deep-flow analysis toolsets.
These operate by reading the source code of C, C++,
or Fortran like a compiler, but instead of going on
to convert this to machine-executable code, they
compare it against knowledge bases of potential
problems to identify significant inconsistencies or
dangerous use of the language, which is likely to
lead to runtime failure. The tools are widely used,
which makes corrective-maintenance cost an im-
portant consideration.

In this company, from April 1991 onward all soft-
ware development has been orchestrated by a strict
change, configuration, and quality control system.
The system yields a complete audit trail, including
defect analysis. It uses an in-house-developed prod-
uct that automates significant parts of the Software
Engineering Institute’s Capability Maturity Model
levels 2 and 3, and provides data for some parts of
levels 4 and 5. The company develops products in a
Unix environment that runs on Sun and HP work-
stations and uses various C and C++ compilers.

During the last six years, the company developed
a deep-flow analysis tool for (and written in) C, and

then a similar tool for (and written in) C++. The C++
tool closely adheres to the emerging ISO C++ stan-
dard. At the time of the project these parsers had
similar line counts when measured as nonblank
noncomment source lines: 44,700 lines of C for the
C parser and 52,500 lines of C++ for the C++ parser.
However, the latter has grown significantly since the
study to incorporate the full language and is now
much bigger than the C parser.

One staff, two paradigms
The single most important feature of this case

study, for the purposes of my argument, is that both
products were written by the same highly skilled
staff, yet the two are radically different. The C++
parser is a true ab initio OO-designed parser,
whereas the C parser is a traditional design origi-
nally built some years earlier using a one-token
lookahead yacc grammar along with support rou-
tines. The code generated by yacc only amounts to
a small fraction of the whole parser. The C++ parser,
by further contrast, is a recursive-descent parser
owing to the relative intractability of parsing C++
using one-token lookahead grammars.

Another important factor in common is that safe,
well-defined subsets of C and C++ were used fol-
lowing published guidelines5 (although the subset
for C was rather stricter than that for C++ during the
development). The toolsets themselves enforced
these subsets automatically, effectively constituting
programming standards. The company required
that new code conform absolutely and that existing
code improve incrementally until it met the absolute
standard. This also was enforced automatically.

Study metrics
The study involved analysis of the company’s en-

tire change, configuration, and quality control his-
tory between April 1991 and August 1995. For soft-
ware experimentalists, this system is automated and
has the following desirable properties.

♦ Every request for any kind of change received
internally or externally—corrective, adaptive, or per-
fective—is entered into the system as a change re-
quest, at which point the system assigns it a unique
number, available to the originator for reference. This
number can be used to track the CR’s progress at
any time. The first operational CR formally entered
was CR 53, and the most recent at study completion
was CR 2935. Software release notes specifically ref-
erence the CRs resolved in that release.

♦ Corrective change accounts for only 12 per-

4 8 I E E E S o f t w a r e M a y / J u n e 1 9 9 8

Table 1
Defect rates of various products

Product Language Faults/KLOC
C parser C 2.4

C++ parser C++ 2.9

.

cent of all CRs (349 out of 2833). The industry aver-
age is thought to be near 50 percent.3 This low value
is most likely due to a mixture of the enforced use
of safer language subsets, comprehensive regres-
sion test suites, and objective test coverage targets.

♦ CRs automatically go through several states:
evaluation

→ implementation
→ testing

→ loading
→ dissemination

→ closed
♦ CRs can be either accepted or rejected at the

Evaluation stage. If accepted, they are specified at
this point before being advanced to Imple-
mentation. If rejected, they automatically mature to
the Closed state. A CR belongs to exactly one per-
son at any one time, although this person may
change as the CR matures through the above states.
CRs can only be assigned by a project coordinator.

Table 1 shows the defect densities of the various
products as of August 1995. All defects, however
minor, were logged and included in these statistics.

The industry standard for good commercial soft-
ware is around six defects per KLOC in an overall
range of around 6–30 defects per KLOC.6 In addition,
very few systems have ever stayed below one defect
per KLOC this far into the life cycle, even in safety-
critical systems. Given that the two products shown
in Table 1 are used extensively at several hundred
sites around the world, and that parsing technology
is considered a difficult application area, these sta-

tistics compare well with the population at large.
Finally, the average age of these two products since
first release is between three and four years, so the
fault densities represent those for mature software.

Overall, then, this development environment is
well-controlled, formalized, and produces lower de-
fect densities than average products.

RESULTS

I used change requests in two ways: to compare
defect densities in the C parser and the C++ parser,
and to compare the distributions of the times re-
quired to correct defects in the two products.

Defect densities comparison
The two products’defect densities are similar, al-

though that for the OO C++ development is already
25 percent higher and climbing more rapidly than
the conventional C development.

Distribution of correction times comparison
This was most revealing and at the same time the

most disturbing. One argument in favor of OO systems
is that they are easier to change, whether for corrective
reasons or otherwise. To measure this, the distribution
of times to fix defects was compared between the OO
C++ development and the conventional C develop-
ment. Times were computed automatically from the
beginning of the Implementation phase to the be-
ginning of the Loading phase. The developers found

M a y / J u n e 1 9 9 8 I E E E S o f t w a r e 4 9

Figure 2. A comparison of the distributions of the times to fix faults in comparable C++ and C development projects.

.

it much harder to trace faults in the OO C++ design
than in the conventional C design. Although this may
simply be a feature of C++, it appears to be more gen-
erally observed in the testing of OO systems, largely
due to the distorted and frequently nonlocal rela-
tionship between cause and effect: the manifestation
of a failure may be a “long way away” from the fault
that led to it. To quantify this, Figure 2 shows the per-
centage of all fixes completed within certain times for
both the C and C++ development. To read the graph,
note that 60 percent of all fixes for the C development
took less than two hours, compared with only 30 per-
cent of all fixes for the C++ development. The C++ de-
velopment is substantially right-shifted, which indi-
cates that all corrections, simple and complex, take
significantly longer.

Overall, each C++ correction took more than
twice as long to fix as each C correction. This could
simply be because the C++ application area was
more difficult. However, the right shift of the C++
curve compared with the C curve shows that even
simple fixes take longer on average. This suggests
that the implementation and not the application
area contributed most to the differing error rates.
For a different perspective on the data, Figure 3
shows the total number of hours spent in each of
the categories for each of the two products.

Overall, project staff spent 1,341 hours correct-
ing 94 defects in the C++ product, compared with

375.1 hours correcting 74 defects in the C product.
The overall picture is shown in Table 2, including a
calculation of the average time taken to fix a de-
fect—first for all defects, then for defects taking no
more than 40 hours. This was done to remove the
effects of a small number of very difficult defects,
which occurred in the C++ product but were never
seen in the C product. Even after this adjustment,
defects still took some 37 percent longer to fix in
C++ than in C. For all defects, the average correction
time is 260 percent longer in C++.

You can also see the right shifting of C++ cor-
rective-maintenance costs compared with other
languages in Watts Humphrey’s data comparing
C++ with Pascal.7 Humphrey independently ana-
lyzed more than 70 Pascal and C++ programs and
found the behavior shown in Figure 4, which is
quantitatively similar to the case history presented
here. Qualitatively similar comments comparing
C++ and C were made to me in a personal commu-
nication by Walter Tichy.

To summarize, these two independent data
sources suggest that corrective-maintenance costs
are significantly larger in OO systems written in C++
when compared to conventional systems imple-
mented in C or Pascal. Although two cases do not
make a theory, the results’ similarity seems signifi-
cant. Given that the whole of OO appears to have
existed so far in a measurement vacuum, these cases
raise some disturbing questions that can only be
answered by further measurement. If this pattern
were to be repeated, then the claims certainly for
C++ based OO systems, particularly with regard to
ease of corrective change, look dubious.

OO AND HOW WE THINK

The data I’ve presented clearly give cause for con-
cern and, considering the difficulty of corrective
maintenance in C++ based OO development, call
into question the validity of the paradigm’s funda-
mental principle: that it is a way to think about sys-
tems that mirrors our natural thought processes.

Essential OO properties
Studying the copious OO literature, I find that

the central features that comprise an OO system are
somewhat ill defined. Although such systems dif-
fer in detail, all appear to encompass at least the
following.

♦ Encapsulation. The essential properties of an

5 0 I E E E S o f t w a r e M a y / J u n e 1 9 9 8

Figure 3. The total number of hours spent in corrective mainte-

nance for each time range for each product. For example, for de-

fects taking between 20 and 50 hours to correct, about 270 hours

were spent on the C++ product and about 140 on the C product.

.

object can be isolated from the
outside world. Only those prop-
erties that the outside world must
know about are made visible.

♦ Inheritance. An object can
inherit properties from another
object. In OO, we think of a base
object from which subobjects
can inherit certain features, as
well as adding their own. This can
be extended to multiple inheri-
tance, whereby a subobject can
inherit properties from more than
one base object.

♦ Polymorphism. The behav-
ior of an object is context-sensi-
tive: it acts differently in different
circumstances.

OO practitioners assert that
these properties mimic how we
think about the world by defining
it in terms of objects and their attributes. We must,
however, clearly distinguish between the logical
properties of a paradigm and the degree of error that
stems from how we think about those properties.

Modeling human reasoning
So how do we reason logically? As with engi-

neering, we have considerable empirical evidence
from physiology to guide us in building basic mod-
els of the thinking process. In particular, the nature
of logical thought, memory, and symbolic manipu-
lation are highly relevant to programming.

There is very considerable physiological evi-
dence, from studies of Alzheimer’s disease for ex-
ample, that favor the existence of a dual-level
reasoning system based around a short- and long-
term memory that exhibits significantly different
recovery procedures.8

Short-term memory is characterized by rehearsal,
finite size, and rapid erasure. Its effective size is, how-
ever, governed by the degree of rehearsal. As you

continually rehearse concepts, their representation
becomes more compact preparatory to or perhaps
coincident with their transfer to long-term memory,
so that more can fit into the short-term memory.

Long-term memory is characterized by a stor-
age mechanism based on chemical recovery codes,
effectively limitless capacity, and longevity, in
which recall is impaired only by breakdown in the
recovery codes themselves, rather than in the em-
bedded memory itself. Under certain conditions
based on short-term rehearsal behavior, memories
are transferred from short-term to long-term mem-
ory by a mechanism that encodes important prop-
erties in a more easily representable and diverse
form, leading to the phenomenon whereby, for ex-
ample, an entire summer vacation can be recalled
from the stimulus of a particular fragrance. This
mechanism is at the heart of accelerated learning
techniques that exploit such encoding to improve
the accuracy and persistence of recollections, and
may have significant relevance to programming.

M a y / J u n e 1 9 9 8 I E E E S o f t w a r e 5 1

Figure 4. A comparison of the distributions of the times to fix faults

in C++ and Pascal development. The C++ development is again

right-shifted, indicating that both simple and complex corrections

take significantly longer.

Table 2
Comparison of Defect Correction Times in the C and C++ Products

Implementation Language Total Hours Total Defects Hours/defect
C, all defects 375.1 74 5.5

C++, all defects 1,341.0 94 14.3

C, all defects taking no more than 40 hours 311.1 73 4.6

C++, all defects taking no more than 40 hours 575.0 86 6.3

.

Figure 5 shows this relationship.
A simple mathematical model of this system9

suggests that any manipulation that can fit en-
tirely into short-term memory will be far more
efficient and error-free than those requiring ac-
cess to long-term memory. Further, it appears to
pay to keep short-term memory as full as possi-
ble by partitioning the problem into pieces that
just fill it, without overflowing into long-term
memory. This, it turns out, leads directly to a U-
shaped defect density vs. component size curve
as shown in Figure 6, a phenomenon widely ob-
served in extraordinarily diverse software sys-
tems.9,10 My work9 also reinforces the observa-
tion previously made by others that defect
density does not appear to be strongly depen-
dent on language, with mainstream languages
like Ada, C, C++, Fortran, Pascal, and assembler
all yielding broadly similar defect densities when
measured in defects per KLOC. These results also
support the notion that defect introduction is
strongly related to models of human reasoning,
rather than to more abstract concepts.

The U curve simply tells us that, in any system,
defects tend to accumulate in the smallest and
largest components, leaving the medium-sized
components most reliable. The existing data does
not, however, tell us how to design a system, since
the systems were all measured after the fact. No ex-
periments have yet been done whereby a system
has been deliberately constructed to exploit the U
curve. Behavior models, such as the one based on
human memory, can predict how to exploit the
curve, but we must conduct further experiments to
confirm or reject such predictions.

OO and the human mind
How do the principles of OO fit this model? First,

there appears to be a natural fit with encapsulation.
Encapsulation lets us think about an object in iso-
lation and can thus be related to the notion of ma-
nipulating something in short-term memory exclu-
sively. Further, the finite size of short-term memory
suggests that objects should also be of limited size.
However, encapsulation does not explicitly recog-
nize the need to use short-term memory most effi-
ciently by keeping it nearly full, which corresponds
to the development of components in the medium-
sized range. Programmers express surprising agree-
ment about when they should use formal meth-
ods—that point at which a problem becomes
sufficiently complex to require formal notational
support. We can speculate that this indicates the
point at which short-term memory overflows.

It is less easy to see how inheritance fits our
memory model. The functions of long-term mem-
ory provide the best comparison. If an object has
already been transferred to long-term memory, the
transfer mechanism will have encoded important
object properties in a more compact representa-
tion. If an object is then manipulated in short-term
memory that possesses inherited properties previ-
ously encoded more efficiently in long-term mem-
ory, the properties’ recall from long-term memory
will be more efficient. However, access to long-term
memory breaks the train of thought and is inher-
ently less accurate. So this property of OO seems
likely to be problematic. This is supported by a de-
tailed study11 of a large commercial C++ system
consisting of some 133,000 lines. The study’s results
showed that components involved in inheritance
contained six times more defects than components
not thus involved, even though this system con-
tained single inheritance only.

The third property, that of polymorphism, is po-
tentially even more damaging. Objects with
chameleon-like properties are intrinsically more dif-
ficult to manipulate, as they will by necessity involve
pattern-matching similar behavior in long-term
memory. The crossover of properties in short- and
long-term memory relates to the apparently non-
local relationship between cause and effect ob-
served in an OO implementation, such as the com-
plex set of matching rules that take place invisibly
with function overloading in C++ through the
mechanism of implicit actions. This mechanism has
caused programmers difficulty in program com-
prehension and reading.

5 2 I E E E S o f t w a r e M a y / J u n e 1 9 9 8

Figure 5. A simple schematic of the physio-

logical properties of the human memory system.

.

Overall, it seems that encapsulation at least par-
tially fits how we think, but neither inheritance nor
polymorphism do so as well or as naturally. The
world may well be described conveniently in terms
of objects and their properties. But OO is not natu-
rally and self-evidently associated with the least
error-prone way of reasoning about the world and
should not be considered a primary candidate for a
more effective programming paradigm. Given the
simple model I’ve described, any paradigm that fa-
vors the natural behavior of the relationship be-
tween short-term and long-term memory, by ex-
ploiting the U curve in inspections for example, will
likely lead to a significant reduction in defects, al-
though this must still be tested experimentally.9

LESSONS LEARNED

We can derive the following lessons by review-
ing the case history I’ve described.

♦ Owing to its measurement-confirmed role as
the leading consumer of programmer resources, re-
liability in the form of corrective-maintenance cost
is a strategically important goal and a significant in-
dicator of engineering improvement.

♦ In the study I cited, an OO C++ implementa-
tion led to a system with somewhat poorer defect
density when compared to an equivalent non-OO
system in C. More significantly, comparable de-
fects took between two and three times as long
to correct because the whole distribution was
right-shifted.

♦ The way defects appear in programming-
language usage is qualitatively similar to the known
properties of human short- and long-term memory,
and the generally accepted principles of OO do not
appear to match this model well.

Given the preceding points, you could only ex-
pect real corrective-maintenance gains from the
higher defect density of the OO C++ implementa-
tion if a similar development in C would have taken
much more code—that is, if C++ could lead to a cor-
responding compaction in code size for a given
functionality. The data showed no evidence for this,
however, partly due to the large amount of frame-
work code that must be written in C++ to establish
the object relationships. As a coda, the survey by
Leach12 showed that few users felt they achieved
more than 20 percent reusability. In the study de-
scribed here, both systems have comparable levels
of reuse: around 40 percent. I have heard of C++

systems that claim to have reached much higher
compaction levels, but the evidence is anecdotal
and such claims rare.

Thus both the experiment I’ve presented and
other independently derived data collectively cast
considerable doubt on the belief that OO systems
implemented in C++ offer a quantum leap forward.
Mine is not the only study that shares such doubts.
Michelle Cartwright and Martin Shepperd13 raise
several important and general concerns about OO
in general, including the following.

♦ Despite many claims about OO software’s
ease of maintenance, supporting data is sparse and
conflicting.

♦ The potential for complexity in OO systems
gives rise to concern over their maintainability in
practice.

♦ You cannot directly apply current maintenance
research to the OO paradigm without adaptation.
Because OO is so poorly defined in general, many
conflicting views and hybrid approaches exist.

Given that improved maintainability is in ques-
tion and that some 50 percent of all maintenance is
corrective, Cartwright and Shepperd’s study casts
further doubt on OO’s ability to provide improved
corrective-maintenance costs. Finally, the study cites
compelling evidence that most OO systems do not
achieve their promise. The authors conclude with
another survey of actual OO users who, perhaps sur-
prisingly, still view the paradigm in a favorable light.
Hope does indeed shine eternal.

The case history I’ve presented reveals that in
comparable, parallel developments, no signif-

M a y / J u n e 1 9 9 8 I E E E S o f t w a r e 5 3

Figure 6. The U-shaped defect density vs. av-

erage component complexity curve observed in

many software systems. Lines of source code is

the most commonly used complexity measure in

these experiments.

.

icant benefits accrued from the use of an object-
oriented technique in terms of corrective-mainte-
nance cost, and that the company views the result-
ing C++ product as much more difficult to correct
and enhance. Further, this data is not unusual and
compares closely to other published data.

Given OO’s rather vague definition, it is easy to
criticize developers for not understanding the par-
adigm properly, but such criticisms tend to come
from those who do not measure their own efforts.
It is often noted anecdotally that C++ class systems
take time to perfect. With this in mind, the develop-
ers in the study I’ve presented were given consider-
able leeway to rewrite parts of the C++ product as it
evolved. They made liberal enough use of this free-
dom to ensure that the experiment was not simply
an inappropriate first design.

Finally, we must recognize that this case history
does not distinguish between how much the re-
ported problems relate specifically to OO and how
much they relate to C++. Equivalent data on how
other widely used OO languages—such as Smalltalk,
Java, and Eiffel—compare to conventional systems
seems rare to nonexistent. However, combining

♦ a significant study that shows inheritance ap-
pears to attract defects,

♦ the similarity of the data comparing C++ sys-
tems against two widely differing languages, C and
Pascal, reported here;11 and

♦ the reasoning models presented here,
the problem seems at least partially ascribable to
OO itself. If so, significant progress may only be
made in the key area of corrective-maintenance
costs if we use paradigms that are sympathetic to
limitations in human reasoning ability rather than
to abstract paradigms. A good example of this
might be the explicit exploitation of the empirically
established U curve of defect density. Whatever di-
rection we take, any attempt to improve in the ab-
sence of measurable feedback seems doomed to
fail, however much fun it may be. ❖

ACKNOWLEDGMENTS
I acknowledge the unfailing cooperation of the devel-

opment staff at the case history company for their assis-
tance in compiling the data. Walter Tichy also shared many
important insights from his wide experience in this area.
Finally, I thank this article’s unusually large number of
anonymous reviewers.

REFERENCES
1. F.P. Brooks, “No Silver Bullet: Essence and Accidents of

Software Engineering,” Computer, Apr. 1987, pp. 10-19.

2. D. Harel, “Biting the Silver Bullet: Toward a Better Future for
Software Development,” Computer, Jan. 1992, pp. 8-24.

3. R.S. Arnold, On the Generation and Use of Quantitative Criteria
for Assessing Software Maintenance Quality, doctoral disserta-
tion, Univ. of Maryland, College Park, Md., 1983.

4. D. Crawford, “Object-Oriented Experiences and Future Trends,”
Comm. ACM, Vol. 38, No. 146, 1995.

5. L. Hatton, Safer C: Developing for High-Integrity and Safety-
Critical Systems, McGraw-Hill, New York, 1995.

6. J. Musa et al., Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New York, 1987.

7. W.S. Humphrey, A Discipline of Software Engineering, Addison
Wesley Longman, Reading, Mass., 1995.

8. F.I.M. Craik and R.S. Lockhart, “Levels of Processing: A
Framework for Memory Research,” Key Studies in Psychology,
R.D. Gross, ed., Hodder & Stoughton, London, 1990.

9. L. Hatton, “Re-Examining the Fault Density–Component Size
Connection,” IEEE Software, Mar./Apr. 1997, pp. 89-97.

10. D. Card and R.L. Glass, Measuring Software Design Complexity,
Prentice Hall, Upper Saddle River, N.J., 1986.

11. M. Cartwright and M. Shepperd, An Empirical Investigation of an
Object-Oriented Software System, tech. report TR 96/01, Dept. of
Computing, Bournemouth Univ., U.K., 1997.

12. E. Leach, “Object Technology in the U.K.,” CSM ’95, CSM,
Durham, England, 1995.

13. M. Cartwright and M. Shepperd, “Maintenance: the Future of
Object-Orientation,” CSM ’95, CSM, Durham, England, 1995.

5 4 I E E E S o f t w a r e M a y / J u n e 1 9 9 8

Les Hatton is a managing partner at
Oakwood Computing. Formerly he was
director of research for Programming
Research Ltd. As a geophysicist he was
awarded the European Conrad Schlum-
berger award in 1987, but now special-
izes in software safety. He is the author
of Safer C: Software Development in High-

Integrity and Safety-Critical Systems (1995) and is currently work-
ing on a new book, Software Failure: Avoiding the Avoidable and
Living with the Rest.

Hatton received a BA and an MA from King’s College,
Cambridge, and a PhD from Manchester, all in mathematics.
He is a fellow of the British Computer Society.

About the Authors

Address questions about this article to Hatton at Oakwood
Computing, Oakwood 11, Carlton Road, New Malden, Surrey,
KT3 3AJ, UK; lesh@oakcomp.co.uk.

.

